Deciding Equivalence for

Deterministic Top-down Tree-to-Weight Transducers

Malte Blattmann & Andreas Maletti

Universitat Leipzig, Germany

RAQM — June 23, 2021

Personal Motivation

Connection
@ Started PhD under supervision of Heiko Vogler in 2003 on

weighted tree transducers

Personal Motivation

Connection
@ Started PhD under supervision of Heiko Vogler in 2003 on

weighted tree transducers

@ Weighted tree transducers intfroduced by Werner in 1997

Werner Kuich: Formal Power Series over Trees. Proc. DLT 1997

Personal Motivation

Connection
@ Started PhD under supervision of Heiko Vogler in 2003 on

weighted tree transducers

@ Weighted tree transducers intfroduced by Werner in 1997

Werner Kuich: Formal Power Series over Trees. Proc. DLT 1997

@ Werner served as external reviewer of my thesis

The Power of
Tree Series Transducers
Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr. rer. nat.)

vorgelegt an der

it Dresden

Technischen Unive
Fakultit Informatik

eingereicht von

Diplom-Informatiker Andreas Maletti
geboren am 22, November 1978 in Dresden

Gutachter:

Prof. Dr.-Ing. habil. Heiko Vogler

(Technische Universitit Dresden)

Prof. Dr. rer. nat. habil. Manfred Droste
(Universitit Leipzig)

O. Univ. Prof. Dr. phil. Dr. h.c. Werner Kuich
(Technische Universitit Wien)

Tag der Verteidigung: 15. Juni 2006

Dresden, im Juli 2006

General Motivation

Weighted automata

e Offer elegant algebraic constructions (even for unweighted case)

@ Enable use of powerful linear algebra
(Hilbert's basis theorem, Grébner bases)

@ Yield more general results & better insights

e Standard model in several application areas (e.g. NLP)

Specific Motivation

Equivalence decidable

@ Deterministic Top-Down Tree-to-String Transducers
[Seidl, Maneth, Kemper: J. ACM 2018]

@ Linear Det. Top-Down Tree Transducers with Output in Free Group
[Lobel, Luttenberger, Seidl: Proc. DLT 2020]

Specific Motivation

Equivalence decidable

@ Deterministic Top-Down Tree-to-String Transducers
[Seidl, Maneth, Kemper: J. ACM 2018]

@ Linear Det. Top-Down Tree Transducers with Output in Free Group
[Lobel, Luttenberger, Seidl: Proc. DLT 2020]

Joint generalization

@ Deterministic Top-Down Tree-to-Weight Transducer

@ Weights in monoid (S, -, 1,0) with adjoined zero 0
(s:0=0=0-sands-s =0 implies 0 € {s,5'})

Specific Motivation

Equivalence decidable

@ Deterministic Top-Down Tree-to-String Transducers
[Seidl, Maneth, Kemper: J. ACM 2018]

@ Linear Det. Top-Down Tree Transducers with Output in Free Group
[Lobel, Luttenberger, Seidl: Proc. DLT 2020]

Joint generalization

@ Deterministic Top-Down Tree-to-Weight Transducer

@ Weights in monoid (S, -, 1,0) with adjoined zero 0
(s:0=0=0-sands-s =0 implies 0 € {s,5'})

@ Free monoid (A*,-,¢, L) in @

@ Free group (G,-,¢,1)in @

Transducer Model

Fix (S,-,1,0) monoid with adjoined zero 0 and [k] = {1,...,k}

Xk,n = {X,'7q | i€ [I(], qc [n]}

Definition (wDT transducer)

Deterministic top-down tree-to-weight transducer (wDT transducer) is tuple

(Z, n, (5k)k€N)

o ranked alphabet ¥ of input symbols and number n € N, of states

10

Transducer Model

Fix (S,-,1,0) monoid with adjoined zero 0 and [k] = {1,...,k}

Xk,n = {X,'7q | i€ [I(], qc [n]}

Definition (wDT transducer)

Deterministic top-down tree-to-weight transducer (wDT transducer) is tuple

(Z, n, (5k)k€N)

o ranked alphabet ¥ of input symbols and number n € N, of states

o transition functions 6, : X4 x [n] — (X, , U S)*

1

Transducer Model

Let S = ({a, B} x Zg) U {L} product monoid with adjoined _L
(free monoid generated by {«, 5} x additive group Z¢ = Z/67Z)

