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Modeling How Humans Judge Dot-Label
Relations in Point Cloud Visualizations

Martin Reckziegel, Linda Pfeiffer, Christian Heine, and Stefan Jänicke

Abstract—When point clouds are labeled in information visualization applications, sophisticated guidelines as in cartography do not
yet exist. Existing naive strategies may mislead as to which points belong to which label. To inform improved strategies, we studied
factors influencing this phenomenon. We derived a class of labeled point cloud representations from existing applications and we
defined different models predicting how humans interpret such complex representations, focusing on their geometric properties. We
conducted an empirical study, in which participants had to relate dots to labels in order to evaluate how well our models predict. Our
results indicate that presence of point clusters, label size, and angle to the label have an effect on participants’ judgment as well as that
the distance measure types considered perform differently discouraging the use of label centers as reference points.

Index Terms—Human judgment model, document visualization, label placement.
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1 INTRODUCTION

IN order to guide through complex visual sceneries, la-
bel placement has been a matter of research for a long

time. The field of cartography first addressed this topic
to communicate spatial information effectively by labeling
geographical features such as countries, cities, and rivers [4].
While this has been a manual task for a long time, current
geographic information systems apply automated labeling
algorithms [5] to select and to place appropriate labels
according to general design guidelines [6], [7]. Though
such sophisticated labeling guidelines rarely exist for ap-
plications in visualization, several techniques have been
developed to aid navigating through visualizations and to
understand visualized contents [8], [9]. While internal label-
ing algorithms align labels within regions they are assigned
to, external labeling algorithms place labels either next to the
corresponding glyphs using a recurring pattern (e.g., always
at the top right), or next to the visualization. In the latter
case, lines are drawn between labels and associated objects
to indicate relationships.

Label placement also plays an important role in various
information visualization applications. When mapping do-
cument collections in a two-dimensional space, documents
are represented as dots arranged according to similarity. On-
demand labeling with magic lenses [10] and static internal
labels aid at communicating the contents of documents
placed underneath or close by [1]. An example is shown
in Figure 1a. Labels can be seen as a thematic overlay
that superimpose relationships between dots and topics.
Considering that each label represents a cluster and each
dot belongs to a cluster, what are the visual features that
induce the relationship between a dot and a label? Do
we judge the blue dot in Figure 1a as belonging to the
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mesh-cluster due to proximity, or to the surface-cluster due
to the arrangement of dots? And, do we judge the green
dot as belonging to the vortex-cluster due to the large font
size of the vortex label, or do we group it to the vector-
cluster due to the proximity to the smaller-sized field label?
Although aspects of how we perceive similar or closely
placed glyphs have been studied in the past (e.g., Gestalt
principles of grouping [11]), to the best of our knowledge, no
empirical studies have been conducted examining the hu-
man interpretation of complex scenarios involving dots and
labels. In other applications, dot layers are likewise overlaid
with labels. In graph visualizations, individual nodes or
entire node clusters might be labeled (see Figure 1b). In
tag maps, labels form a thematic layer summarizing textual
information about geo-referenced data items. As shown in
Figure 1c, the underlying data might be displayed as a
dot layer. In both cases, the interplay between dots and
labels is further influenced—by links between nodes and by
geographical features of the background map, respectively.
The document spatialization scenario in Figure 1a can be
seen as an abstraction of both.

In this paper, we report results obtained in an online
study on how humans judge relationships between labels
and dots in document spatializations. Based on previous
studies and related work in information visualization, we
identified visual features that these representations typically
vary and that bear on this judgment task. We defined
twelve model classes that combine and weigh these features
in different ways to predict human performance for this
task and selected stimuli optimized to discriminate between
these models. The results of our study identify one model
that outperforms the others.

2 RELATED WORK

We give an overview of related perceptual and cognitive
studies, and introduce the problem of label placement in
cartography. In addition, we list information visualization
applications in which label placement plays a notable role.
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(a) Labeling of clusters in a 2D projection of a docu-
ment collection (Figure based on [1]).

(b) Labeling of node clusters in a graph visu-
alization (Figure based on [2]).

(c) Tag map visualization of Twitter mes-
sages (Figure based on [3]).

Fig. 1: Related scenarios in which point cloud visualizations are overlaid with labels showing spatially accumulated characteristics.

2.1 Perceptual Studies

In the 1920s, Gestalt theorists studied how humans perceive
complex scenarios, how the impression of a form emerges,
and how the relationship of visual elements that compose
a scene is perceived [12]. Gestalt principles were proposed
that describe how we see objects by grouping similar ele-
ments, how we recognize patterns, and how we simplify
complex images [11]. The Gestalt principle of proximity,
stating that close objects are perceptually grouped together,
is most related to our work. According to the ‘first law of
cognitive geography’ [13] people even believe that closer
objects are more similar to each other. Therefore, we assume
that the distance between a dot and a label has a major
impact on how humans judge their relationship.

Perception of distances in spatial layouts is influenced
by several effects, e.g., the horizontal-vertical illusion [14],
[15]. It relates to the orientation of the imagined connecting
line between objects and the overestimation of vertical lines
compared to their horizontal counterparts. Furthermore, the
perception of distance is affected by the presence of other
objects like dots [16]. The more interjacent dots are located
between two objects the more distant they will be estimated.
The scenario in our study is more complex as we measure
the relationship between different object types, a dot and
a label, and intervening dots may serve to perceive this
relationship much stronger. The Gestalt principles of closure
and continuity [11] are related to this phenomenon. Fab-
rikant and Montello found that emergent point features like
the arrangement of dots in the form of lines or shapes have
an impact on perceived distances and object similarities,
making them appear further apart but more similar [17].

