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Abstract— This supplemental material to the paper entitled ‘Modeling How Humans Judge Dot-Label Relations in Point Cloud
Visualizations’ contains a discussion on how we optimized our experimental design for model discrimination, additional diagrams, and
data tables to support our analysis and findings, as well as descriptions of supplemental files and further observations.

1 OPTIMAL STIMULUS DESIGN

In the main paper we described twelve model classes that predict
how humans relate textual labels to dots in graphical representations
comprising them. We would like to know which one of them gives the
most accurate predictions for real world instances. In such instances,
there are usually a huge number of dots and labels. It is infeasible to run
an experiment in which every potential factor influencing the outcome
is varied systematically, because of the combinatorial explosion of the
number of stimuli required. Plus, to discriminate between the classes of
models we hypothesize, that it is sufficient to only test the most ‘telling’
stimuli, i.e., the stimuli for which the different model classes perform
very differently so that our experiment produces the most amount of
information about which model is the most accurate using the least
amount of trials. Intuitively, one need not check instances for which
all models predict the same or very similar results. For probabilistic
models such as ours, characterizing similarity in results is non-trivial.
In such situations, one can use design optimization [3,5].

Design optimization is a statistical technique to select stimuli such
that an experiment will discriminate the models best. Since design
optimization is little known and used in visualization research, we
would like to give a short introduction. As the topic is rather general
and mathematically involved, we put it in this supplemental material to
distract as little as possible from the main ‘narrative’. Note however,
that the design optimization is a dispensable part of our experimental
design, i.e. one could repeat our experiment without the optimization,
but at the cost of using more trials to obtain similar results.

1.1 Information-Theoretic Framework

This section briefly outlines an information-theoretic framework for
design optimization. Imagine a set of generators, each of which gives,
when presented with an experimental design d from the set of possible
designs (e.g. sequences of stimuli), a response r. The response r
is drawn from a probability distribution specific to each generator.
Imagine now, that I pick a generator g, but do not tell you which one.
However, I leave you with the choice of the design d and will use the
generator g to give you a response r for it (this corresponds to running
an experiment). From » you can make an informed guess about g. To
guess g well, you should pick d in a way that r tells you the most about
the unknown g.

This ‘game’ can be modeled with probability theory and information
theory as follows: Letting G denote the random variable over the space
of generators and R the random variable over the space of responses,
we can describe the probabilistic process with the joint probability mass
function P(G = g,R = r|D = d) conditional on D, the set of possible
designs. Note that while the marginal distribution for R, P(R = r|D =
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Fig. 1: Information-theoretic view on experiments. A design d will have
experimental results R from which one can reduce the uncertainty about
an unknown G. See main text for description of the quantities.

d), depends on the design d, the marginal distribution for G, P(G = g),
does not, because neither do I select g based on your d, nor can you
select d based on the g unknown to you.

Using these probability functions, we can derive information-
theoretic quantities [2] to model the amount of information about G
and the amount of information present in R. Generally, the entropy
H(X) can be seen as a measure for the uncertainty about or infor-
mation present in a random variable X. It can be computed as the
expected value of the quantity —log P(X). The joint entropy of two
random variables H(X,Y) is a measure for the uncertainty about or
information present in two random variables. It can be computed as
the expected value of the quantity —logP(X,Y) and is less than or
equal to the sum of the entropy for each variable. The mutual infor-
mation /(X : Y) between two random variables X and Y measures the
amount of information shared between the two variables, and is equal to
H(X)+H(Y)—H(X,Y). One can adapt these measures for conditional
probabilities, e.g. H(X|Y) is the expected value of —log P(X|Y). All
these measures are non-negative. We can assign an interpretation to
these measures as follows (see also Figure 1):

H(G) - the uncertainty about G

H(R|d) — the amount information in the results R when using experi-
mental design d

I(G : R|d) — the reduction in uncertainty about G considering the
results R from an experiment with design d

H(G|R,d) — the uncertainty about G left after considering the results
R from an experiment with design d

H(R|G,d) — the information in the experimental results R that tell
nothing about G, i.e. useless information.