17

Transducer Model

Let S = ({a, B} x Zg) U {L} product monoid with adjoined _L
(free monoid generated by {«a, 8} x additive group Z¢ = 7Z/67Z)

Example transitions

S(o,1)=(e,)xix3x2 dola,l) =1 do(B,1) = L
62(0,2) = (6,0) xip x3%2 do(@,2) = (o, 0) d0(B,2) = (5,0)
62(0a3) = (531)X1,3 X3 50(0&,3) = (‘Sa O) 60(5a3) = (57 O)

13

Transducer Model

Fix wDT transducer M = (%, n, (6x)ken)

Definition (state semantics)
For every state g € [n] define [q]: Tx — S by

[(o(h, - 1) = Belor "

where [-]"%: (X, ,U S)* — S unique homomorphism given by

14

Transducer Model

Fix wDT transducer M = (%, n, (6x)ken)

Definition (state semantics)
For every state g € [n] define [q]: Tx — S by

[(o(h, - 1) = Belor "

where [-]"%: (X, ,U S)* — S unique homomorphism given by
o [xip]" % = [pl(#) for all i € [k] and p € [n]

Transducer Model

Fix wDT transducer M = (%, n, (6x)ken)

Definition (state semantics)
For every state g € [n] define [q]: Tx — S by

[al(o(h, ... 1)) = [0(o,)]
where [-]"%: (X, ,U S)* — S unique homomorphism given by
o [xip]" % = [pl(#) for all i € [k] and p € [n]
o [s]" =sforallse S

16

Transducer Model

Used transition

6(0,1) = (&,1) xi2 x13 %22

Applied transition

g

() vy

a g B «

17

Transducer Model

Definition (semantics)
Translation M: Ty — S'is M(t) = [1](#) for all trees t € Ty J

18

Transducer Model

Transitions
52(0’,]):(571)X]’] X1,3 X2,2 (50(&]) 50([},]) =1
02(0,2) = (,0) xipxi3 %02 do(a,2) = (04 0) d0(8,2)=(5,0)
52(0’,3) = (6,])X]’3 X]73 50(04 3) () (50(,8,3) = (8,0)

10

Transducer Model

Transitions
52(0’,]) :(E,])X]’] X1,3 X2,2 (50((%,]) =1 50([},]) =1
02(0,2) = (6,0) xip xi3x22 do(a,2) = (a,0) 60(53,2) = (5,0)
62(0,3) = (e,1) x13 %3 do(,3) = (£,0) d0(B,3) = (&,0)
Subderivations
RI(/N) =(0)- 2l@) - Bl - [21(8)

8 0)- (@) .0)- (5:0) ~ (08,0

20

Transducer Model

Transitions
(52(0’,]) :(E,])X]’] X1,3 X2,2 (50((%,]) =1 50(ﬁ,]) =1
02(0,2) = (6,0) xip xi3x22 do(a,2) = (a,0) 60(53,2) = (5,0)
62(0,3) = (e,) x3x3 do(@,3) = (5,0) 60(B,3) = (&,0)
Subderivations
RI(/N) =(0)- 2l@) - Bl - [21(8)
8 0)- (@) .0)- (5:0) ~ (08,0

[[3]](A) = (&,) - [3](e) - B](a)
a f =(e,1) - (£,0) - (£,0) = (¢,1)

21

Transducer Model

g
g g

m(K K) ﬂzﬂ(aﬂﬁ) [[311(@)'“2“(5@)

a B B «
= (87]) : (OZ,B, O) ' (67]) : (,80[, O) = (0165057 2)

29

Transducer Model

g
g g

m(K K) ﬂzﬂ(aﬂﬁ) [[311(@)'“2“(5@)

a B B «
= (87]) : (OZ,B, O) ' (67]) : (,80[, O) = (0165057 2)

Semantics

M(1) = (yield(t), 2'sPine() _jeft-spine() mod 6)

(left-spine(f) = number of o-occurrences along left spine of 1)