Perception of clusters is not only affected by proximity
but also by global spatial concentration, change of object
density, and the figure-ground ratio [18], [19]. Similarly
to those studies, we developed mathematical models of
human judgment, but ours describe the relation between dot
clusters and labels depending on different visual features.

2.2 Map Label Placement

The history of creating maps goes back to around 25,000
BC [20] and placing labels on maps to support under-
standing of geography has been a substantial task ever

since maps were drawn. While many famous cartographers
evolved a common style to place labels on maps, Eduard
Imhof [6], [21] was the first to publish general principles
and requirements to design legible, easily comprehensible
maps. He argues that map legibility depends on good label
positioning, and each label has only one optimal position on
the map. It requires a clear graphic association to the object
it belongs to. He distinguishes between three object types:
point, line and area. Labels for points should be placed
next to, over, or under the object favoring a position to
the top-right of the object. Labels for lines should be placed
along the line conforming to its curvature. Labels for areas
should be stretched, bent, scaled, and spread over the whole
space to clarify areal association. While Imhof discussed
qualitative aspects of label placement, Pinhas Yoeli [22] was
the first to propose an automated system to achieve a good
label placement. Later, many strategies for automated label
placement were proposed, e.g., [10], [23], [24], [25], [26], [27].
For a comprehensive overview of labeling techniques we
refer the reader to The Map-Labeling Bibliography [5].

Imhof points out that a legible label placement does
not only depend on the label style and position [6]. The
arrangement of other labels on the map, and thus the
interplay between all visual features on the map needs
to be optimal. Explicitly, he demands that ‘names should
disturb other map contents as little as possible’ and asks to
avoid occlusion and concealment. In some label placement
scenarios in information visualization applications (see sub-
section 2.3) it is hard to comply with this rule. Objects to
be labeled may already occlude, and white space between
objects may be too small. Therefore, labels are often placed
naively (e.g., always to the right of the dot), and occlusion
and concealment among labels and dots are not considered.

2.3 InfoVis Applications
Although label placement is a crucial task in many applica-
tion areas of visualization, e.g., medical visualization [28],
we focus on related applications in information visualiza-
tion where labels and dots are placed in a plane.

2.3.1 Document Spatializations
A typical approach for the exploration of large document
collections is to represent documents as high-dimensional
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vectors, determine pairwise distances between documents,
and project these vectors to a two-dimensional space using
techniques like principal component analysis (PCA) [29] or
t-Distributed Stochastic Neighbor Embedding (t-SNE) [30].
Many applications offer magic lenses to support interactive
exploration of the resulting point clouds [31]. In such sce-
narios, a subset of dots is selected and corresponding labels
are placed next to the lens. As this procedure automatically
communicates a relationship between dots and labels, in
the following, we focus on representations having labels
that are permanently shown. Wise et al. [32] was one of
the first who put gisting terms to describe corpus clusters
in ‘galaxies’ where each star represents a document. Endert
et al. [33] also draws document collections as galaxies, and
labels describing the contents of galaxies originate from the
galaxy centroids. Choo et al. [34] attach topic identifiers ori-
ented at the top of dot clusters in a two-dimensional scatter
plot. Da Silva et al. [35] manually label such clusters that
they call neighborhoods to ease identifying least-varying
dimensions of a multidimensional data set. In the latter two
applications, color is further used to communicate cluster
relationships. Kandogan [36] automatically annotates clus-
ters with descriptive labels placed at the clusters’ centroids.
In addition, labels for outliers are placed next to the dots.
Fortuna et al. [37] draw a contour landscape underneath
the dots, and representative keywords are determined for
random positions. A rather traditional approach is proposed
by Luboschik et al. [38] who put labels on the screen
directly next to dots or at a distance using lines to indicate
relationships. Han et al. [1] apply Luboschik’s algorithm to
label clusters in a point cloud. To improve the assignment of
the labels to the clusters, a second layout algorithm draws
major tags in the centers of clusters using a semi-transparent
background to discriminate dots from labels (see Figure 1a).
All listed applications place labels at plausibly chosen po-
sitions, but how humans judge relationships between dots
and labels and what features influence this judgment has
not been studied before.

2.3.2 Graph Visualizations
In analogy to document spatialization, graphs can be laid
out in a two-dimensional area, and nodes represent enti-
ties [39]. In addition, links between nodes are drawn to
highlight their relationships. An overview of multi-faceted
graph visualization techniques is provided by Hadlak et
al. [40]. Labels for individual nodes or node clusters are
drawn to ease navigation in the graph, especially when the
graph consists of hundreds or thousands of nodes. Usually,
labels are placed pragmatically. For co-citation networks,
Chen et al. [41] place non-occluding labels to the right of a
few nodes and labels for clusters originate from the cluster
centers. Similarly, labels are placed at predefined positions
in most graph visualization applications [42], [43], [44]. To
avoid occlusions among labels, Wong et al. [45] propose a
design that places labels circularly around nodes, and edges
are represented by strings instead of lines. When graphs
illustrate biological processes, node shapes are enlarged
so that labels can be placed inside them [46], [47], [48],
[49]. Accompanied with labels, portrait icons are used as
nodes in social network visualizations [50], [51]. Many of
the listed applications do not only use labels to inform

about nodes. Edges illustrate relations, nodes’ clusters may
receive the same color, and node shapes can take different
forms. Abstracting from those additional visual features,
graph visualizations can be seen as a special case of the
basic document spatialization scenario.