There are now multiple strategies for selecting d. The first strategy
is to select d which minimizes H(G|R,d), i.e. which reduces the uncer-
tainty about G the most, or equivalently that maximizes (G : R|d), i.e.
which maximizes the information about G in R ( [1,4]). Using elemen-
tary transformations, one can show that this is equal to maximizing the
expected value of the log posterior probability P(G|R,d). This method



has the disadvantage that it ignores H(R|G,d), i.e. the amount of use-
less information produced in the experiment. Therefore, this strategy
does not penalize long and complicated experiments, which we wish to
avoid. Since the amount of uncertainty about G can never be reduced
fully when the generators are probabilistic, the optimal design d would
comprise infinite stimuli — an infeasible option. The second strategy
accounts for useless information and minimizes H(G|R,d) + H(R|G,d)
instead. This measure equals H(G,R|d) —I(G : R|d). Since the joint
entropy typically grows faster than the mutual information, the optimal
design therefore comprises zero stimuli. Thus, we used a third strategy
which maximizes what we will call the design efficiency:
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This proportion of shared vs. total information has the advantage of
being unitless and lies in [0, 1]. If the efficiency of the design is 0,
the experiment tells nothing about G and if it is 1 then G can be fully
known and no useless information is produced. /(G : R|d) is bounded
from above by H(G), which does not depend on the number of stimuli
in the design, and H (G, R|d) is bounded by H(G) + H(R|d). Therefore,
increasing the number of stimuli in the design will have diminishing
returns, i.e., its efficiency will increase up to an optimal number of
stimuli and decrease afterwards. Informal experiments within our
problem setting showed that optimizing this measure also gives good
results concerning the reduction of our uncertainty about G: the best
design with regard to the former measure was only 7% worse than the
best design with regard to the latter, but significantly better in reducing
useless information.

1.2 Application to our Experimental Design

The above thought experiment is applied to our problem setting as
follows: The generators correspond to the models described in the main
paper. Stimuli are pairs of images and query points. We presume that
one of our models predicts the human’s responses well, although we
do not yet know which one.

There are some challenges when applying the above to our exper-
iment which we will discuss in this section. First, the models do not
consider memory effects humans are subject to. Second, the model
classes have real-valued parameters, i.e., we actually have an infinite
number of models. Third, finding the optimal design is intractable in
our case, because the time needed to compute the design efficiency
grows exponential with the number of stimuli. Finally, picking the
design that discriminates models best may produce stimuli that are not
representative of the target application.

The first challenge involves an idealizing assumption. Our pilot study
indicated that memory effects can occur with humans, i.e., if two stimuli
are similar and presented with only few other stimuli in between, hu-
mans provide consistent answers and reported this in the questionnaire.
Our models do not contain this memory effect, i.e., if the design of
an experiment is a sequence of stimuli d = ((1(1)7x(1)), s (I(”> ,x<")))
and the response of the experiment is a list of labels r = (l(l)7 ... 7l(”))
then the likelihood

PR=rlG=M,d
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is independent of the order of stimuli for each model M. We controlled
for this effect by generating many different stimuli and presenting them
in a random order for each participant of the study. Nevertheless, our
models are only valid for situations without memory effects.

The second challenge results from the real-valued parameters that
our models have. When computing the values of the information-
theoretic measures above, one would need to integrate over functions
for which we know no analytic solution. Integrating numerically is
too expensive computationally. However, most of the parameters can
be bounded, because extreme parameter values are highly implausible.
Therefore we selected a finite number of models that mark the vertices
of a region in parameter space bounding the set of plausible values.

We also added models, whose parameter values were fitted for the
results of our pilot study. This finite set of models was exclusively used
to generate ‘the most informative points’, they have no impact in the
resulting analysis. Our prior probability for each model is the same.

The third challenge is the intractability of the above method. Com-
puting the information-theoretic measures above involves computing
multiple nested sums that range over the labels in each stimulus. Let
n be the number of stimuli, 7 the number of models, k the maximum
number of labels in each image, then the run time is bounded from
above by O(k"m). Therefore we split the design in chunks of 4 stimuli
and optimize each chunk at a time independently of the other chunks.