23

Definition J

Two wDT transducers equivalent if their computed functions coincide

24

Definition J

Two wDT transducers equivalent if their computed functions coincide

Assumption

e Finitely generated monoid (E)s of used weights
effectively embeds into multiplicative monoid of

infinite, computable, and commutative field F

(discussion when possible in second part)

25

Definition J

Two wDT transducers equivalent if their computed functions coincide

Assumption

e Finitely generated monoid (E)s of used weights
effectively embeds into multiplicative monoid of

infinite, computable, and commutative field F

(discussion when possible in second part)

Approach following [Seidl, Maneth, Kemper 2018]
e Take disjoint union of both wDT transducers

@ Prove invariance [1](f) — [n](t) = 0 for all t € Tx (1 and ninitial states)

26

Invariance

Fix disjoint union wDT transducer (X, n, (0x)ren)

Definition (invariance)
Map h: F" — Finvariance if h([f]) = 0 for all t € Tx
where [1] = ([1(#), ..., [n](1))

Note

@ Input wDT transducers equivalent iff A*(s, ..., s,) = s — s, invariance

27

Invariance

Transitions (can be seen as monomials)

62(0,1) = (,1) x12 %13 X2.2
02(0,2) = (£,0) x12 x13 X2,
02(0,3) = (e,1) x13 %3

28

Invariance

Transitions (can be seen as monomials)

02(0,1) = (e,1) x12 x13 X2
02(0,2) = (€,0) x12 x13 X2,
62(0,3) = (&,1) 13 x13

Polynomial reformulation
@ Use tree vector notation [o(#, h)]1 = (,1) - [h]2 - [h]5 - [E]2

20

Invariance

Transitions (can be seen as monomials)

02(0,1) = (e,1) x12 x13 X2
62(0,2) = (,0) x12 X3 X2
62(0,3) = (&,1) 13 x13

Polynomial reformulation
e Use tree vector notation [o(f, H)[1 = (&.1) - [h]2 - [4]3 - [%]2
e Group transitions [o] = (02(c,1), 05(0,2), &2(c, 3))

30

Invariance

Transitions (can be seen as monomials)

02(0,1) = (e,1) x12 x13 X2
62(0,2) = (,0) x12 X3 X2
62(0,3) = (&,1) 13 x13

Polynomial reformulation
e Use tree vector notation [o(f, H)[1 = (&.1) - [h]2 - [4]3 - [%]2
e Group transitions [o] = (02(c,1), 05(0,2), &2(c, 3))
@ Thus generally

[o(h, ..., t)] = [o] [xiq < [#]q]

3

Invariance

Transitions
(52(0’,]) = (E,])X]’] X1,3X2,2 50(&]) 50([)),]) =1
02(0,2) = (,0) xipxi3 %02 do(a,2) = (a 0) d0(8,2)=(5,0)
52(0,3) = (6,])X]73 X]73 (50(0(3) () (50(,3,3) = (6, 0)

Symbol semantics

lo] = <(6,])X1,1 x13x2.2, (€,0)x2x3 %22, (5,1)x3 X1,3>
[o] = (L, (,0), (z,0))
18] = (L. (8,0), (=,0))

7

Invariance

Definition
Ideal I C F[X,] inductive invariant if for all o € X

IC {p e FIX)]

k
p[xq — [[Uﬂq] € Z</[Xq A Xi7q]>F[Xk,n]}
=]

13

Invariance

Definition

Ideal I C F[X,] inductive invariant if for all o € X

IC {p e FIX)]

k
p[xq — [[Uﬂq] € Z</[Xq A Xi7q]>F[Xk,n]}
=]

Example
e Potential invariance p = x; — x3

e Propagate symbol semantics

plxq < [olql = ((671))(1,1 X3 Xz,z) - ((S,])Xm X1,3>
plxg < [l = (1) = ((,0)

34

Invariance

Theorem [Seidl, Maneth, Kemper 2018]

Let / be inductive invariant and | set of all invariances

@ Every p € [is invariance

15

Invariance

Theorem [Seidl, Maneth, Kemper 2018]

Let / be inductive invariant and | set of all invariances
@ Every p € [is invariance

@ /s inductive invariant

36

Invariance

Each ideal / C F[X,] finitely generated and ideals recursively enumerable

Theorem J

7

Invariance

Theorem J

Each ideal / C F[X,] finitely generated and ideals recursively enumerable

Proof.