2.3.3 Tag Maps
Tag maps are maps containing a thematic layer in the form
of a tag cloud [52]. They are related to our work, because
they superimpose relations between tags and geographical
entities (e.g., cities, rivers, landmarks). The document spa-
tialization scenario is emulated when individual data items
are arranged on a dot layer [3]; an example is shown in
Figure 1c. In tag maps, tags are placed dependent on the
geographical position of their associated data items. Large
geo-referenced data sets often contain different tags for the
same location, and tag map layout algorithms decide on
aggregations and omissions. Tag-cloud-driven tag maps [53]
collect information for entire polygonal regions and place
the tags regardless of actual geographical locations within
that polygon applying a tag placement strategy adopted
from tag cloud algorithms [54], [55], [56]. Location-driven
tag maps place tags dependent on the actual geograph-
ical distribution of corresponding data items. Ahern et
al.’s approach [57] applies a geographical clustering and
draws one representative tag in each cluster’s barycenter
without considering potential occlusions. Thom et al. [58]
use a displacement strategy with an Archimedean spiral
originating from the preferred location. While keeping the
topical diversity on a global scope, this strategy leads to
loosening the linkage between themes and geography. As a
consequence, geographical entities like cities may be per-
ceived as belonging to unrelated, but closely positioned
tags. Reckziegel et al. [53] avoid displacing tags. The tag
map algorithm ensures that a tag always represents the
relative majority of data items positioned underneath its
bounding box. Though tags are less diverse, geographical
entities are likely to be related to closely positioned tags.
In all tag map approaches, the font size of a tag in the
final layout reflects the number of aggregated data items.
Being aware that the geographical map that lies beyond
labels and dots influences human judgment, we regard tag
maps, likewise to graph visualizations, as abstractions of the
document spatialization scenario.

3 VISUAL ABSTRACTION

Though neglecting additional visual features as prevalent
in graph visualizations and tag maps, the generalized do-
cument spatialization scenario entails numerous conditions
influencing arrangement and appearance of dots and labels
on the screen in the first place and the human judgment of
relationships among them in the second place. The design
space reflecting those conditions had to be bound in our
experimental setup as well as in the development of models
describing human judgment in order to process a manage-
able number of images by the study participants.
Element Distribution Document spatializations contain
dots and labels that can be arbitrarily distributed across
space. Labels and dots may or may not overlap. As we
neither wish to analyze the influence of occlusions among
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Fig. 2: Example of a stimulus shown to the participants. The query dot
the participants had to relate to one of the labels is highlighted in red.

labels nor those among dots, we only allow occlusions
among labels and dots. As the presence of dot accumula-
tions and clusters has an influence on human perception
(see subsection 2.1), we allow dots either to be distributed
with equal density or to form clusters nearby label centers.

Labels Labels can vary in font face, orientation, and font
size determining the height of a label. As typical for re-
lated scenarios, we use a uniform font face and keep all
labels oriented horizontally as rotated tags are perceived
as ‘unstructured, unattractive, and hardly readable’ [59].
We regard varying font size—the main visual attribute in
tag cloud representations [60]—as equally important for the
considered scenario as dot clusters. Further, labels in related
applications convey meaning, but we use random character
sequences and do not model semantic influence.

Dots Dots can vary in radius, thus, the area they cover, as
well as in the appearance of the corresponding glyph. In
our setup, we use circular solid filled glyphs of equal radius
without strokes to represent dots.

In Figure 2 the visual features considered are varied
to exemplify the abstract document spatialization scenario.
Although color is often used in related applications to high-
light clusters, we disregard color in our study as the number
of clusters to be discriminated using color is limited [35].
Also, it frees us from the need to calibrate displays and
enables us to conduct the study online.

4 MODELS

Implementing the conditions outlined above, we hypo-
thesized several mathematical models to predict how hu-
mans associate dots with labels in two-dimensional images.
An image I consists of a finite set of horizontal labels
L = {l1, . . . , l|L|} and a finite set of dots. Each label l is
a sequence of characters, each character’s glyph covering a
certain area of the image. Dots are located at their respective
centers X = {x1, . . . ,x|X|}.

Our models aim to predict which label l ∈ L a human
would associate with a query dot q. Consider a simple image
with labels A and B, no dots except one query dot q, either
positioned at x1, x2, or x3 as shown in Figure 3. If q would
be positioned at x1, it will most likely be associated with A,

Fig. 3: A simple stimulus with one query dot at one of three possible
positions x1, x2 and x3

if positioned at x3, it will most likely be associated with B.
Somewhere along the line between x1 and x3 there will be a
position x2 where the judged association switches from A to
B. Extending this thought to the plane containing multiple
labels and additional dots, we could, in theory, assign each
label an association region. The result would look like a
weighted Voronoi diagram with weights depending on label
properties and dots positioned in close vicinity. In practice,
however, due to limited visual acuity and perceptual choice
being a probabilistic process [61], humans might not give the
same answer if asked again to relate the dot to a label for
the same configuration. Therefore, our models will predict
probabilities for each label l ∈ L to be assigned to a query
dot q at position x. For simplicity, we will describe our
models in terms of a scoring function; the probabilities are
then just the normalized scores:

pMI (l,x) =
sMI (l,x)∑

l′∈L s
M
I (l′,x)

(1)

The score sMI of model M in image I is a function that
gives higher values the more likely a label l is assigned
to x. The different models M will score according to the
influencing factors discussed below. All our models’ scores
will be positive, hence no label is assigned the probability 0,
although it can be arbitrarily close to 0; this ensures that our
models’ log-likelihoods (see subsection 5.4) remain finite.

4.1 Distance
Distance is the first influencing factor we took into account.
Since labels are complex irregularly shaped areal objects,
formalizing the notion of distance is not straightforward. We
define the distance between label and dot as the Euclidean
distance between the dot’s center and the ‘nearest’ label
point (illustrated in Table 1a) that can be:
label center nLC(l,x) is the center of the bounding box of

l.
label bounding box nLB(l,x) is a point inside the bound-

ing box of l which is nearest to x.
character bounding box nCB(l,x) is a point inside the

union of the bounding boxes of each character of l
which is nearest to x. It reflects the irregular shape of
the label better.

character shape nCS(l,x) is a point inside the area covered
by the glyphs of l which is nearest to x.

