
Characterizations of subregular tree languages

Andreas Maletti

Institute of Computer Science, Universität Leipzig, Germany

andreas.maletti@uni-leipzig.de

MPI, Leipzig — November 29, 2018

Constituent Syntax Tree

Syntax tree for We must bear in mind the Community as a whole

S

NP1

PRP

We

VP2

MD

must

VP3

VB

bear

PP

IN

in

NP1

NN

mind

NP2

NP2

DT

the

NN

Community

PP

IN

as

NP2

DT

a

NN

whole

Constituent Syntax Tree

De�nition (Tree)
For sets Σ and V and rk : Σ→ N, let T(Σ,rk)(V) be the least set T s.t.

1 V ⊆ T
2 σ(t1, . . . , trk(σ)) ∈ T for all σ ∈ Σ and t1, . . . , trk(σ) ∈ T

2nd item: top concatenation

‘rk’ o�en implicit (we o�en write TΣ(V) instead of T(Σ,rk)(V))

(Σ-)tree language = set L ⊆ TΣ(∅) of trees

Constituent Syntax Tree

De�nition (Tree)
For sets Σ and V and rk : Σ→ N, let T(Σ,rk)(V) be the least set T s.t.

1 V ⊆ T
2 σ(t1, . . . , trk(σ)) ∈ T for all σ ∈ Σ and t1, . . . , trk(σ) ∈ T

2nd item: top concatenation

‘rk’ o�en implicit (we o�en write TΣ(V) instead of T(Σ,rk)(V))

(Σ-)tree language = set L ⊆ TΣ(∅) of trees

Constituent Syntax Trees

Syntax tree is not unique (weights are used for disambiguation)

S

NP1

PRP

We

VP2

VBD

saw

NP2

PRP$

her

NN

duck

S

NP1

PRP

We

VP2

VBD

saw

S-BAR

S

NP1

PRP

her

VP1

VBP

duck

Tree Languages

Representations

enumeration

local tree languages

tree substitution languages

regular tree languages

De�nition (Regular tree language [Brainerd 1984])
L ⊆ TΣ(∅) regular i� ∃ congruence ∼= (top-concatenation) on TΣ(∅) s.t.

1 ∼= has �nite index (�nitely many equiv. classes)
2 ∼= saturates L; i.e. L =

⋃
t∈L[t]∼=

Tree Languages

Representations

enumeration

local tree languages

tree substitution languages

regular tree languages

De�nition (Regular tree language [Brainerd 1984])
L ⊆ TΣ(∅) regular i� ∃ congruence ∼= (top-concatenation) on TΣ(∅) s.t.

1 ∼= has �nite index (�nitely many equiv. classes)
2 ∼= saturates L; i.e. L =

⋃
t∈L[t]∼=

Tree Languages

Representations

enumeration

local tree languages

tree substitution languages

regular tree languages

De�nition (Regular tree language [Brainerd 1984])
L ⊆ TΣ(∅) regular i� ∃ congruence ∼= (top-concatenation) on TΣ(∅) s.t.

1 ∼= has �nite index (�nitely many equiv. classes)
2 ∼= saturates L; i.e. L =

⋃
t∈L[t]∼=

Regular Tree Languages

Examples for Σ = {σ/2, δ/2, α/0}:
2 equivalence classes (L and TΣ(∅) \ L)

L = {t ∈ TΣ(∅) | t contains odd number of α}

3 equivalence classes (“no σ”, “some σ, but legal”, illegal)

L′ = {t ∈ TΣ(∅) | σ never below δ}

Regular Tree Languages

De�nition (Regular tree grammar [Brainerd, 1969])
Regular tree grammar G = (Q,Σ, I, P)

alphabet Q of nonterminals and initial nonterminals I ⊆ Q
alphabet of terminals Σ

�nite set of productions P ⊆ TΣ(Q)× Q
(we write r → q for productions (r, q))

Example productions

VP3

q5 NP1

q2

q3 → q4

S

NP1

q1

q4 → q0

S

q6 VP2

q2 q4

→ q0

Regular Tree Languages

Derivation semantics and recognized tree language

Regular tree grammar G = (Q,Σ, I, P)

for each production r → q ∈ P

r

=⇒G
q

generated tree language

L(G) = {t ∈ TΣ(∅) | ∃q ∈ I : t ⇒∗G q}

Regular Tree Languages

Recall 3 equivalence classes (“no σ”, “some σ, but legal”, illegal)

L′ = {t ∈ TΣ(∅) | σ never below δ}

C1 = [α] C2 = [σ(α, α)] C3 = [δ(σ(α, α), α)]

