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Abstract Various research initiatives try to utilize the
operational principles of organisms and brains to develop
alternative, biologically inspired computing paradigms and
artificial cognitive systems. This article reviews key fea-
tures of the standard method applied to complexity in the
cognitive and brain sciences, i.e. decompositional analysis
or reverse engineering. The indisputable complexity of
brain and mind raise the issue of whether they can be
understood by applying the standard method. Actually,
recent findings in the experimental and theoretical fields,
question central assumptions and hypotheses made for
reverse engineering. Using the modeling relation as ana-
lyzed by Robert Rosen, the scientific analysis method itself
is made a subject of discussion. It is concluded that the
fundamental assumption of cognitive science, i.e. complex
cognitive systems can be analyzed, understood and dupli-
cated by reverse engineering, must be abandoned. Impli-
cations for investigations of organisms and behavior as
well as for engineering artificial cognitive systems are
discussed.
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1 Introduction

For some time past, computer science and engineering
devote close attention to the functioning of the brain. It has
been argued that recent advances in cognitive science and
neuroscience have enabled a rich scientific understanding of
how cognition works in the human brain. Thus, research
programs have been initiated by leading research organiza-
tions to build new computing systems based on information
processing principles derived from the working of the brain,
and to develop new cognitive architectures and computa-
tional models of human cognition (see, e.g. (Schierwagen
200y7, 2009), and references therein).

Two points are emphasized in those research programs:
First, there is impressive abundance of available experi-
mental brain data, and second, we have the computing power
to meet the enormous requirements to simulate a complex
system like the brain. Given the improved scientific under-
standing of the operational principles of the brain as a
complexly organized system, it should then be possible to
build an operational, quantitative model of the brain. Tuning
the model could be achieved then using the deluge of
empirical data, due to the ever-improving experimental
techniques of neuroscience.

Trying to put this idea into practice, however, has
generally produced disenchantment after high initial hopes
and hype. If we rhetorically pose the question “What is
going wrong?” [as previously posed in the field of robotics
(Brooks 2(31)], possible answers are: (1) The parameters
of our models are wrong; (2) We are below some com-
plexity threshold; (3) We lack computing power; (4) We
are missing something fundamental and unimagined. In
most cases, only answers (}-3) are considered by computer
and Al scientists, and allied neuroscientists, and conclu-
sions are drawn in similar vein. If answer (1) is considered
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true, still better experimental methodologies are demanded
to gather the right data, preferably at the molecular genetic
level [e.g. (Le Novere 2007)]. Answers (2) and (3) often
induce claims for concerted, intensified efforts relating
phenomena and data at many levels of brain organization
[e.g. (Grillner et al. 2305)].

Together, any of answers (1-3) would mean that there is
nothing in principle that we do not understand about brain
organization. All the concepts and components are present,
and need only to be put into the model. This view is widely
taken; it represents the belief in the efficiency of the sci-
entific method, and it leads one to assume that our under-
standing of the brain will major advance as soon as the
‘obstacles’ are cleared away.

As I will show in this article, there is, however, sub-
stantial evidence in favour of answer (4). I will argue that,
by following the standard scientific method, we are in fact
ignoring something fundamental, namely that biological
and engineered systems are basically different in nature.

The article is organized as follows. Section 2 presents
conceptual and methodological basics of the cognitive and
brain sciences. The concepts of decompositional analysis
and localization underlying the reverse engineering method
are reviewed. I discuss the idea of modularization and its
relation to the superposition principle of system theory.
Then, Sect. 3 shortly touches on Blue Brain and SyNAPSE,
two leading reverse-engineering projects. Both projects are
based on the hypothesis of the columnar organization of the
cortex. The rationale underlying reverse engineering in
cognitive and brain sciences is outlined. New findings are
mentioned questioning the concept of the basic uniformity of
the cortex, and consequences for the reverse-engineering
projects are discussed. Section 4 ponders about the claim that
non-decomposability is not an intrinsic property of complex
systems but is only in our eyes, due to insufficient mathe-
matical techniques. For this, the modeling relation as ana-
lyzed by Robert Rosen is explained which enables us to make
the scientific analysis method itself a subject of discussion. It
is concluded that the fundamental assumption of cognitive
science must be abandoned. I end the article by some con-
clusions for the study of organisms and behavior as well as
for engineering artificial cognitive systems.