4.2 Label Size
As currently no studies about the influence of label size on
distance perception exist, but many information visualiza-
tion applications use font size to communicate importance,
we decided to study their influence in our experiment. We
hypothesized that with increasing label size the region of
association increases beyond what distances predicted, and
we aimed to assess how much larger. This effect seems to
depend on whether the query dot was above, below, or to
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TABLE 1
Visualization of model scores for the different parameters. The darker the pixels in the grey scale images the higher their

maximal score over all labels. All combinations of the four distance types (distT) and the three label size weights (weightT)
result in 12 model classes for which all respective real valued parameters, displayed with a red background, will be fitted.
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(a) The top row illustrates how the distance between a dot x and a label for the different distance types label center (LC), label bounding
box (LB), character bounding box (CB) and character shape (CS) is determined. The bottom row visualizes the resulting model scores.
Darker pixels have lower minimum distance over all labels. There is a clear difference in shape of the regions of association between LC
and the other types. There are only subtle differences between CB and CS. Furthermore, the scores for LC fall off more quickly.
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(b) The vertically-weighted type (V) weights the distance based on
the height H(l) of the label l’s bounding box and the height influence
parameter h ≥ 0. The visualization to the left shows the influence of
this weighting for h = 0.3. The label ‘Fofef’s region of association
increases compared to labels with a smaller height, respectively font
size.

(c) The area-weighted type (A) weights the distance based on the
area W (l) ·H(l) of the labels l’s bounding box and the areal
influence parameter a ≥ 0. Similarly to the vertically-weighted type,
the label ‘Fofef’s region of association in the visualization to the left is
increased, here even larger for an equal value of the area influence
parameter compared to the height influence parameter.

(d) The ellipse-weighted type (E) weights the distance according to a scaling of space different in x- and y-direction based on the width
W (l) and height H(l) of the label’s bounding box using the abbreviation δ = x− ndistT(l,x). For both w = 0.3 and h = 0.3 shown in the
left most visualization of the model scores, the resulting image is different than for the isotropic cases, because label width and height are
not equal resulting in anisotropic weighting of distances. The increase of region of association of larger labels is not as strong for w = h as
in the isotropic models. The effects of different influence parameters for width and height are shown in the middle and right most
visualization.
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(e) Four illustrations showing an example of the force-directed approach to account for dot accumulations. The two illustrations on the left
side show the positions of the dots before and after the displacement for f = 70. Before the displacement, the red dot is closer to the label
‘Ibeco’ while after the displacement it is closer to ‘Uficu’. The two visualization on the right side show the resulting model scores for f = 0
(no deformation) and f = 70. The force-directed deformation gives the label ‘Ufico’ a larger region of association.
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(f) Visualization of the model behaviour for different values of the
certainty parameter c for the LC distance type. With increasing c
more pixels get dark, meaning that the probability of the likeliest label
increases, hence the model is more ‘confident’ of its predictions.
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the side of the label. We were not sure whether humans can
perceptually discount the width of a label knowing that it
depends on its textual content and that font size is used
to indicate importance. We try to capture this influence by
different methods of ‘weighting’ distances. Two isotropic
methods weight the distances according to the height (see
Table 1b) and the area (see Table 1c) of labels. The influence
of different heights, respectively areas, on the weighting is
defined by the parameters h ≥ 0 and a ≥ 0. An anisotropic
method weights the distances according to a scaling of space
differently in x- and y-direction based on the width and
height of the labels’ bounding boxes (see Table 1d). This
method controls the amount of weighting by the parameters
w ≥ 0 and h ≥ 0.

4.3 Dot Clusters
The presence of dots can have an influence on distance
perception (see subsection 2.1). We hypothesized that, if
dots form clusters around a label, they might increase the
label’s region of association, but if the dots are distributed
uniformly they do not. We modeled this effect by deforming
the plane, so that regions around clusters contract, resulting
in larger regions of association for labels with clusters.

The deformation method performs five iterations of a
force-directed algorithm. In each iteration labels attract dots
and dots attract each other. Let δ denote the vector from a
dot to another dot or to the center of a label’s bounding box,
and let z = min{1, ||δ||f }. The force is defined as

F = (2z6 − 3z4 + 1)δ.

f ≥ 0 is the parameter regulating the intensity by which dot
clusters get contracted. There is no deformation of space
if f = 0 and the resulting vector F has zero length, for
any distance ||δ|| greater than f . We move each dot in
the direction εF for each force acting on it. Labels are not
moved. We determined ε = 0.01 empirically to give good
results. Table 1e shows an example deformation of space
and how this affects the region of association.

4.4 Scores
We combined the three influencing factors into twelve
model classes. Their scoring function has the form

sMI (l,x) =
(
ωweightT(l)||χ− ndistT(χ)||

)−c
where χ is the position x after force-directed deformation,
weightT and distT name one of the three weighting and
four distance types, respectively, and c ≥ 0 is a parameter
capturing a notion of certainty. Higher values for c will
increase the relative differences in scores and respectively
probabilities, illustrated in Table 1f. It can thus be used to fit
human accuracy for repeated trials.

Combining all possibilities for weightT and distT gen-
erates twelve model classes, each of which has additional
parameters. All model classes have a certainty parameter
c and a force parameter f . The vertically-weighted models
have an additional height influencing parameter h, the area-
weighted models an additional area influencing parameter
a, and the ellipse-weighted models two more parameters:
height influence h and width influence w.