Productions with nonterminals C1, C2, C3

α→ C1 δ(C1, C1)→ C1

σ(C1, C1)→ C2 σ(C1, C2)→ C2 σ(C2, C1)→ C2 σ(C2, C2)→ C2

δ(C1, C2)→ C3 δ(C1, C3)→ C3 δ(C2, C1)→ C3 δ(C2, C2)→ C3
δ(C2, C3)→ C3 δ(C3, C1)→ C3 δ(C3, C2)→ C3 δ(C3, C3)→ C3
σ(C1, C3)→ C3 σ(C2, C3)→ C3 σ(C3, C1)→ C3 σ(C3, C2)→ C3
σ(C3, C3)→ C3

Regular Tree Languages

Recall 3 equivalence classes (“no σ”, “some σ, but legal”, illegal)

L′ = {t ∈ TΣ(∅) | σ never below δ}

C1 = [α] C2 = [σ(α, α)] C3 = [δ(σ(α, α), α)]

Productions with nonterminals C1, C2, C3

α→ C1 δ(C1, C1)→ C1

σ(C1, C1)→ C2 σ(C1, C2)→ C2 σ(C2, C1)→ C2 σ(C2, C2)→ C2

δ(C1, C2)→ C3 δ(C1, C3)→ C3 δ(C2, C1)→ C3 δ(C2, C2)→ C3
δ(C2, C3)→ C3 δ(C3, C1)→ C3 δ(C3, C2)→ C3 δ(C3, C3)→ C3
σ(C1, C3)→ C3 σ(C2, C3)→ C3 σ(C3, C1)→ C3 σ(C3, C2)→ C3
σ(C3, C3)→ C3

Regular Tree Languages

Properties

3 simple

3 most expressive class we consider

7 ambiguity, (several explanations for a generated tree)
but can be removed

3 closed under all Boolean operations
(union/intersection/complement: 3/3/3)

3 all relevant properties decidable (emptiness, inclusion, . . .)

Regular Tree Languages

Characterizations
�nite index congruences

regular tree grammars

(deterministic) tree automata

regular tree expressions

second-order logic formulas

. . .

Tree Languages

Representations

enumerate trees

local tree languages

tree substitution languages

regular tree languages

De�nition (Local tree grammar [Gécseg, Steinby 1984])
Local tree grammar = �nite set of legal branchings
(together with a set of root labels)

G = (Σ, I, P) with I ⊆ Σ and P ⊆
⋃
k∈N rk−1(k)× Σk

Tree Languages

Representations

enumerate trees

local tree languages

tree substitution languages

regular tree languages

De�nition (Local tree grammar [Gécseg, Steinby 1984])
Local tree grammar = �nite set of legal branchings
(together with a set of root labels)

G = (Σ, I, P) with I ⊆ Σ and P ⊆
⋃
k∈N rk−1(k)× Σk

Local Tree Languages

Example (with root label S)

S→ NP1 VP2 VP2 → MD VP3
NP2 → NP2 PP VP3 → VB PP NP2
MD→ must . . .

Local Tree Languages

Example (with root label S)

S→ NP1 VP2 VP2 → MD VP3
NP2 → NP2 PP VP3 → VB PP NP2
MD→ must . . .

S

NP1

PRP

We

VP2

MD

must

VP3

VB

bear

PP

IN

in

NP1

NN

mind

NP2

NP2

DT

the

NN

Community

PP

IN

as

NP2

DT

a

NN

whole

Local Tree Languages

Example (with root label S)

S→ NP1 VP2 VP2 → MD VP3
NP2 → NP2 PP VP3 → VB PP NP2
MD→ must . . .

S

NP1

PRP

We

VP2

MD

must

VP3

VB

bear

PP

IN

in

NP1

NN

mind

NP2

NP2

DT

the

NN

Community

PP

IN

as

NP2

DT

a

NN

whole

Local Tree Languages

Example (with root label S)

S→ NP1 VP2 VP2 → MD VP3
NP2 → NP2 PP VP3 → VB PP NP2
MD→ must . . .

S

NP1

PRP

We

VP2

MD

must

VP3

VB

bear

PP

IN

in

NP1

NN

mind

NP2

NP2

DT

the

NN

Community

PP

IN

as

NP2

DT

a

NN

whole

Local Tree Languages

Example (with root label S)

S→ NP1 VP2 VP2 → MD VP3
NP2 → NP2 PP VP3 → VB PP NP2
MD→ must . . .

S

NP1

PRP

We

VP2

MD

must

VP3

VB

bear

PP

IN

in

NP1

NN

mind

NP2

NP2

DT

the

NN

Community

PP

IN

as

NP2

DT

a

NN

whole

Local Tree Languages

Example (with root label S)

S→ NP1 VP2 VP2 → MD VP3
NP2 → NP2 PP VP3 → VB PP NP2
MD→ must . . .

