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General Motivation

Weighted automata

e Offer elegant algebraic constructions (even for unweighted case)

@ Enable use of powerful linear algebra
(Hilbert's basis theorem, Grébner bases)

@ Yield more general results & better insights

e Standard model in several application areas (e.g. NLP)
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Equivalence decidable

@ Deterministic Top-Down Tree-to-String Transducers
[Seidl, Maneth, Kemper: J. ACM 2018]

@ Linear Det. Top-Down Tree Transducers with Output in Free Group
[Lobel, Luttenberger, Seidl: Proc. DLT 2020]

Joint generalization

@ Deterministic Top-Down Tree-to-Weight Transducer

@ Weights in monoid (S, -, 1,0) with adjoined zero 0
(s:0=0=0-sands-s =0 implies 0 € {s,5'})

@ Free monoid (A*,-,¢, L) in @

@ Free group (G,-,¢,1)in @



Transducer Model

Fix (S,-,1,0) monoid with adjoined zero 0 and [k] = {1,...,k}

Xk,n = {X,'7q | i€ [I(], qc [n]}

Definition (wDT transducer)

Deterministic top-down tree-to-weight transducer (wDT transducer) is tuple

(Z, n, (5k)k€N)

o ranked alphabet ¥ of input symbols and number n € N, of states
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Transducer Model

Fix (S,-,1,0) monoid with adjoined zero 0 and [k] = {1,...,k}

Xk,n = {X,'7q | i€ [I(], qc [n]}

Definition (wDT transducer)

Deterministic top-down tree-to-weight transducer (wDT transducer) is tuple

(Z, n, (5k)k€N)

o ranked alphabet ¥ of input symbols and number n € N, of states

o transition functions 6, : X4 x [n] — (X, , U S)*
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Transducer Model

Let S = ({a, B} x Zg) U {L} product monoid with adjoined _L
(free monoid generated by {«, 5} x additive group Z¢ = Z/67Z)
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Transducer Model

Let S = ({a, B} x Zg) U {L} product monoid with adjoined _L
(free monoid generated by {«a, 8} x additive group Z¢ = 7Z/67Z)

Example transitions

S(o,1)=(e,)xix3x2  dola,l) =1 do(B,1) = L
62(0,2) = (6,0) xip x3%2  do(@,2) = (o, 0)  d0(B,2) = (5,0)
62(0a3) = (531)X1,3 X3 50(0&,3) = (‘Sa O) 60(5a3) = (57 O)
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Transducer Model

Fix wDT transducer M = (%, n, (6x)ken)

Definition (state semantics)
For every state g € [n] define [q]: Tx — S by

[ (o(h, - 1) = Belor "

where [-]"%: (X, ,U S)* — S unique homomorphism given by
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Fix wDT transducer M = (%, n, (6x)ken)

Definition (state semantics)
For every state g € [n] define [q]: Tx — S by

[ (o(h, - 1) = Belor "

where [-]"%: (X, ,U S)* — S unique homomorphism given by
o [xip]" % = [pl(#) for all i € [k] and p € [n]




Transducer Model

Fix wDT transducer M = (%, n, (6x)ken)

Definition (state semantics)
For every state g € [n] define [q]: Tx — S by

[al(o(h, ... 1)) = [0(o, )]
where [-]"%: (X, ,U S)* — S unique homomorphism given by
o [xip]" % = [pl(#) for all i € [k] and p € [n]
o [s]" =sforallse S
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Transducer Model

Used transition

6(0,1) = (&,1) xi2 x13 %22

Applied transition

g

() vy

a g B «
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Transducer Model

Definition (semantics)
Translation M: Ty — S'is M(t) = [1](#) for all trees t € Ty J
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Transducer Model

Transitions
52(0’,]):(571)X]’] X1,3 X2,2 (50(& ]) 50([},]) =1
02(0,2) = (,0) xipxi3 %02  do(a,2) = (04 0) d0(8,2)=(5,0)
52(0’,3) = (6,])X]’3 X]73 50(04 3) ( ) (50(,8,3) = (8,0)
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Transitions
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Transducer Model