5 METHODS

We conducted an empirical experiment in order to fit the
model parameters described in section 4 and to evaluate
our twelve models. Proven to deliver valuable results for
perceptual studies in visualization [62], we performed a
crowdsourcing experiment in the form of an online study
to reach a large number of participants in a short study
duration of four days. In order to mitigate the disad-
vantages compared to controlled laboratory studies [63],
we (1) requested participants to participate only once, (2)
removed outliers introduced by random responding (see
subsection 5.4), and (3) ensured a uniform display of the
same stimuli on different screens (see subsection 5.2). We
conducted two pilot studies to improve our study design.

5.1 Participants

We invited students and scientific staff of different universi-
ties and research institutes via mailing lists to participate in
the experiment. Furthermore, we announced the experiment
on social media channels. To motivate taking part in the
study, participants had the chance to win one out of ten gift
certificates. We had 93 participants, from which we excluded
four from the analysis (see section 6 for further details).
Of the remaining 89 participants 34 stated that they were
female and 53 male (two gave no answer). The average age
of the participants was 33.5 years (SD = 11.3). 32 participants
stated to have good sight, 51 to have corrected sight and five
to have reduced sight (one gave no answer).

5.2 Procedure

The study was offered in English and German. After choos-
ing the language, participants were presented a consent
form, which served to inform potential participants on the
study’s goal, data privacy, and legal considerations. After
accepting the consent form, we asked participants to adjust
a colored square to the size of a credit card to ensure uniform
stimulus sizes across displays. We required a display of
at least 13 inches diagonal. Participants were requested to
sit about 70 cm away from their screen to ensure stimuli
appeared under uniform visual angles.

We asked participants to choose a quiet place, to switch
off their mobile phones, and to switch the browser to full
screen mode in order to reduce distractions. Then, partici-
pants were briefly informed on the upcoming stimuli and
their task: ‘Quickly click on the word, to which, in your
opinion, the dot highlighted in red most likely belongs to.’
In a short training session consisting of a few trials with
increasing difficulty, participants could familiarize with the
task. The experiment consisted of 214 stimuli presented in
four blocks, every block containing 51-54 stimuli. At the
beginning of each block we reminded participants of their
task, and after each block we asked participants to take a
short break to minimize any fatigue effects. Stimuli were
presented in a randomized order, and we recorded answers
(the clicked labels) and response times. At the end, we asked
participants to fill out a questionnaire. Following questions
about demographic information, we asked to rank on a
five point Likert-scale (ranging from ’0 = no influence’ to
’4 = very strong influence’) how strong, in their opinion,
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the following features influenced their decision to choose
a label: distance between the highlighted dot and the la-
bel, presence of other dots, size of the labels. Next, open-
ended questions upon further significant decision criteria
and general comments were asked. We added the Likert-
scales in order to get more detailed feedback compared to
only asking open-ended questions as in the pilot studies.

5.3 Stimuli
A stimulus in our experimental design is an image compris-
ing dots and textual labels – an abstraction of images in our
target application as described in section 3. Dots can vary in
their position, and labels can vary in their position, content,
and font size. We procedurally generated 51 images, from
which we selected portions as our stimuli. We describe these
generators in the remainder of this subsection. For each
image, we selected four query dots using an optimization
algorithm that aims to improve model discrimination per
stimulus. The details and evaluation for this inessential step
are explained in the supplemental material, since it requires
a substantial mathematical background and would distract
the reading flow. With four query dots for each generated
image we have 204 stimuli, to which we added 10 ‘tracer
bullet’ stimuli, i.e. stimuli with known correct answer.

5.3.1 Labels
To avoid influence of label meaning, we randomly pick let-
ters alternating between vowels and consonants. All letters
have equal probability of being picked. The first letter is
always capitalized. Apart from this, we systematically vary
the density of labels in an image, their font size, and number
of characters. For varying densities we use Poisson-disk
sampling [64] to generate the center points of labels, keeping
the minimal distance between any two centers at three
different values. Font sizes are randomly chosen between
[fmin, fmax] in a non-uniform manner using an exponential
curve. This makes larger font sizes less likely than smaller
ones. In the baseline setting, we set fmin = fmax, so that all
labels have the same font size. There are two other settings
with fmin < fmax. We also vary the number of characters
of the labels, used to approximately regulate their aspect
ratio. In the baseline setting, all labels have 5 characters,
while in the second setting the length varies between 3 and
8 characters and in the third between 3 and 12 in the same
non-uniform manner as described above.

The label generation is implemented by rejection sam-
pling. The probability of accepting a new label increases
with larger differences in font size or aspect ratio to neigh-
boring labels, except in their baseline setting. In any case,
a label is rejected if label bounding boxes overlap or the
minimal distance criterion is violated. The sampling process
is repeated until no more candidates are accepted after a
fixed number of iterations. We systematically vary all three
variables, density, font size, and aspect ratio, separately.
While cycling through the possible settings for one of them,
we keep the others at baseline. As such we obtain seven
different label generators.

5.3.2 Dots
We keep the radius and the color of dots constant and
we vary only dot density. We use Poisson-disk sampling

and vary the minimum distance parameter for to generate
dot positions. We get three settings for uniform density:
sparse, medium, and dense. In the forth setting, we imitate
document visualizations, where labels are usually placed
in cluster centers. Therefore, we place a 2D multivariate
normal distribution centered very close to each label’s center
with random covariances. The Poisson-disk samples are
then rejection-sampled according to this density function.
In the fifth and last setting, we set the covariances such that
dot clusters protrude into regions of association of foreign
labels. To avoid filling the space with too many clusters, we
depend the likelihood of large clusters on the absence of
nearby large clusters, similar to the acceptance criteria for
large font sizes and aspect ratios above. In total, we have
five different dot generators.