2 Methodological basics

2.1 Decomposability

Brains, even those of simple animals, are enormously com-
plex structures, and it is a very ambitious goal to cope with
this complexity. The scientific disciplines involved in cog-

nitive and brain research are committed to a common
methodology to explain the properties and capacities of
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complex systems. It is decompositional analysis, i.e. analysis
of the system in terms of its components or subsystems.

Since Simon’s influential book “The Sciences of the
Artificial” (Simon 1969), (near-) decomposability of com-
plex systems has been accepted as fundamental for the
cognitive and brain sciences. Cognitive capacities are con-
sidered as dispositional properties which can be explained
via decompositional analysis. I call this the fundamental
assumption for the cognitive and brain sciences. Simon
(1969), Wimsatt (19£6) and Bechtel and Richardson (1993),
among others, have further elaborated this concept. They
consider decomposability a continously varying system
property, and state, roughly, that systems fall on a continuum
from aggregate (full decomposable) to integrated (non-
decomposable) (Fig. 1). The fundamental assumptionimplies
that cognitive and brain systems are non-ideal aggregate
systems; the capacities of the components are internally
realized by strong intra-component interactions, and interac-
tions between components do not appreciably contribute to
the capacities; they are much weaker than the intra-component
interactions. Hence, the description of the complex system as a
set of weakly interacting components seems to be a good
approximation. This property of complex systems, which
should have evolved through natural selection, was called
near-decomposability (Simon 196%).

Simon characterizes near-decomposability as follows:
(1) In a nearly decomposable system, the short-run
behaviour of each of the component subsystems is
approximately independent of the short-run behaviour of
the other components; (2) in the long run the behaviour of
any one of the components depends in only an aggregate
way on the behaviour of the other components (Simon
1969, p. 100). Thus, if the capacities of a near-decom-
posable system are to be explained, to some approximation
its components can be studied in isolation, and based on
their known interactions, their capacities eventually com-
bined to generate the systems behavior.

Let us summarize this assumption because it is of cen-
tral importance in the following:

Fundamental assumption for cognitive and brain
sciences

Cognitive and brain systems are non-ideal aggre-
gate systems. The capacities of the components are

aggregate

full
decomposablel

integrated

near-
decomposable

non-
decomposable

Fig. 1 Decomposability as a continuously varying system property.
According to this view, the focus is on near-decomposable systems
which would represent the most relevant systems category in the
cognitive and brain sciences
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internally realized (strong intra-component interac-
tions) while interactions between components are
negligible with respect to capacities. Any capacity of
the whole system then results from superposition of the
capacities of its subsystems. This property of cognitive
and brain systems should have evolved through natural
selection and is called near-decomposability.

2.2 Decompositional analysis

The primary goal of cognitive science and its subdisci-
plines is to understand cognitive capacities like vision,
language, memory, planning etc. That is, we want to
answer questions of the form “does system S possess or
exercise a capacity C?”. The quest for S$’s capacity C can
be replaced by evaluating the proposition P(S) = “S pos-
sesses or exercises the capacity C”. In other words, we
want to determine the truth or falsity of the proposition
P(S).

Cummins (1983, 2000) suggests that a system’s capacity
can be explained by a functional analysis of that capacity.
A functional analysis of some capacity C proceeds,
roughly, by parsing the capacity into a set of constituent
sub-capacities Cy, C,, .. ., C,. Note that the sequence has to
be specified in which those constituent capacities must be
exercised for producing the complex capacity. That is,
there is an algorithm which can be programmed to decide
whether system S has C or P, by processing a finite list of
propositions Py, Ps, ..., P,.

The scheme then asserts that any capacity proposition
P(S) can be expressed as conjunction of a finite number of
sub-propositions P,(S) the truth of each one is necessary,
and all together sufficient, for P(S) to be true’. Hence, a
functional analysis comprises the following steps:

Functional analysis

1. Establish that system § has capacity C or property P.

2. Decompose P into sub-properties P;(S), P2(S),...,
P,(S).

3. Specity the sequence in which the sub-properties P; are
to be processed to generate P, i.e. the algorithm.

Then it follows that P(S) = A\ Pi(S). (1)
i=1

If this scheme is applied to a material system S with the
property P(S), it allows to express P(S) in the form of
Eq. 1, i.e. by purely syntactical means. That is, property
P(S) is redundant, and its truth does not provide new
information about system S, cf. (Rosen 2800).