Transitions
(52(0’,]) :(E,])X]’] X1,3 X2,2 (50((%,]) =1 50(ﬁ,]) =1
02(0,2) = (6,0) xip xi3x22  do(a,2) = (a,0)  60(53,2) = (5,0)
62(0,3) = (e, ) x3x3 do(@,3) = (5,0)  60(B,3) = (&,0)
Subderivations
RI( /N ) =(0)- 2l@) - Bl - [21(8)
8 0)- (@) .0)- (5:0) ~ (08,0

[[3]]( A ) = (&,) - [3](e) - B](a)
a f =(e,1) - (£,0) - (£,0) = (¢,1)
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Transducer Model

g
g g

m(K K) ﬂzﬂ(aﬂﬁ) [[311(@)'“2“(5@)

a B B «
= (87 ]) : (OZ,B, O) ' (67]) : (,80[, O) = (0165057 2)
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Transducer Model

g
g g

m(K K) ﬂzﬂ(aﬂﬁ) [[311(@)'“2“(5@)

a B B «
= (87 ]) : (OZ,B, O) ' (67]) : (,80[, O) = (0165057 2)

Semantics

M(1) = (yield(t), 2'sPine() _jeft-spine() mod 6)

(left-spine(f) = number of o-occurrences along left spine of 1)

23



Definition J

Two wDT transducers equivalent if their computed functions coincide
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Definition J

Two wDT transducers equivalent if their computed functions coincide

Assumption

e Finitely generated monoid (E)s of used weights
effectively embeds into multiplicative monoid of

infinite, computable, and commutative field F

(discussion when possible in second part)
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Definition J

Two wDT transducers equivalent if their computed functions coincide

Assumption

e Finitely generated monoid (E)s of used weights
effectively embeds into multiplicative monoid of

infinite, computable, and commutative field F

(discussion when possible in second part)

Approach following [Seidl, Maneth, Kemper 2018]
e Take disjoint union of both wDT transducers

@ Prove invariance [1](f) — [n](t) = 0 for all t € Tx (1 and ninitial states)
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Invariance

Fix disjoint union wDT transducer (X, n, (0x)ren)

Definition (invariance)
Map h: F" — Finvariance if h([f]) = 0 for all t € Tx
where [1] = ([1(#), ..., [n](1))

Note

@ Input wDT transducers equivalent iff A*(s, ..., s,) = s — s, invariance

27



Invariance

Transitions (can be seen as monomials)

62(0,1) = (,1) x12 %13 X2.2
02(0,2) = (£,0) x12 x13 X2,
02(0,3) = (e,1) x13 %3

28



Invariance

Transitions (can be seen as monomials)

02(0,1) = (e,1) x12 x13 X2
02(0,2) = (€,0) x12 x13 X2,
62(0,3) = (&,1) 13 x13

Polynomial reformulation
@ Use tree vector notation [o(#, h)]1 = (,1) - [h]2 - [h]5 - [E]2
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Invariance

Transitions (can be seen as monomials)

02(0,1) = (e,1) x12 x13 X2
62(0,2) = (,0) x12 X3 X2
62(0,3) = (&,1) 13 x13

Polynomial reformulation
e Use tree vector notation [o(f, H)[1 = (&.1) - [h]2 - [4]3 - [%]2
e Group transitions [o] = (02(c,1), 05(0,2), &2(c, 3))
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Invariance

Transitions (can be seen as monomials)

02(0,1) = (e,1) x12 x13 X2
62(0,2) = (,0) x12 X3 X2
62(0,3) = (&,1) 13 x13

Polynomial reformulation
e Use tree vector notation [o(f, H)[1 = (&.1) - [h]2 - [4]3 - [%]2
e Group transitions [o] = (02(c,1), 05(0,2), &2(c, 3))
@ Thus generally

[o(h, ..., t)] = [o] [xiq < [#]q]

3



Invariance

Transitions
(52(0’,]) = (E,])X]’] X1,3X2,2 50(& ]) 50([)),]) =1
02(0,2) = (,0) xipxi3 %02  do(a,2) = (a 0) d0(8,2)=(5,0)
52(0,3) = (6,])X]73 X]73 (50(0( 3) ( ) (50(,3,3) = (6, 0)

Symbol semantics

lo] = <(6,])X1,1 x13x2.2, (€,0)x2x3 %22, (5,1)x3 X1,3>
[o] = (L, (,0), (z,0))
18] = (L. (8,0), (=,0))
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Invariance

Definition
Ideal I C F[X,] inductive invariant if for all o € X

IC {p e FIX)]

k
p[xq — [[Uﬂq] € Z</[Xq A Xi7q]>F[Xk,n]}
=]
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Invariance