5.3.3 Final Stimulus Set
Given the label and dot generators, we produced 51 im-
ages as follows: We combined each of the dot generator
settings, duplicating the two cluster settings to obtain more
of such stimuli and resulting in a total of seven different dot
settings, with each of the seven label generators to obtain
49 images. As each of the label generators only varies one
variable per image, we added two images where the label
font size as well as the aspect ratios vary together. For each
of these 51 images, we extracted four query dots. We clipped
the resulting 204 images so that the query dot is at a random
location within a 1.6:1 rectangle.

Furthermore, we generated ten images using the gener-
ators above and manually chose the query dot very close
to a label, ensuring a very high probability of choosing this
label. These stimuli were presented in regular intervals to
identify if study participants were clicking randomly on any
label rather than performing the experimental task (see also
section 6).

The coloring of the stimuli was influenced by the results
of the pilot study. It seemed that the visual salience of
labels and dots had a major impact on participants answers.
Thus, we tried to choose their colors in order to make them
similarly salient. Furthermore, we made the highlighted dot
most salient in order to reduce visual search times. The final
coloring is shown in Figure 2.

5.4 Analysis
By analyzing the experimental data, we try to answer the
following main questions:
• Which of our model classes predicts human judgment

in the presented scenarios best and how do they com-
pare against each other?

• Do model parameters affect prediction quality and can
the participants’ subjective feedback on what influ-
enced their decision be linked to model parameters?

• Are there any factors not yet considered in our models?
To quantitatively compare our twelve model classes we
first tried to find the best real valued parameters fitting
the experimental data using a maximum likelihood estima-
tion [65]. The likelihood of observing the sequence of labels
l(i) for the stimuli sequence I(i), x(i) under model M is:

L =
n∏
i=1

pMI(i)(l
(i),x(i)),
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where p is given as in Equation 1 and n is the number of
participants multiplied by the number of stimuli shown
per participant. The log-likelihood depends on three to
four parameters (depending on the model) for which the
derivatives are difficult to compute because of the force-
directed deformation. To find the maximum, we used the
Nelder-Mead method [66], which is derivative-free. We used
the default values for its parameters α = 1, γ = 2, ρ = 0.5,
σ = 0.5, and 15 runs to increase the chance of the found local
maximum being a global maximum. Nelder-Mead does not
enforce bounds on parameters, but our models require all
parameters to be non-negative. Therefore, we transformed
them to their absolute value. The first initial value was an
educated guess at a = 0.5, w = 0.5, h = 0.5, f = 54.7
and c = 6.5, while the other 14 were random positions
within the bounds of the model class’s parameter space.
We ranked models using the Akaike information criterion
(AIC) [67], which corrects log-likelihood scores based on the
number of model parameters k. AIC can be computed as
AIC = −2 lnL + 2k. We also computed Bayesian infor-
mation criterion (BIC) scores [65] BIC = −2 lnL + k lnn,
where n is the number of observations. BIC penalizes the
influence of the number of parameters differently. We per-
formed two-sided pair-wise sign tests for the differences
in these scores between any two of the twelve model
classes. The tests were performed for a significance level
of α = 0.05, using Bonferroni correction.

To judge the effectiveness of the model parameters we
fitted parameters of models reduced by one parameter each
and compared these to the complete models by a likelihood
ratio test. Additionally, we used bootstrapping to estimate
the standard error of model parameters [65]. Furthermore,
we analyzed participants’ Likert-scale ratings on the impor-
tance of the decision criteria by looking at their descriptive
statistics.

Answers to the open-ended questions were coded and
categorized following a bottom-up approach and their
counts reveal details about the decision criteria in our mod-
els as well as further potential decision criteria. Kendall’s
rank correlation test was then used to identify how the
subjective ratings correlate with the model parameters.

Beforehand, as first step, we analyzed the label an-
swers and response times to identify outliers using two
dissimilarity scores. One was computed from the pairwise
dissimilarities between participants based on the number
of times they disagree in their answers. The other was
computed from the differences in response time profile. We
looked for outliers in scatter plots created using classical
multidimensional scaling (MDS), minimizing the squared
error between the Euclidean distances of the coordinates
and the dissimilarities.

6 RESULTS AND DISCUSSION

The MDS plots for similarity of participants’ response times
showed two outliers—participants who on average took
significantly longer for each task than other participants.
This suggests that they may have been distracted during the
experiment, or failed to observe our instructions to answer
quickly. The MDS plot for answer similarity indicated that
two other participants differed strongly in their answers

from the majority. We suspected these participants had
selected labels randomly. One of these participants failed
two of the ten tracer stimuli confirming our suspicion. Thus,
we overall removed four participants from the analysis.

6.1 Model Comparison
The twelve model classes, summarized in Table 1, result
from combining each of the three types of weighted label
size (V, A, E) with each of the four distance types (LC, LB,
CB, CS). While V and A weight distances isotropically to a
label with respect to its height or area, E weights distances
differently depending on the angle to a label with respect to
its width and height. Table 2 summarizes the results of the
parameter fitting.

6.1.1 Fitted Model Quality
As the AIC and BIC scores rank model classes equally, only
AIC scores are used for further comparison. Recall that due
to the link between AIC and log-likelihood scores, these can
be interpreted easily. Two AIC scores s1 and s2 with their
difference ∆ = s2 − s1 mean that the model with AIC s1 is
e∆/2 times as likely to be the Kullback-Leibler best model,
given the observed data [68].