! Cummin’s scheme evidently employs Frege’s principle of compos-
itionality, well-known in computer science as ‘divide and conquer’.

A cognitive capacity may be explained not only by
analyzing the capacity itself, but also by analyzing the
system that has it. This type of decompositional analysis is
structural analysis (Atkinson 1998; Eckardt 2004). It
involves to attempt to identify the structural, material
components of the system. Thus, the material system S is to
be decomposed into context-independent components
S;, i.e. their individual properties Py(S;) are independent of
the decomposition process itself and of $’s environment.

2.3 Localization

Functional analysis and structural analysis must be clearly
differentiated, although in practice, there is a close inter-
play between them (as indicated by the double arrow in
Fig. 2). This is obvious in the localization approach which
combines both analysis types. The essential assumption is
that each of the sub-properties P,(S), into which the prop-
erty P(S) was decomposed, is to be localized in some
particular subsystem S; of § itself. Thus, the properties
Py(S)) of $’s material components S; equal exactly the
conjunction terms in Eq. I, i.e. for each sub-property
P«(S) there is a structural component S; whose property
P(S)) is identical to Py(S),

Pi(S) = Pi(S))- (2)
Thus, Eq. 1 can be rewritten as

P(S) = N\ Pe(S). (3)
ik

Equation 2 in a nutshell expresses the idea of the funda-
mental assumption, i.e. decomposition and localization.
Properties P«S) of the whole system S are identified with
properties Pi(S};) of certain of its subsystems S;. This means,
one assumes that any material system S (including brain) can
be decomposed into context-independent parts or structural

Analysis of System Capacity
Behavior / Organism

Decompositional
Analysis

Cognition / Brain

Structural Analysis
Brain areas, layers, circuits

Functional Analysis
Cognitions

Fig. 2 View on decompositional analysis of brain and cognition. See
text for details
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components §; in such a way that their properties P(S)) are
independent of the properties of the other parts and of any
environment. Thus, a set of decomposition operators &; on
S of the form

2:(8) = Si 4)

is supposed which isolate the subsystems §; from S. Cor-
responding to the fundamental assumption, the operators
9, break the inter-component interactions which ‘glue’ the
context-independent components of S together, but without
affecting any of the intra-component interactions.

Ideally, decomposition operations like &; are reversible,
i.e. the whole system S can be synthesized from the com-
ponents S,

S=851985® Q8 (5)

where the ®-symbol denotes inter-component interactions
like those broken by the decomposition operators &;. Thus,
S is to be considered as a kind of direct product. Now
the close analogy of expressions (3) and (5) becomes
obvious: the fractionation of system § corresponds to the
compositionality of property P(S) while the connector
symbol A replaces the inter-component interaction symbol
®,

P(S) :P1(S1)/\P2(S2)/\"'/\Pm(Sm). (6)

These suppositions allow to proceed wholly in the
syntactical realm. Any property P of a physical system
S comes with an algorithm for evaluating P’s truth, and any
physical system § can be algorithmically generated from a
sufficiently large population of components S; by exclusively
syntactical means. In both cases, analysis and synthesis are
inverse operations which are realized entirely by algorithms,
i.e. the operations are computable, cf. (Rosen 2000, p. 131).

Understating the case, the localization approach has
been described as hypothetical identification which is to
serve as research heuristics (Bechtel 1993). In fact, how-
ever, the majority of cognitive scientists considers it as
fundamental and indispensable [e.g. (Eckardt 2(04; Ross
2010)]. For example, Von Eckardt (2004) points out that a
functional analysis for a capacity C only provides us with a
possible explanation of how the system has capacity
C. That is because the decomposition of a composed
capacity is not unique—it can be parsed into various
alternative sequences of constituent capacities, each of
which is sufficient for S’s capacity C. As a way out, she
suggests to build a model that is structurally adequate by
employing the localization approach.

A caveat is necessary, however: There is no reason to
assume that functional and structural components match up
one-to-one! Of course, it might be the case that some
functional components map properly onto individual
structural components. It is rather probable, however, for a
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certain functional component to be implemented by non-
localized, spatially distributed material components. Con-
versely, a given structural component may implement more
than one distinct function. According to Dennett (1991,
p- 273): “In a system as complex as the brain, there is
likely to be much ‘multiple, superimposed functionality’”.
With other words, we cannot expect specific functions to be
mapped to structurally bounded neuronal structures, and
vice versa. It is now well known that Dennett’s caveat has
been proved as justified (e.g. (Price 2005)). Thus, the value
of the localization approach as ‘research heuristics’ seems
rather dubious (Uttal 20¢1; Henson 2005).