Definition

Ideal I C F[X,] inductive invariant if for all o € X

IC {p e FIX)]

k
p[xq — [[Uﬂq] € Z</[Xq A Xi7q]>F[Xk,n]}
=]

Example
e Potential invariance p = x; — x3

e Propagate symbol semantics

plxq < [olql = ((671))(1,1 X3 Xz,z) - ((S,])Xm X1,3>
plxg < [l = (1) = ((,0)

34



Invariance

Theorem [Seidl, Maneth, Kemper 2018]

Let / be inductive invariant and | set of all invariances

@ Every p € [ is invariance
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Invariance

Theorem [Seidl, Maneth, Kemper 2018]

Let / be inductive invariant and | set of all invariances
@ Every p € [ is invariance

@ /s inductive invariant

36



Invariance

Each ideal / C F[X,] finitely generated and ideals recursively enumerable

Theorem J
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Invariance

Theorem J

Each ideal / C F[X,] finitely generated and ideals recursively enumerable

Proof.

Hilbert's basis theorem proves first statement and enumeration of finite
sets P C F[X,] generating ideals using recursive enumeration of £ O

38



Deciding Equivalence

Semidecision algorithm for equivalence

@ Select next P C F[X,]
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Deciding Equivalence

Semidecision algorithm for equivalence
@ Select next P C F[X,]

Q If I = (P)f[x, inductive invariant and h* € /, then return yes
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Deciding Equivalence

Semidecision algorithm for equivalence
@ Select next P C F[X,]
Q If I = (P)f[x, inductive invariant and h* € /, then return yes

© Backto @
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Deciding Equivalence

Semidecision algorithm for equivalence

@ Select next P C F[X,]
Q If I = (P)f[x, inductive invariant and h* € /, then return yes
© Backto @

Semidecision algorithm for non-equivalence

@ Select next t € Ty

49



Deciding Equivalence

Semidecision algorithm for equivalence

@ Select next P C F[X,]
Q If I = (P)f[x, inductive invariant and h* € /, then return yes
© Backto @

Semidecision algorithm for non-equivalence

@ Select next t € Ty
Q If [1](1) # [n](#), then return yes
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Deciding Equivalence

Semidecision algorithm for equivalence

@ Select next P C F[X,]
Q If I = (P)f[x, inductive invariant and h* € /, then return yes
© Backto @

Semidecision algorithm for non-equivalence

@ Select next t € Ty
Q If [1](1) # [n](#), then return yes
© Backto @
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Deciding Equivalence

Monoid (E)s of used weights effectively embeds into multiplicative monoid
of infinite, computable, and commutative field F

Theorem
Equivalence of wDT transducers is decidable J
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Deciding Equivalence

Monoid (E)s of used weights effectively embeds into multiplicative monoid
of infinite, computable, and commutative field F

Theorem J

Equivalence of wDT transducers is decidable

Proof.

Two ftrivially correct semidecidability algorithms yield decidability.
Testing inductive invariant and membership of h* effective via Grébner
basis of / O

46



Embedding Monoids into Fields

Requirements for monoid (S, -, 1)

e Finitely presented (for effective computation)
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Embedding Monoids into Fields

Requirements for monoid (S, -, 1)
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o Commutative: s-s' =5"-s (necessary)
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@ Locally cyclic torsion subgroup (necessary)
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Embedding Monoids into Fields

Requirements for monoid (S, -, 1)

e Finitely presented (for effective computation)
o Commutative: s-s' =5 - s (necessary)
e Cancellative: s- 51 = s- s implies 51 = 5, (necessary)
@ Locally cyclic torsion subgroup (necessary)

» Torsion subgroup Sy = {s€ S|Ine N, :s" =1}
(subgroup due to cancellation)
» Locally cyclic group G: every finitely generated subgroup of G is cyclic

59



Embedding Monoids into Fields

Example monoid ({a}*, -, ¢) (isomorphic to (N, +, 0))

@ Free monoid generated by a thus finitely presented

@ Commutative since a™a"” = a"a™

k k

e Cancellative since a™a"” = a™a" implies o" = a

e Trivial torsion subgroup {¢} since (a”)" # e forall ne N, if m# 0

57



Embedding Monoids into Fields

Example monoid ({a}*, -, ¢) (isomorphic to (N, +, 0))