Hilbert's basis theorem proves first statement and enumeration of finite
sets P C F[X,] generating ideals using recursive enumeration of £ O

38

Deciding Equivalence

Semidecision algorithm for equivalence

@ Select next P C F[X,]

30

Deciding Equivalence

Semidecision algorithm for equivalence
@ Select next P C F[X,]

Q If I = (P)f[x, inductive invariant and h* € /, then return yes

40

Deciding Equivalence

Semidecision algorithm for equivalence
@ Select next P C F[X,]
Q If I = (P)f[x, inductive invariant and h* € /, then return yes

© Backto @

4]

Deciding Equivalence

Semidecision algorithm for equivalence

@ Select next P C F[X,]
Q If I = (P)f[x, inductive invariant and h* € /, then return yes
© Backto @

Semidecision algorithm for non-equivalence

@ Select next t € Ty

49

Deciding Equivalence

Semidecision algorithm for equivalence

@ Select next P C F[X,]
Q If I = (P)f[x, inductive invariant and h* € /, then return yes
© Backto @

Semidecision algorithm for non-equivalence

@ Select next t € Ty
Q If 1 # [n](#), then return yes

43

Deciding Equivalence

Semidecision algorithm for equivalence

@ Select next P C F[X,]
Q If I = (P)f[x, inductive invariant and h* € /, then return yes
© Backto @

Semidecision algorithm for non-equivalence

@ Select next t € Ty
Q If 1 # [n](#), then return yes
© Backto @

44

Deciding Equivalence

Monoid (E)s of used weights effectively embeds into multiplicative monoid
of infinite, computable, and commutative field F

Theorem
Equivalence of wDT transducers is decidable J

45

Deciding Equivalence

Monoid (E)s of used weights effectively embeds into multiplicative monoid
of infinite, computable, and commutative field F

Theorem J

Equivalence of wDT transducers is decidable

Proof.

Two ftrivially correct semidecidability algorithms yield decidability.
Testing inductive invariant and membership of h* effective via Grébner
basis of / O

46

Embedding Monoids into Fields

Requirements for monoid (S, -, 1)

e Finitely presented (for effective computation)

47

Embedding Monoids into Fields

Requirements for monoid (S, -, 1)

e Finitely presented (for effective computation)

o Commutative: s-s' =5"-s (necessary)

48

Embedding Monoids into Fields

Requirements for monoid (S, -, 1)

e Finitely presented (for effective computation)
o Commutative: s-s' =5 - s (necessary)
e Cancellative: s- 51 = s- s implies 51 = 5, (necessary)

49

Embedding Monoids into Fields

Requirements for monoid (S, -, 1)

e Finitely presented (for effective computation)
o Commutative: s-s' =5 - s (necessary)
e Cancellative: s- 51 = s- s implies 51 = 5, (necessary)
@ Locally cyclic torsion subgroup (necessary)

50

Embedding Monoids into Fields

Requirements for monoid (S, -, 1)

e Finitely presented (for effective computation)
o Commutative: s-s' =5 - s (necessary)
e Cancellative: s- 51 = s- s implies 51 = 5, (necessary)
@ Locally cyclic torsion subgroup (necessary)

» Torsion subgroup Sy = {s€ S|Ine N, :s" =1}
(subgroup due to cancellation)

51

Embedding Monoids into Fields

Requirements for monoid (S, -, 1)

e Finitely presented (for effective computation)
o Commutative: s-s' =5 - s (necessary)
e Cancellative: s- 51 = s- s implies 51 = 5, (necessary)
@ Locally cyclic torsion subgroup (necessary)

» Torsion subgroup Sy = {s€ S|Ine N, :s" =1}
(subgroup due to cancellation)
» Locally cyclic group G: every finitely generated subgroup of G is cyclic

59

Embedding Monoids into Fields

Example monoid ({a}*, -, ¢) (isomorphic to (N, +, 0))

@ Free monoid generated by a thus finitely presented

@ Commutative since a™a"” = a"a™

k k

e Cancellative since a™a"” = a™a" implies o" = a

e Trivial torsion subgroup {¢} since (a”)" # e forall ne N, if m# 0

57

Embedding Monoids into Fields

Example monoid ({a}*, -, ¢) (isomorphic to (N, +, 0))