S

NP1

PRP

We

VP2

MD

must

VP3

VB

bear

PP

IN

in

NP1

NN

mind

NP2

NP2

DT

the

NN

Community

PP

IN

as

NP2

DT

a

NN

whole

Local Tree Languages

not closed under union

these singletons are local

S

NP2

PRP$

My

NN

dog

VP1

VBZ

sleeps

S

NP2

DT

The

NN

candidates

VP2

VBD

scored

ADVP

RB

well

but their union cannot be local

(as we also generate these trees — overgeneralization)

Local Tree Languages

not closed under union

these singletons are local

S

NP2

DT

The

NN

candidates

VP1

VBZ

sleeps

S

NP2

PRP$

My

NN

dog

VP2

VBD

scored

ADVP

RB

well

but their union cannot be local
(as we also generate these trees — overgeneralization)

Local Tree Languages

not closed under complement

this tree language L is local
S

A

A′

a

∈ L

S

B

B′

b

∈ L

but its complement cannot be local

(as we also generate these trees — overgeneralization)

Local Tree Languages

not closed under complement

this tree language L is local
S

A

A′

a

∈ L

S

B

B′

b

∈ L

S

A

A′

b

/∈ L

S

B

A′

a

/∈ L

but its complement cannot be local
(as we also generate these trees — overgeneralization)

Local Tree Languages

Properties

3 simple

3 no ambiguity (unique explanation for each recognized tree)

7 not closed under Boolean operations
(union/intersection/complement: 7/3/7)

7 not closed under (non-injective) relabelings

3 locality of a regular tree language decidable

Local Tree Languages

α→ C1 δ(C1, C1)→ C1 (irrelevant productions omitted)

σ(C1, C1)→ C2 σ(C1, C2)→ C2 σ(C2, C1)→ C2 σ(C2, C2)→ C2

1 extract all possible branches and root labels{
δ → αα, δ → α δ, δ → δ α, δ → δ δ,

σ → αα, σ → α δ, σ → δ α, σ → δ δ,

σ → ασ, σ → δ σ, σ → σ α, σ → σ δ, σ → σ σ
}

2 check whether this local tree grammar G overgeneralizes
(check whether L(G) ⊆ L)

Local Tree Languages

α→ C1 δ(C1, C1)→ C1 (irrelevant productions omitted)

σ(C1, C1)→ C2 σ(C1, C2)→ C2 σ(C2, C1)→ C2 σ(C2, C2)→ C2

1 extract all possible branches and root labels{
δ → αα, δ → α δ, δ → δ α, δ → δ δ,

σ → αα, σ → α δ, σ → δ α, σ → δ δ,

σ → ασ, σ → δ σ, σ → σ α, σ → σ δ, σ → σ σ
}

2 check whether this local tree grammar G overgeneralizes
(check whether L(G) ⊆ L)

Local Tree Languages

α→ C1 δ(C1, C1)→ C1 (irrelevant productions omitted)

σ(C1, C1)→ C2 σ(C1, C2)→ C2 σ(C2, C1)→ C2 σ(C2, C2)→ C2

1 extract all possible branches and root labels{
δ → αα, δ → α δ, δ → δ α, δ → δ δ,

σ → αα, σ → α δ, σ → δ α, σ → δ δ,

σ → ασ, σ → δ σ, σ → σ α, σ → σ δ, σ → σ σ
}

2 check whether this local tree grammar G overgeneralizes
(check whether L(G) ⊆ L)

Local Tree Languages

Characterizations
local tree grammars

parse trees of context-free grammars

(not much available, but seems well understood)

Tree Languages

Representations

enumerate trees

local tree languages

tree substitution languages

regular tree languages

De�nition (Tree substitution grammar [Joshi, Schabes 1997])
Tree substitution grammar = �nite set of legal fragments
(together with a set of root labels)

G = (Σ, I, P) with I ⊆ Σ and �nite P ⊆ TΣ(Σ)

Tree Languages

Representations

enumerate trees

local tree languages

tree substitution languages

regular tree languages

De�nition (Tree substitution grammar [Joshi, Schabes 1997])
Tree substitution grammar = �nite set of legal fragments
(together with a set of root labels)

G = (Σ, I, P) with I ⊆ Σ and �nite P ⊆ TΣ(Σ)

Tree Substitution Languages

Typical fragments [Post 2011]

VP

VBD NP

CD

PP

S

NP

PRP

VP

S

NP VP

TO VP

Derivation step ξ ⇒G ζ

ξ = c
[
root(t)

]
and ζ = c

[
t
]
for some context c and fragment t ∈ P

Tree Substitution Languages

Tree substitution grammar G = (Σ, I, P)

for each fragment t ∈ P with root label σ

σ
=⇒G

t

generated tree language

L(G) = {t ∈ TΣ(∅) | ∃σ ∈ I : σ ⇒∗G t}

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

Fragments

S
(
NP1(PRP),VP2

)
PRP(We)