Since there is an infinite number of possible designs, one has to
describe the designs as a set of real-valued stimuli parameters. Then,
the optimal design can, in principle, be found by classical optimiza-
tion. However, this may result in stimuli that may be well suited to
discriminate the models, but are no longer representative for the tar-
get application. Therefore, we use stimuli generators for all image
properties and only optimize the position x of the query dot. Since
derivatives for the design efficiency measure are difficult to compute,
in particular because of the force-directed deformation of space, we
use a slightly modified greedy approach. We successively add new
stimuli to an initially empty design chunk, each time choosing x opti-
mally to supplement the points already in the design chunk, until the
chunk reaches size 4. We pick x from a large set of points which were
randomly placed in an image maintaining a minimum distance. Then,
for each point we cycle again through all valid locations, replacing the
existing positions with new ones if they increase design efficiency until
no change occurs for a full loop over the chunk.

The final challenge is that this method tests only query points that
discriminate the given models best. Untested points are uncritical as
they will affect the likelihood scores of the models in the same way so
that there is no additional difference in likelihood scores (otherwise
they would have been good candidates for testing and would have been
picked). But one should not use additional model classes after selecting
the query points because this can result in models that perform better
than the original models, but only because there are no ‘critical stimuli’
tested, i.e. stimuli for which the new models would perform badly.

1.3 Implementation

Computing the design efficiency is straight-forward. We use the follow-
ing identities that can be shown elementary to simplify the formula:

I(G:Rid) _H(G)+H(R|d) |
H(G,R|d)~  H(G,R|d)
with
H(G) = fZP G=g)logP(G=g)
H(R|d) = ZP = r|d)logP(R =r|d)
H(G,R|d) = ZP (G=g,R=r|d)1logP(G=g,R=r|d)
and

P(R=rld) =Y P(G=g,R=r|d)logP(G=g,R=rl|d)
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P(G=g,R=r|d)=P(G=g)P(R=r|G=g,d).

1.4 Evaluation

Design optimization is preferable to choosing query points randomly
or by hand, since the space of the designs in which the optimization
takes place also contains the random or manual choice. Unless the
optimization problem cannot be formulated or solved numerically,
manual choice cannot perform better than a search through all the
options. We performed a small evaluation to assess the improvement
of using design optimization. For this, we compared the efficiency for
images generated for our experiment using (a) design optimization, (b)



Table 1: Results for the two-sided pair-wise sign tests for the differences in AIC scores between any two of the twelve model classes. The tests were
performed for a significance level of a = 0.05, using Bonferroni correction. For cells with a red background the model class of the corresponding
column performs better than the model class of the corresponding row and vice versa for cells with a blue background. For cells with a white
background no significant difference between the row and column model classes was found.
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random selection, (c) manual selection. Since we used manual selection
for our pilot study and implemented design optimization only for the
full study the comparison is most likely unbiased. For 4 query points
in the same image, we observed an average efficiency of 0.242 in the
design optimization condition and an average efficiency of 0.129 in
the random condition. The best random selection out of 10 had an
efficiency of 0.168. We furthermore observed that manual selection had
an average efficiency around 0.160, i.e., better than average, but worse
than best out of 10 random draws. We estimate that without design
optimization one would need approximately 50 percent more stimuli to
obtain similar results.

2 STIMULUS DATA

The file ‘stimuli.json’ contains all the information to reproduce the
stimuli in machine readable form. The stimuli are listed ordered by
their index in the array ‘stimuli’. Each item of the array contains the di-
mensions of the stimulus in ‘pixel’ units and the number of centimeters
per ‘pixel’, specifying the length of each unit after calibration. Further-
more, the array ‘labels’ specifies the font size, label text, position, and
bounding box of all labels as well as the array ‘points’ specifies the
center positions of all dots of the stimulus. The property ‘stimulusPoint’
specifies the center position of the query dot. The images of all 214
stimuli can be found as PNG files in the folder named stimuli. The files
are named by the stimulus index. The ‘Arimo’ font! is used to render
the labels and each dot has a radius of 3 pixel.

3 SAMPLE EXPERIMENT

The video file ‘sample-experiment-setting.mp4’ shows a screencast of
the complete procedure of the online experiment. For the purpose of
demonstration, the size of each of the four blocks was reduced to 8
stimuli per block.