@ Free monoid generated by a thus finitely presented

@ Commutative since a™a"” = a"a™

k k

e Cancellative since a™a"” = a™a" implies o" = a

e Trivial torsion subgroup {¢} since (a”)" # e forall ne N, if m# 0

Example monoid {a}* x Zg

e Finitely presented (a,1] al = 1a,1%)
e Commutative since product of commutative monoids
@ Cancellative since product of cancellative monoids (group Ze)

@ Torsion subgroup {e} x Zg ~ Z¢ cyclic

54



Embedding Monoids into Fields

Embed monoid S into group

e Utilize Grothendieck group G
(embed additive monoid of non-negative integers into integers or
multiplicative monoid of integers info rationals)

e G finitely presented
(EUE™| e’ = e- €,M) for finite presentation (E, M) of S
@ Monoid S embeds into G due to cancellation

@ Torsion subgroups of G and S isomorphic (Go ~ Sp)

55



Embedding Monoids into Fields

F* multiplicative group of field F and additive group Z, = Z/n’Z

Theorem

Every finitely presented Abelian group with locally cyclic torsion subgroup
effectively embeds into F* of infinite, computable, and commutative field F
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Embedding Monoids into Fields

F* multiplicative group of field F and additive group Z, = Z/n’Z

Theorem

Every finitely presented Abelian group with locally cyclic torsion subgroup
effectively embeds into F* of infinite, computable, and commutative field F

v

Proof sketch (1/2).

Wlog. suppose that finitely presented Abelian group G has non-trivial
2-component in torsion subgroup Gp.
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Embedding Monoids into Fields

F* multiplicative group of field F and additive group Z, = Z/n’Z

Theorem

Every finitely presented Abelian group with locally cyclic torsion subgroup
effectively embeds into F* of infinite, computable, and commutative field F

v

Proof sketch (1/2).

Wlog. suppose that finitely presented Abelian group G has non-trivial
2-component in torsion subgroup Gy. Invoke invariant factor decomposition
of fundamental theorem for finitely generated Abelian groups to obtain

GZ XLy X -+ X Ly,

with1 < ki < -+ < k, and kj|kiy1 forall 1< i< n

58



Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated.
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Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated. By assumption Gy cyclic.
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Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated. By assumption Gy cyclic. Since no k, ¢ € {ki,..., k,} co-prime,
no product Z; x Zy cyclic.
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Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated. By assumption Gy cyclic. Since no k, ¢ € {ki,..., k,} co-prime,
no product Z; x Zy cyclic. Hence n=1and G ~ Z" x Z; with k even.
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Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated. By assumption Gy cyclic. Since no k, ¢ € {ki,..., k,} co-prime,
no product Z; x Zy cyclic. Hence n=1and G ~ Z" x Z; with k even.
Embed into cyclotomic extension field F = Q(¢,) with primitive k-th root (,
of unity.
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Embedding Monoids into Fields

Proof sketch (2/2).

Torsion subgroup is Gg ~ {0}" x Zy, x --- x Zy,_ and thus finite and finitely
generated. By assumption Gy cyclic. Since no k, ¢ € {ki,..., k,} co-prime,
no product Z; x Zy cyclic. Hence n=1and G ~ Z" x Z; with k even.
Embed into cyclotomic extension field F = Q(¢,) with primitive k-th root (,
of unity. Then torsion subgroup Fy of F isomorphic to Gy and

.
(zl,...,z,,f)HC,'(-Hpiz” forall z,...,z. € Z, t € Zy

i=1

effective embedding into F* with first r primes pi, ..., p, O

v
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Embedding Monoids into Fields

Final notes

@ Torsion subgroup of F* locally cyclic for every commutative field F
[Cohn: Bemerkung Uber multiplikative Gruppe eines Kérpers. Archiv der Mathematik]

[May: Multiplicative groups of fields. Proc. London Mathematical Society]

e F* trivially commutative & cancellative
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Deciding Equivalence

Theorem

Equivalence is decidable for wDT transducers over finitely presented,
cancellative, and commutative monoids with locally cyclic torsion subgroup
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Deciding Equivalence

Theorem

Equivalence is decidable for wDT transducers over finitely presented,
cancellative, and commutative monoids with locally cyclic torsion subgroup

Thank you for the attention

67