2.4 Linearity, modularization and complex systems

In the cognitive and brain sciences, as in other fields of
science, the components of near-decomposable systems are
called modules. This term originates from engineering; it
denotes the process of decomposing a product into building
blocks, modules, with specified interfaces, driven by the
designer’s interests and intended functions of the product.
It refers either to functional or structural components.
Modularized systems are linear in the sense that they obey
an analog of the superposition principle of linear system
theory in engineering (Schierwagen 1989). If the modules
are structurally localized functional components, the
superposition principle is expressed by Eq. 5. The function
of a decomposable system results from the linear combi-
nation of the functions of the system modules” This prin-
ciple mirrors the constructive step in the scheme of reverse
engineering (see above and Sect. 3 below). The terms
‘linear’ and ‘nonlinear’ are often used in this way: ‘Linear’
systems are decomposable into independent modules with
linear, proportional interactions while ‘nonlinear’ systems
are not” (Schierwagen 1959; Forrest 1990).

Applying this concept to the systems at the other end of
the complexity scale (Fig. 1), the integrated systems are
basically not decomposable, due to the strong, nonlinear
interactions involved. Thus, past or present states or actions
of any or most subsystems always affect the state or action
of any or most other subsystems. In practice, analyses of
integrated systems nevertheless try to apply the method-
ology for decomposable systems, in particular if there is
some hope that the interactions can be linearized. Such
linearizable systems have been above denoted as nearly
decomposable. However, in the case of strong nonlinear

2 A corresponding class of models in mathematics is characterized by
the superposition theorem for homogeneous linear differential
equations stating that the sum of any two solutions is itself a solution.

3 We must differentiate between the natural, complex system and its

description using modeling techniques from linear system theory or
nonlinear mathematics.
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interactions, we must accept that decompositional analysis
is not applicable.

Already several decades ago this insight was stressed. For
example, Levins (1970, p. 76 ff.) around 1970 proposed a
classification of systems into aggregate, composed and
evolved systems. While the aggregate and the composed
would not cause serious problems for decompositional
analyses, Levins emphasized the special character of
evolved systems:

A third kind of system no longer permits this kind of
analysis. This is a system in which the component
subsystems have evolved together, and are not even
obviously separable; in which it may be conceptually
difficult to decide what are the really relevant com-
ponent subsystems.... The decomposition of a com-
plex system into subsystems can be done in many
ways... it is no longer obvious what the proper sub-
systems are, but these may be processes, or physical
subsets, or entities of a different kind.

This statement clearly contradicts the fundamental
assumption, and it has not lost its relevance, as the findings
of complexity science have shown. Nevertheless, most
researchers in the cognitive and brain sciences found rea-
sons to cling to it. A main argument for the fundamental
assumption has been that non-decomposability is only in
our eyes, and not an intrinsic property of strongly nonlinear
systems, and scientific progress will provide us with the
new mathematical techniques required to deal with non-
linear, integrated systems. I will return to this problem in
Sect. 4.

3 Reverse engineering the brain
3.1 The column concept

A guiding idea about the composition of the brain is the
hypothesis of the columnar organization of the cerebral
cortex. This column concept was developed mainly by
Hubel and Wiesel (1963), Mountcastle (1997) and
Szenthigothai (1983), and later on, it was published in the
influential paper “The basic uniformity in structure of the
neocortex” (Rockel etal. 198(3). According to this
hypothesis (which has been taken more or less as fact by
many experimental as well as theoretical neuroscientists),
the neocortex is composed of ‘building blocks’ (Fig. 3) of
repetitive structures, the ‘columns’ or ‘canonical cortical
circuits’, and it is characterized by a basic canonical pattern
of connectivity. In this scheme all cortical areas would
perform identical or similar computational operations with
their inputs.
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Fig. 3 Hubel and Wiesel’s ‘ice cube’ model of visual cortical
processing. The diagram illustrates the idea that the cortex is
composed of iterated modules each of which comprises a complete
set of superimposed feature-processing elements, in this case for
ocular dominance (indicated by L. and R) and orientation selectivity
(here represented for angles from 0 to 7) (after (Hubel 1977))

3.2 Method of reverse engineering

Referring to and based on these works, several projects
started recently, among them the Blue Brain Project
(Markram 2006) and the SyNAPSE Project (Systems of
Neuromorphic Adaptive Plastic Scalable Electronics,
SyNAPSE). They are considered to be “attempts to
reverse-engineer the mammalian brain, in order to under-
stand brain function and dysfunction through detailed
simulations” (Markram 20{6) or, more pompous, “to
engineer the mind” (SyNAPSE 2008).