To put these values into perspective, we give some
bounds. The model using the least amount of information
of a stimulus just predicts each label with the same proba-
bility. Because the probabilities are equal, its AIC score only
depends on the number of observations and labels, and is
112 878 in our case. A less naive model that considers the
data is one predicting each label that was actually observed
in the study with equal probability. In our case such a model
has an AIC score of 33 530. On the other hand, the best
possible model for our data would be one that predicts
exactly the observed frequencies of each label; it would have
an AIC score of 22 948. The scores of our fitted models
lie within these bounds, predicting the observations not
perfectly, but vastly surpassing the naive models.

For each value of the label size weighting type, the AICs
are such that LC > LB > CB > CS. Similarly, for each
value of the distance types, the AICs are such that V, A
> E. Given the poor performance of VLC and ALC, we
found ELC to perform comparatively well. To investigate
further on the relative performance of model classes, we
looked at the pair tests comparing all twelve model classes
against each other (see supplemental material). All pairs
showed significant differences except for the pair VLB vs.
ALB. We ordered model classes by the number of times
they performed significantly better against each other. The
classes in Table 2 are ordered top to bottom accordingly
indicating that the LC distance type performs the poor-
est. Overall, the ECS model class achieved the best AIC
scores and also performs significantly better compared to
all other classes. Furthermore, the CB and LB distance types
combined with E are good alternative choices as they also
perform significantly better than the rest of the classes.

6.1.2 Parameters Values
The parameter c reflecting the certainty of the influential
area around the labels is fitted between 4.6 and 6.3 for
the different models—between the two examples shown
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TABLE 2
The results of the best parameter fitting

model class

scores parameter log-likelihood estimation

A V E
lnL AIC BIC c f a h w h

VLC -16 690 33 386 33 410 4.84±0.07 55.14±1.85 0.365±0.016

ALC -16 176 32 358 32 381 5.10±0.08 51.69±2.13 0.183±0.007

ELC -14 567 29 142 29 174 6.29±0.22 53.87±1.64 0.702±0.015 0.721±0.024

ALB -14 766 29 538 29 561 4.56±0.12 56.20±1.59 0.014±0.008

VLB -14 761 29 528 29 552 4.56±0.13 56.23±1.51 0.040±0.017

ACB -14 619 29 244 29 268 4.67±0.12 56.73±1.43 0.041±0.008

VCB -14 598 29 201 29 225 4.68±0.12 56.77±1.49 0.103±0.017

ACS -14 499 29 003 29 027 4.77±0.13 56.27±1.29 0.043±0.008

VCS -14 476 28 958 28 982 4.77±0.13 56.57±1.46 0.108±0.016

ELB -14 471 28 949 28 980 4.94±0.19 56.57±1.51 0.125±0.023 0.058±0.036

ECB -14 407 28 821 28 852 4.99±0.16 56.89±1.56 0.208±0.024 0.187±0.036

ECS -14 259 28 526 28 558 5.11±0.19 56.85±1.56 0.217±0.021 0.194±0.033

The lower the AIC and BIC scores the better, the higher the log likelihood score (lnL) the better. The a, w, h and f parameters are not scale-invariant and need
to be adjusted for a different number of pixels per degree of visual angle than used in our study (45.29px per degree). Next to the parameter values the standard
error, empirically calculated from the bootstrap samples (see supplemental material for details), is given.

in Table 1f. As one can see, these values generate areas
where the certainty to choose between two or more labels is
near guessing level which confirms the initial assumptions
about the probabilistic aspects of the decision process and
supports our choice for probabilistic models.

The respective font size parameters, reflecting how much
differences in label size influence distances and regions of
association, are fitted much higher for LC compared to
the other distance types. This is expected, as the extend of
the labels is not considered before weighting the distances,
which a higher font size weight is able to compensate.
Further, the certainty parameter c is also fitted higher in
LC as the areas of uncertainty are larger compared to the
others given the same value for c (see Table 1a, where we
used the same setting for c for all subfigures) caused by
the same effect. The force parameter f is fitted lower for
LC compared to the other types. In contrast to LC, the font
size parameters of LB always fit the lowest. This is due to
LC over-estimating distances while LB is under-estimating
them given the fact that the AIC scores for those types are
worse than for the other two.

Comparing the size-weighted parameters of the model
classes amongst each other, the area parameter a obtains
the lowest values followed by the height parameter h of
the vertically-weighted model class followed by the two
parameters w and h of the elliptical class. Again, this is
expected concluding from the model score visualizations
in Table 1b-d, where for the same values of the respective
parameters, the effects on the regions of association are
ordered equally. We further found that the width parameter
w is always fitted a bit higher than h for the elliptical model
E. As such, a difference in width between two labels has a
slightly higher effect on the label choice than a difference in
height when judging query dots in the respective horizontal
or vertical direction to those labels. This matches with the
horizontal vertical illusion effect described in subsection 2.1.

TABLE 3
Impact by Decision Criteria: Likert-scale Ratings

0 1 2 3 4 Mean SD

Distance 0 1 8 22 58 3.54 0.71
Presence of Dots 3 12 17 38 19 2.65 1.07
Font Size 7 24 29 20 9 2.00 1.11

6.2 Decision Variables

The likelihood ratio tests showed significant differences for
each submodel with one parameter removed, except for
elliptical models, where both font size weighting parameters
need to be removed (details in the supplemental material).
Hence, each of the parameters chosen is relevant to the
performance of the complete model. This can also be read
from the standard errors shown in Table 2 for the force and
font size parameters, which indicate that these parameters
are unlikely to be zero and thus have no influence. Similarly,
the certainty parameters is unlikely to have the value one
and thus no influence.