VP2
(
MD,VP3(VB, PP,NP2)

)
MD(must)

Derivation

S

NP1

PRP

We

VP2

MD

must

VP3

VB PP NP2

Tree Substitution Languages

not closed under union

these languages are tree substitution languages individually
S

C

C

C

a

a

S

C

C

C

b

b

L1 = {S(Cn(a), a) | n ∈ N} L2 = {S(Cn(b), b) | n ∈ N}

but their union is not

(exchange subtrees below the indicated cuts)

Tree Substitution Languages

not closed under union

these languages are tree substitution languages individually
S

C

C

C

a

a

S

C

C

C

b

b

L1 = {S(Cn(a), a) | n ∈ N} L2 = {S(Cn(b), b) | n ∈ N}

but their union is not
(exchange subtrees below the indicated cuts)

Tree Substitution Languages

not closed under intersection
these languages L1 and L2 are tree substitution languages individually
for n ≥ 1 and arbitrary x1, . . . , xn ∈ {a, b}

S’

x1 S

x1 S

x2 S

x2 S

x3 S

xn−1 S

xn S

xn c

∈ L1

S’

x1 S

x2 S

x2 S

x3 S

x3 S

xn−1 S

xn−1 S

xn c

∈ L2

but their intersection only contains trees with x1 = x2 = · · · = xn
and is not a tree substitution language

Tree Substitution Languages

not closed under intersection
these languages L1 and L2 are tree substitution languages individually
for n ≥ 1 and arbitrary x1, . . . , xn ∈ {a, b}

S’

x1 S

x1 S

x2 S

x2 S

x3 S

xn−1 S

xn S

xn c

∈ L1

S’

x1 S

x2 S

x2 S

x3 S

x3 S

xn−1 S

xn−1 S

xn c

∈ L2

but their intersection only contains trees with x1 = x2 = · · · = xn
and is not a tree substitution language

Tree Substitution Languages

not closed under complement

this language L is a tree substitution language
S

A

A

A′

A′

a

∈ L

S

B

B

B′

B′

b

∈ L

but its complement is not

(exchange as indicated in red)

Tree Substitution Languages

not closed under complement

this language L is a tree substitution language
S

A

A

A′

A′

a

∈ L

S

B

B

B′

B′

b

∈ L

S

A

A

A′

A′

b

/∈ L

S

B

B

A′

A′

a

/∈ L

but its complement is not
(exchange as indicated in red)

Tree Substitution Languages

Properties

3 simple

3 contain all �nite and co-�nite tree languages

7 ambiguity (several explanations for a generated tree)

7 not closed under Boolean operations
(union/intersection/complement: 7/7/7)

3 can express many �nite-distance dependencies
(extended domain of locality)

Tree Substitution Languages

Characterizations
tree substitution grammars

??? (generally badly understood)

Remark:

several unions lead to additional power

Tree Substitution Languages

Characterizations
tree substitution grammars

??? (generally badly understood)

Remark:

several unions lead to additional power

Tree Substitution Languages

Open questions
multiple intersections more expressive?

which regular tree languages are tree substitution languages?

relation to local tree languages?

extension to weights

application to parsing

Thank you for your attention!

Tree Substitution Languages

Open questions
multiple intersections more expressive?

which regular tree languages are tree substitution languages?

relation to local tree languages?

extension to weights

application to parsing

Thank you for your attention!

Tree Substitution Languages

Open questions
multiple intersections more expressive?

which regular tree languages are tree substitution languages?

relation to local tree languages?

extension to weights

application to parsing

Thank you for your attention!

Tree Substitution Languages

Experiment [Post, Gildea 2009]

grammar size Prec. Recall F1
local 46k 75.37 70.05 72.61

“spinal” TSG 190k 80.30 78.10 79.18
“minimal subset” TSG 2,560k 76.40 78.29 77.33

(on WSJ Sect. 23)

Tree Substitution Languages with Latent Variables

Experiment [Shindo et al. 2012]

F1 score
grammar |w| ≤ 40 full

TSG [Post, Gildea, 2009] 82.6
TSG [Cohn et al., 2010] 85.4 84.7

CFGlv [Collins, 1999] 88.6 88.2
CFGlv [Petrov, Klein, 2007] 90.6 90.1
CFGlv [Petrov, 2010] 91.8

TSGlv (single) 91.6 91.1
TSGlv (multiple) 92.9 92.4

Discriminative Parsers

Carreras et al., 2008 91.1
Charniak, Johnson, 2005 92.0 91.4
Huang, 2008 92.3 91.7

	Motivation
	Appendix