Reverse engineering is the main method used in empirical
research to integrate the data derived from the different
levels of the brain organization. Originally a concept in
engineering and computer science, reverse engineering
involves as first step a decompositional analysis, i.e. the
detailed examination of a functional system (functional
analysis) and its dissecting at the physical level into com-
ponent parts (structural analysis), see Fig. 2. In a second
step, the (re-) construction of the original system is attempted
by creating duplicates including computer models, see below
(Sect. 4). This method is usually not much discussed with
respect to its assumptions, conditions and range* but see
(Dennett 1994; Marom et al. 2009; Gurney 2009).

The central role in these projects play cortical micro-
circuits or columns. As Maas and Markram (2006) for-
mulate, it is a “tempting hypothesis regarding the
computational role of cortical microcircuits ... that there
exist genetically programmed stereotypical microcircuits
that compute certain basis function.” Their study well

4 Only recently, differences between proponents of reverse engi-
neering on how it is appropriately to be accomplished became public.
The heads of the two reverse engineering projects mentioned,
Markram (2006) and Modha (Systems of Neuromorphic Adaptive
Plastic Scalable Electronics, SyNAPSE 2008), disputed publicly as to
what granularity of the modeling is needed to reach a valid simulation
of the brain. Markram questioned the authenticity of Modha’s
respective claims (Brodkin 2009).
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illustrates the modular approach fostered, e.g. by (Grillner
et al. 2005; Gurney 2009; Arbib et al. 1997; Bressler
2006). Invoking the localization concept, the tenet is that
there exist fundamental correspondences among the ana-
tomical structure of neuronal networks, their functions, and
the dynamic patterning of their active states. Starting point
is the ‘uniform cortex’ with the cortical microcircuit or
column as the structural component. The question for the
functional component is answered by assuming that there is
a one-to-one relationship between the structural and the
functional component (see Sect. 2.2). Together, the mod-
ularity hypothesis of the brain is considered to be both
structurally and functionally well justified.

As quoted above, the goal is to examine the hypothesis
that there exist genetically programmed stereotypical
microcircuits that compute certain basis function, thus
providing for complex cognitive capacities. This hypothe-
sis is based on the general, computational approach to
cognitive capacities which takes for granted that “cogni-
tion is computation”, i.e. the brain produces the cognitive
capacities by computing functions”.

This assumption allows to apply the idea of decomposi-
tion or reverse engineering in the following way. From
mathematical analysis and approximation theory it is well-
known that a broad class of practically relevant functions
f can be approximated by composition or superposition of
some basis functions. Of prime relevance in this respect are
Kolmogorov’s ‘superposition theorem’ stating that contin-
uous functions of 7 arguments can always be represented
using a finite composition of functions of a single argument,
and addition, and Weierstrass and Stone’s classical result
that any real continuous function can be approximated with
arbitrary precision using a finite number of computing units.
Kolmogorov’s theorem was rediscovered in the 1980s by
Hecht-Nielsen and applied to artificial neural networks.
Since then many different types of function networks and
their properties have been investigated, so that alot of results
about the approximation properties of networks are already
available, see e.g. (Suykens et al. 1996).

For example, neural networks for function approxima-
tion have been developed based on orthogonal basis
functions such as Fourier series, Bessel functions and
Legendre polynomials. A typical configuration of such
neural network of feedforward type is illustrated in Fig. 4.
The input is x = (x1, ..., (x,) and the output is f(x) =y =
(y1,...,yx) with

i = wijfil®) FwayH(E) 4w fa(X) (7)
The functions f;(x)(i = 1,...,n) are the basis functions
computed by the network units. The real numbers w;; (i =

3 See (Schierwagen 2007) for discussion of the computational
approaches (including the neurocomputational one) to brain function,
and their shortcomings.
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Fig. 4 Example of a network computing the function f(¥) =y =
(y Lyeeoy yk)

I,...,m;j=1,...,k) are their respective weights which
can be adapted using effective learning algorithms to
approximate the function f(x).