@ Free monoid generated by a thus finitely presented

@ Commutative since a™a"” = a"a™

k k

e Cancellative since a™a"” = a™a" implies o" = a

e Trivial torsion subgroup {¢} since (a”)" # e forall ne N, if m# 0

Example monoid {a}* x Zg

e Finitely presented (a,1] al = 1a,1%)
e Commutative since product of commutative monoids
@ Cancellative since product of cancellative monoids (group Ze)

@ Torsion subgroup {e} x Zg ~ Z¢ cyclic

54

Embedding Monoids into Fields

Embed monoid S into group

e Utilize Grothendieck group G
(embed additive monoid of non-negative integers into integers or
multiplicative monoid of integers info rationals)

e G finitely presented
(EUE™| e’ = e- €,M) for finite presentation (E, M) of S
@ Monoid S embeds into G due to cancellation

@ Torsion subgroups of G and S isomorphic (Go ~ Sp)

55

Embedding Monoids into Fields

F* multiplicative group of field F and additive group Z, = Z/n’Z

Theorem

Every finitely presented Abelian group with locally cyclic torsion subgroup
effectively embeds into F* of infinite, computable, and commutative field F

564

Embedding Monoids into Fields

F* multiplicative group of field F and additive group Z, = Z/n’Z

Theorem

Every finitely presented Abelian group with locally cyclic torsion subgroup
effectively embeds into F* of infinite, computable, and commutative field F

v

Proof sketch (1/2).

Wlog. suppose that finitely presented Abelian group G has non-trivial
2-component in torsion subgroup Gp.

57

Embedding Monoids into Fields

F* multiplicative group of field F and additive group Z, = Z/n’Z

Theorem

Every finitely presented Abelian group with locally cyclic torsion subgroup
effectively embeds into F* of infinite, computable, and commutative field F

v

Proof sketch (1/2).

Wlog. suppose that finitely presented Abelian group G has non-trivial
2-component in torsion subgroup Gy. Invoke invariant factor decomposition
of fundamental theorem for finitely generated Abelian groups to obtain

GZ XLy X -+ X Ly,

with1 < ki < -+ < k, and kj|kiy1 forall 1< i< n

58

Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated.

50

Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated. By assumption Gy cyclic.

60

Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated. By assumption Gy cyclic. Since no k, ¢ € {ki,..., k,} co-prime,
no product Z; x Zy cyclic.

61

Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated. By assumption Gy cyclic. Since no k, ¢ € {ki,..., k,} co-prime,
no product Z; x Zy cyclic. Hence n=1and G ~ Z" x Z; with k even.

67

Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated. By assumption Gy cyclic. Since no k, ¢ € {ki,..., k,} co-prime,
no product Z; x Zy cyclic. Hence n=1and G ~ Z" x Z; with k even.
Embed into cyclotomic extension field F = Q(¢,) with primitive k-th root (,
of unity.

63

Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated. By assumption Gy cyclic. Since no k, ¢ € {ki,..., k,} co-prime,
no product Z; x Zy cyclic. Hence n=1and G ~ Z" x Z; with k even.
Embed into cyclotomic extension field F = Q(¢,) with primitive k-th root (,
of unity. Then torsion subgroup Fy of F isomorphic to Gy and

.
(zl,...,z,,f)HC,'(-Hpiz” forall z,...,z. € Z, t € Zy

i=1

effective embedding into F* with first r primes pi, ..., p, O

v

64

Embedding Monoids into Fields

Final notes

@ Torsion subgroup of F* locally cyclic for every commutative field F
[Cohn: Bemerkung Uber multiplikative Gruppe eines Kérpers. Archiv der Mathematik]

[May: Multiplicative groups of fields. Proc. London Mathematical Society]

e F* trivially commutative & cancellative

45

Deciding Equivalence

Theorem

Equivalence is decidable for wDT transducers over finitely presented,
cancellative, and commutative monoids with locally cyclic torsion subgroup

66

Deciding Equivalence

Theorem

Equivalence is decidable for wDT transducers over finitely presented,
cancellative, and commutative monoids with locally cyclic torsion subgroup

Thank you for the attention

67