4 PARTICIPANT RESULTS DATA

The result data of the participants is given as CSV files. The first row is
the header listing the column names. The cells are not escaped.

lhttps ://www.fontsquirrel.com/fonts/arimo
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The response time equals the time between the start of the visibility of a
stimulus and the time the label was clicked by the user in milliseconds.
These can be found in the file ‘blocktimedata.csv’. The first column
lists the index of the stimulus, the next 94 columns the response times
for each participant, labeled by their id. The last two columns list the
mean and standard deviation of the response times per stimulus.

Response Times

4.2 Participant Answers

Similarly, the actual answers of the participants can be found in the file
‘blocklabeldata.csv’. The first column lists the index of the stimulus,
the next 94 columns the index of the clicked label of each participant,
labeled by their id. The last column lists the entropy calculated from
the histogram of the different clicked labels for each stimulus.

4.3 Outlier

Both CSV files contain all participants’ data including the outliers. As
stated in the main paper, we removed two participants (p46, p81) based
on the MDS scatter plots of the response times and two participants
(p12, p53) based on the MDS scatter plots of the participant answers.
In addition, we found participants p77 and p78 to have identical data
with respect to both, response times and answers, such that we removed
one of them as a duplicate submission.

5 ANALYSIS DATA
5.1 Pair Tests

Table 1 shows the result of the two-sided pair-wise sign tests for the
differences in AIC scores between any two of the twelve model classes.
Counting the cells with a blue background for each row, we obtain
the number of model classes against the class of the respective row
performs better. Except for the VLB vs. ALB pair which does not show
significant differences, we can order the model classes descending by
performance, such that ECS > ECB > ELB > VCS > ACS > VCB >
ACB > VLB, ALB > ELC > ALC > VLC.

5.2 Bootstrapped Parameters

Fig. 2 shows box plots for each parameter of each model class resulting
out of the bootstrapped maximum likelihood estimation. We generated
100 bootstrap samples, each generated as follows. We picked one of
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Fig. 2: Results of the bootstrapped maximum likelihood estimation for the parameters of the model classes. Each box plot represents the parameter
fittings based on 100 bootstrap samples.



the participants out of the complete set of participants (89) randomly
with uniform distribution and added her answers to the sample set.
We repeated this step 89 times to generate 89 ‘virtual® participants by
drawing with replacement.

5.3 Likelihood Ratio Tests

We computed for each model class, defined by its distance type and
font size weighting type, submodel classes, wherein the influence of
the parameters representing a specific judgment criterion is disabled.
We fitted the parameters and applied a likelihood-ratio test to each
submodel and the corresponding complete model. The results are
shown in Table 2. For each model class the complete models performed
significantly better than their submodels. As such, all parameters and
the related judgment criteria significantly contribute to the overall
model performance.

5.4 Further Observations

As described in the main paper to identify outlier, we created scatter
plots using classical multidimensional scaling (MDS), minimizing the
squared error between the Euclidean distances of the coordinates and
two dissimilarity scores. The resulting plots (with outliers removed)
shown in Fig. 3 reveal two interesting patterns. Fig. 3a shows the MDS
plot computed from pairwise dissimilarities between the participants
based on the number of times they disagree in their answers. Coloring
the plot according to the Likert-scale ratings for the impact of presence
of dots shows a rising impact along the left-right axis for the partic-
ipant answers. This suggests that people whose decision was highly
influenced by the presence of other dots do considerably differ in their
answers from people that do not care about the presence of other dots.
Fig. 3b shows the MDS plot computed from the participants dissimi-
larities based on the Euclidean distance between their vectors which
components are yielded by their answer times of each stimulus. The
participants’ positions here align along one direction. This effect indi-
cates that there is one variable that explains most differences in timings.
Coloring the plot according to age shows that along this direction ages
decrease, suggesting that this variable may explain these differences.
Also, Kendall’s tau showed a weak but significant correlation between
age and the mean response times per person with medium/small effect
(T = .2480, p = .0010). This is consistent with findings for general
perceptual choice experiments.