As one can see, Eq. 7 represents the analog of Eqs. 3
and 5, now in the computational realm. That is, from
functional analysis and decomposition of a cognitive
capacity into subcapacities, and fractionation of the cortex
(or some subsystem) into parts we arrive at linear decom-
position of a cognitive function into elements of a given set
of ‘simple’, or basis functions.

Thus, if some basis functions were identified, they
provided the components of a (possible) computational
decomposition. The reverse engineering method as applied
in the cognitive and brain sciences from a computational
perspective then proceeds as follows:

Reverse engineering the cortex

1. Capacity analysis: Specify a certain cognitive capacity
which is assumed to be produced through the cortex by
computing a certain function.

2. Decompositional analysis:

(a) Functional (computational) analysis: Select a set
of basis functions which might serve as func-
tional components or computational units in the
cortex.

(b) Structural analysis: Identify a set of anatomical
components of the cortex. Provide evidence that
cortical microcircuits are the anatomical compo-
nents of the cortex.

3. Localization: Provide evidence for the functional
components or computational units being linked with
the anatomical components.

4. Synthesis:

(a) Modeling:

i. Establish a structurally adequate functional
model of the computational unit (the pre-
sumed ’canonical circuit’) which generates
the basis functions specified in step 2.(a).
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ii. Build a structurally adequate network model
of the cortex (or some subsystem) composed
of the canonical circuit models.

(b) Simulation: Prove that the specific cognitive
capacity or function under study is generated by
the network of circuit models, i.e through super-
position of the specified basis functions.

3.3 Hypotheses and reality

With the reverse engineering scheme formulated above, we
have a ‘recipe’ at hand which could facilitate the analysis
very much. Recent findings in the experimental and theo-
retical fields, however, have objected most of the
assumptions and hypotheses made as problematic, if not
inappropriate and unrealistic. Already step 1, specification
of a cognitive capacity, poses serious problems. It has
always been extremely difficult to define exactly what is
meant by a psychological, cognitive, or mental term, and
the possibility should be acknowledged that they are only
figments of our experimental designs or convenient arti-
fices to organize our theoretical models (Uttal 20031). This
difficulty is obvious in recent attempts to build cognitive
ontologies (e.g. (Price 2003; Henson 2003).

Likewise, the assumptions about the structural and func-
tional composition of the cortex, the notion of the basic
uniformity in the cortex with respect to the density and types
of neurons per column for all species turned out to be
untenable (e.g. Horton 20035; Rakic 2008; Herculano-Housel
et al. 2008; Frégnac 2006). It has been impossible to find the
cortical microcircuit that computes a specific basis function
(Frégnac 2006; de Garis et al. 2(1(}). No genetic mechanism
has been deciphered that designates how to construct a col-
umn. The column structures encountered in many species
(but not in all) seem to represent spandrels (structures that
arise non-adaptively, i.e. as an epiphenomenon) in various
stages of evolution (Gould 1979).

Step 4-synthesis—is worth extended discussion which
space limitations forbid. In short, this step represents the
conviction that large-scale modeling of brain networks will
eventually lead to understanding the mind-brain problem. It
has been argued that producing and understanding complex
phenomena from the interaction of simple nonlinear ele-
ments like artificial neurons or cellular automata is possi-
ble. One expects then, that this would also work for cortical
circuits which are recognized as nonlinear devices, and
theories could be applied (or developed, if not yet avail-
able) that would guide us to which model setup might have
generated a given network behavior. This would complete
the reverse engineering process.

However, findings in complexity or nonlinear science
exclude such transfer of the usual, linear approach. It is

now clear that finding out which processes caused a spe-
cific complex behavior of a given system—an inverse
problem—is hard because of its ill-posedness(’. This means
for the study of cortical circuits and networks of them that
from observed activity or function we cannot, in principle,
infer the internal organization. A wide variety of different
organizations can produce the same behavior Edmonds
(2009).

If we revisit the column concept of the cortex employed
in theories of brain organization, we recognize that
hypothesized structural components (cortical columns)
have been identified with alike hypothetical functional
components (basis function), employing the localization
concept (Sect. 2.2). As we have seen, the facts contradict
these assumptions, i.e. the reverse engineering project has
been based on false presuppositions. In contrast to the
localization idea, there is evidence for a given functional
component to be implemented by spatially distributed
networks and, vice versa, for a given structural component
to implement more than one distinct function. With other
words, it is not feasible for specific functions to be mapped
to structurally bounded neuronal structures (Price 20053;
Horton 2005; Rakic 2008; Herculano-Housel et al. 2008).