The likelihood ratios show that usually the certainty
parameter had most influence, followed by the force pa-
rameter, then font size parameters. Only in models using
distance type LC, the font size parameters have more influ-
ence than the force parameter. It seems that fitting the font
size parameter compensates for the LC distance type not
depending on label geometry, which depends on font size.

The Likert-scale ratings, which are summarized in Ta-
ble 3, show only few ratings that attest no influence to
‘presence of dots’ or ‘font size’, whereas ‘distance’ was an
important decision criterion for every participant. The mean
ratings in fact show that distance was the most important
decision criterion, which confirms our previous assumption.
Regarding the other two decision criteria, the presence of
emergent point features has a higher impact than font
size. This shows that the subjective ratings align with the
results of the likelihood ratio tests (except for the LC mod-
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TABLE 4
Decision Criteria mentioned by the Participants

Decision Criterion Count

Point Clusters 11
Cluster Size 5
Cluster Shape 3
Cluster Density 2

Other Point Features 8
Line Features 3

Relative Position 9
Reading Direction 2

Previous Point of Attention 6
Overlapping Points 2
Visual Presence of the Dot in Question 1
Labels Passed while Looking for the Highlighted Dot 1
Label Shape 1
Label Content 1
Typography 1
Centrality of the Label 1
Number of Labels 1
Overall Aesthetics 1
Intuition 3

TABLE 5
Kendall’s rank correlation coefficient between fitted

parameters of the best model (ECS) and Likert-scale ratings

w h f c

Distance τ = −.0364
p = 1

τ = −.0756
p = 1

τ = −.1206
p = 1

τ = .1642
p = .6249

Presence
of Dots

τ = .2739
p = .0079

τ = .3273
p = .0006

τ = .4563
p = .0000

τ = −.2883
p = .0040

Font
Size

τ = .2909
p = .0031

τ = .2576
p = .0145

τ = .2500
p = .0202

τ = −.2178
p = .0743

p-values adjusted according to Bonferroni.

els). Within their open-ended answers shown in Table 4,
many participants defined the decision criterion ‘presence of
points’ further. Eleven participants stated that the presence
of point clusters had an impact on their decision and nine
participants mentioned other features, such as line features
being influential. This aligns with the aspects described
in literature (see subsection 2.1). Refining the influence of
clusters, their size (5), density (2), and shape (3) were seen
by the participants as possible criteria.

We further investigated the relationship between the
subjective ratings and the parameters by fitting an indi-
vidual model for each person and computing correlations
between the fitted parameters and the Likert-scale ratings
(see Table 5). The ratings for presence of dots and font
size correlate positively with parameters modeling font
size (w,h) and cluster (f) influence at medium effect sizes
(.27 < τ < .46). This indicates that the subjective judgments
of the influencing factor importance is also reflected in the
fitted parameters of our models.

Within their open-ended answers participants intro-
duced further decision criteria that were important to them.
Multiple participants mentioned an influence of the mouse
cursor position or previous locus of attention (6), but this is
an influence we could not remove and remains a limitation
of our study design. Another recurring decision criterion
was the relative position of dot and label (9). Some partici-
pants reported that they tended to choose a label positioned
right, left, above, or below the highlighted dot. Two of them

explicitly mentioned writing direction to have an impact.
By manually checking the selected labels, we found that
the most frequently clicked label was more often above the
query dot than below even though there were cases in which
another label was closer. These two findings indicate that
the relative position of dot and label as an decision crite-
rion is worth further investigations. Several non-recurring
decision criteria mentioned by the participants, concerning
label characteristics, label positions, or non-varied aspects
like color, may need further investigation as well.

7 CONCLUSION AND FUTURE WORK

Label placement guidelines from cartography are not di-
rectly applicable to information visualization scenarios.
When labeling point clouds – as is typical in document
visualizations – rather naive strategies are used instead,
that may lead to misinterpretation of the dot label rela-
tionship. We developed twelve model classes for predicting
how humans judge this relationship, focusing on the ge-
ometric properties of labeled point cloud representations.
We performed a controlled study to assess which model
class predicts human behavior for judgment of dot-label
relations most accurately. We identified a single best model,
but also investigated the performance difference between
the other models to inform guidelines for label placement.
Our findings support the following guidelines for designing
label placement algorithms:

Measure distances using the actual label shapes. Current
naive label placement strategies often just equate the
label center with the point cloud center and do not take
occlusions and concealment into account. Our results
indicate that distance is a crucial criterion for judging
the relationship between a dot and a label. However, the
label center does not appear to be the point of reference
for distance measure. A precise layout algorithm should
therefore measure distances between dots and labels using
their actual shapes. However, as this is computationally
expensive, using reference points on the bounding boxes of
the label or its characters instead are reasonable alternatives.

Consider label sizes and visual clusters. Our results also
indicate that font size and the visual clustering structure
of dots have an impact on the judgment. Hence, label
placement algorithms should consider both factors in their
layout strategy. Considering clusters should be preferred, as
dot clustering does have a higher impact on the judgments
than differing label sizes.

Weight label sizes anisotropically. When label sizes are
considered by the layout algorithm, a weighting that
anisotropically distorts space according to label width and
height should be used.

Our results also indicate, that there may be further
factors influencing human judgment of the dot-label rela-
tionship. Subjective feedback and some manual checking
indicated that not only distance, but also the relative po-
sition of the label and the dot could be such a factor to
be studied in future work. In addition, turning towards
other characteristics of visualization design, such as dot
size, shape, and color, could deliver valuable insights on
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how human perception of relationships between dots and
labels is further influenced. Many related applications use
color to highlight the relationship among entities, but how
colors interact with the perception of distance and cluster
density, and how similar colors influence the perception of
relationships have yet to be studied and modeled. Also, we
are interested in developing simplified models that still have
good predicting power.
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