Furthermore, we hypothesized that the diversity in the participants
answers per stimulus would be reflected by the answer times. We
used the entropy of the histogram of the different labels chosen as
measure for the diversity of a stimulus. Our hypothesis was confirmed
by a positive Pearson correlation (T = .6853, p < .0001) calculated for
this measure against the mean answer time of each stimulus. This is
consistent with findings for general perceptual choice experiments.

Apart from the mentioned effects we did not find further patterns.
Nor did the tests for association (depending on the scales of the vari-
ables we used Kendall’s rank correlation or coefficient 717) between
socio-demographic data and Likert scale ratings show any medium
sized or strong correlations.
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(a) The distance between two participants is the number of different
label choices across all stimuli. The coloring is based on the Likert scale
ratings for the impact by presence of dots. The higher the rating the
brighter the color.
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(b) The distance between two participants is the euclidean distance be-
tween their vectors which components are yielded by their answer times
of each stimulus. The coloring is based on the age of the participants.
The higher the age the brighter the color. An orange color indicates the
absence of the participant’s answer to the age.

Fig. 3: MDS scatter plots for the distances between the participants
based on two dissimilarities.



Table 2: Results of the likelihood ratio tests relating submodels, reduced by single parameters respectively judgment criteria, to the corresponding
complete models

model distance disabled likelihood ratio critical y> value df o p-value  Bonferroni
type parameter corrected
p-value

A CB c 33324.5556 3.84145882 1 0.05 0 O

A CB f 1625.9119 3.84145882 1 0.05 0 0

A CB a 163.2827 3.84145882 1 0.05 2.17E-25 7.81208E-24
A CS c 33734.7131 3.84145882 1 0.05 0 0

A CS f 1587.5170 3.84145882 1 0.05 0 O

A CS a 192.7879 3.84145882 1 0.05 7.83E-44  2.81919E-42
A LB c 32893.8679 3.84145882 1 0.05 0 0

A LB f 1524.6170 3.84145882 1 0.05 0 0

A LB a 19.8069 3.84145882 1 0.05 8.57E-06  0.00030842
A LC c 36978.1452 3.84145882 1 0.05 0 0

A LC f 597.7171 3.84145882 1 0.05 5.25E-132 1.8908E-130
A LC a 3718.5405 3.84145882 1 005 0 o0

\Y CB c 33399.6299 3.84145882 1 0.05 0 0

v CB f 1643.8995 3.84145882 1 0.05 0 O

\Y CB h 206.3645 3.84145882 1 0.05 8.53E-47 3.07162E-45
v CS c 33793.2204 3.84145882 1 0.05 0 O

\Y CS f 1613.6851 3.84145882 1 0.05 0 0

v CS h 238.0679 3.84145882 1 0.05 1.04E-53  3.73507E-52
\Y LB c 32928.8764 3.84145882 1 0.05 0 0

A% LB f 1530.8445 3.84145882 1 0.05 0 O

\Y LB h 29.3328 3.84145882 1 0.05 6.10E-08  2.19437E-06
v LC c 36155.3416 3.84145882 1 0.05 0 O

\% LC f 766.7778 3.84145882 1 0.05 9.02E-169 3.2484E-167
v LC h 2690.2346 3.84145882 1 0.05 0 O

E CB c 31134.9186 3.84145882 1 0.05 0 0

E CB f 1836.7874 3.84145882 1 0.05 0 O

E CB w/h 588.5762 5.99146455 2 0.05 1.56E-128 5.6054E-127
E CS c 31709.1751 3.84145882 1 0.05 0 O

E CS f 1821.0214 3.84145882 1 0.05 0 0

E CS w/h 671.9159 5.99146455 2 0.05 1.25E-146 4.4835E-145
E LB c 31021.6716 3.84145882 1 0.05 0 0

E LB f 1782.5846 3.84145882 1 0.05 0 0

E LB w/h 610.5064 5.99146455 2 0.05 2.69E-133  9.6945E-132
E LC c 39040.6578 3.84145882 1 0.05 0 O

E LC f 1170.3051 3.84145882 1 0.05 1.73E-256 6.2401E-255
E LC w/h 6936.2359 5.99146455 2 0.05 0 0
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