This means, although the column concept is an attractive
idea both from neurobiological and computational point of
view, it cannot be used as an unifying principle for
understanding cortical function. Thus, it has been con-
cluded that the concept of the cortex as a ‘large network of
identical units’ should be replaced with the idea that the
cortex consists of ‘large networks of diverse elements’
whose cellular and synaptic diversity is important for
computation (e.g. (Frégnac 20056).

It is worth to notice that the claim for conceptual change
towards ‘cortex as large network of diverse elements’
completely remains within the framework of reverse
engineering, i.e. it is a plea for ‘Just carry on!’. It appears
questionable, however, that the original goals of the cog-
nitive and brain sciences and Al can be achieved this way.
Actually, the methods of decompositional analysis and
reverse engineering themselves have been principally
criticized, which will be shortly discussed in the next
section.

4 The modeling relation
In Sect. 2.4, I concluded that complex, integrated systems

are basically non-decomposable, thus resisting the standard
analysis method. Now I return to this issue and to the

¢ In mathematics, a problem is called ill-posed if no solution or more
than one solution exists, or if the solutions depend discontinuously
upon the initial data.
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consequences for investigating such systems in the cogni-
tive and brain sciences.

Despite contradicting findings in complex systems sci-
ence, the majority of researchers in the cognitive and brain
sciences subscribes for the fundamental assumption, i.e. the
relevant systems in the cognitive and brain sciences are
treated as nearly decomposable. Accordingly, non-decom-
posability is considered not as intrinsic property of com-
plex, integrated systems but only as subjective, temporary
failure of our methodology, due to insufficient mathemat-
ical techniques (e.g. Bechtel 2002).

In contrast to that, Rosen (1991; Rosen 2{((}) has argued
that understanding complex, integrated systems requires
making the scientific analysis method itself a subject of
discussion. A powerful method of understanding and
exploring the nature of the scientific method, and in par-
ticular, reverse engineering, provides the modeling rela-
tion. It is this relation by which scientists bring “entailment
structures into congruence” (Rosen 199%, p. 152). The
modeling relation is represented by the set of mappings
shown in Fig. 5. It relates two systems, a natural system
N and a formal system F, by a set of arrows depicting
processes or mappings. The assumption is that this diagram
represents the various processes which we are carrying out
when we perceive the world.

The modeling relation is a relation in the formal math-
ematical sense,

R={(a,c)|a=bocod} (8)

while o denotes concatenation. The members a and ¢ of
each ordered pair in R are entailments from the two sys-
tems, N and F. Natural system N is part of the physical
world that we wish to understand (in our case: human
being, organism, brain), in which things happen according
to rules of causality (arrow a). That is, if some cause acts
on N, then the system will behave in a certain way, or
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Fig. 5 The modeling relation. A natural system N is modeled by a
formal system F. Each system has its own internal entailment
structures (arrows a and c), and the two systems are connected by the
encoding and decoding processes (arrows b and d). After (Rosen
1991, p. 60)
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produce certain effects. This resultant coupling of cause
and effect in N is called causal entailment.

On the right of Fig. 5, F represents symbolically the
parts of the natural system (observables) which we are
interested in, along with formal rules of inference (arrow c)
that essentially constitute our working hypotheses about
the way things work in N, i.e. the way in which we
manipulate the formal system to try to mimic causal events
observed or hypothesized in the natural system on the left.
Stated another way, F has inferential linkage; that is, if
some premise proposition acts on F, then it will generate a
consequential proposition as conclusion. This resultant
coupling of premise and conclusion in F is called infer-
ential entailment.

Arrow b represents the encoding of the parts of N under
study into the formal system F, i.e. a mapping that estab-
lishes the correspondence between observables of N and
symbols defined in F. Predictions about the behavior in F,
according to F’s rules of inference, are compared to
observables in N through a decoding represented by arrow
d. When the predictions match the observations on N, we
say that F is a successful model for N. Otherwise the
entailment structures could not be brought into congruence,
thus F failed to model N.

It is important to note that the encoding and decoding
mappings are independent of the formal and natural sys-
tems, respectively. In other words, there is no way to arrive
at them from within the formal system or natural system.
That is, the act of modeling is really the act of relating two
systems in a subjective way. That relation is at the level of
observables; specifically, observables which are selected
by the modeler as worthy of study or interest.

Given the modeling relation and the detailed structural
correspondence between our percepts and the formal sys-
tems into which we encode them, it is possible to make a
dichotomous classification of systems into those that are
simple or predicative and those that are complex or impre-
dicative. This classification can refer to formal inferential
systems such as mathematics or logic, as well as to physical
systems. As Rosen showed (1991, 2000), a simple system is
one that is definable completely by algorithmic method: All
the models of such a system are Turing-computable or si-
mulable. When a single dynamical description is capable of
successfully modeling a system, then the behaviors of that
system will, by definition, always be correctly predicted.
Hence, such a system will be predicative in the sense that
there will exist no unexpected or unanticipated behavior.

A complex system is by exclusion not a member of the
syntactic, algorithmic class of systems. Its main charac-
teristics are as follows. A complex system possesses non-
computable models; it has inherent impredicative loops in
it. This means, it requires multiple partial dynamical
descriptions—no one of which, or combination of which,
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suffices to successfully describe the system. It is not a
purely syntactic system as described by Eqs. 1-3 but it
necessarily includes semantic elements. Complex systems
also differ from simple ones in that complex systems
cannot be linearly composed of parts—they are non-
decomposable. This means, when a complex system is
decomposed, its essential nature is broken by breaking its
impredicative loops.

This has important effects. Decompositional analysis is
inherently destructive to what makes the system com-
plex—such a system is not decomposable without losing
the essential nature of the complexity of the original sys-
tem! In addition, by being not decomposable, complex
systems no longer have analysis and synthesis as simple
inverses of each other. Building a complex system is
therefore not simply the inverse of any analytic process of
decomposition into parts, i.e. the system is not a direct
product of components, thus Eq. § does not hold.

Since the brain is a complex, integrated and thus non-
decomposable system, both steps of reverse engineering—
decomposition into functional and structural components
and subsequent synthesis—must necessarily fail and will
not provide the envisaged understanding!

It should be stressed that simple and complex systems
after Rosen’s definition cannot be directly related to those
sensu Simon (Sect. 2). While Rosen’s approach yields a
descriptive definition of complexity, Simon’s is interac-
tional, see (Wimsatt 1972). It seems clear, however, that
Rosen’s ‘simple systems’ comprise Simon’s full- and near-
decomposable systems, and Rosen’s ‘complex systems’
correspond to Simon’s non-decomposable, integrated sys-
tems, as well as to Levin’s evolved systems. No matter
which definition is applied, the conclusion about the brain’s
non-decomposability remains valid.

5 Conclusions

If one attempts to understand a complex system like the
brain it is of crucial importance if general operation prin-
ciples can be formulated. Traditionally, approaches to
reveal such principles follow the line of decompositional
analysis as expressed in the fundamental assumption of
cognitive and brain sciences, i.e. cognitive systems like
other, truly complex systems are decomposable. Corre-
spondingly, reverse engineering has been considered the
appropriate methodology to understand the brain and to
engineer artificial cognitive systems.

I'have argued that this position is at odds with the findings
of complexity science. In fact, non-decomposability is an
intrinsic property of complex, integrated systems, and cannot
be considered as subjective, temporary failure of our meth-
odology, due to insufficient mathematical techniques. Thus,

the dominant complexity concept of cognitive and brain
sciences underlying reverse engineering needs revision. The
updated, revised concept must comprise results from the
nonlinear science of complexity and insights expressed, e.g.,
in Rosen’s work on life and cognition. In the first line, this
means that the fundamental assumption of cognitive and
brain sciences must be abandoned.

Organisms and brains are complex, integrated systems
which are non-decomposable. This insight implies that
there is no ‘natural’ way to decompose the brain, neither
structurally nor functionally. We must face the uncom-
fortable insight that in cognitive and brain sciences we
have conceptually, theoretically, and empirically to deal
with complex, integrated systems which is much more
difficult than with simple, decomposable systems of quasi-
independent modules! Thus, we cannot avoid (at least in
the long run) subjecting research goals such as the creation
of ‘brain-like intelligence’ and the like to analyses which
apprehend the very nature of natural complex systems.
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