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Composition hierarchy

Theorem (Engelfriet 1981)
Composition of tree transducers yields a
proper hierarchy
(of transformations and output languages)

Theorem (Fülöp et al. 2004; M. 2006)
Composition of weighted tree transducers
yields a proper hierarchy over non-rings
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Open question

Is the hierarchy of transformations also proper for rings?
(for �elds?)
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Extended tree transducer

Weighted extended top-down tree transducer (WXTT)
M = (Q,Σ,∆, I, R) with �nitely many rules

q

Σ

x1 . . . xk

c→
∆

q′(xi) . . . p(xj)

states q, q′, p ∈ Q
variable indices i, j ∈ {1, . . . , k}

[Arnold, Dauchet: Bi-transductions de forêts. Proc. ICALP 1976]
[Graehl, Knight: Training tree transducers. Proc. NAACL 2004]
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Tree transducer

Weighted top-down tree transducer (WTT) if all rules

q

σ

x1 . . . xk

c→
∆

q′(xi) . . . p(xj)

[Rounds: Mappings and grammars on trees. Math. Syst. Theory, 1970]
[Thatcher: Generalized sequential machine maps. J. Comput. Syst. Sci., 1970]
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Derivations

Example
States {qS, qV, qNP} of which only qS has non-zero initial weight

qS

S

x1 x2

0.4→

S′

qV

x2

qNP

x1

qNP

x2

qV

VP

x1 x2

1→
qV

x1

qNP

VP

x1 x2

1→
qNP

x2

Derivation:
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Computed transformation

Computed transformation (t ∈ TΣ and u ∈ T∆):

M(t, u) =
∑
q∈Q

q(t)
c1⇒··· cn⇒u

le�-most derivation

I(q) · c1 · . . . · cn

Composition of transformations (τ : TΣ × T∆ → K and τ ′ : T∆ × TΓ → K):

(τ ; τ ′)(t, u) =
∑
s∈T∆

τ(t, s) · τ ′(s, u)

(Both these sums will be �nite in all considered instances.)
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Extended vs. non-extended top-down tree transducer

(In the absence of ε-rules)
Expressive power of

Extended top-down tree transducer = top-down tree transducer

but does not generalize to standard subclasses:
simple if (in each rule)

I exactly the same variables occur in le� and right hand side
I no variable occurs twice in the right hand side
I both sides contain an input/output symbol
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Extended vs. non-extended top-down tree transducer

In the unweighted setting:

Theorem (Engelfriet 1975; Baker 1979)
Simple top-down tree transformations are closed under composition,
so the hierarchy collapses to the �rst level

Theorem (Arnold, Dauchet 1982)
Simple extended top-down tree transf. are not closed under composition,
but hierarchy collapses to the second level

Let’s generalize this result to the weighted setting (for rings)
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Normal form for weighted transducers

Theorem (Normal form)

s-wXTTn = REL ; Bfus-wXTTn

Every chain of n weighted simple transducers can equivalently be
presented as a chain of

a weighted relabeling and

a chain of n Boolean functional unambiguous simple transducers.

Boolean = utilizing only the unit weights 0 and 1

functional = computing a partial function

unambiguous = having at most one derivation per input-output pair
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Normal form for weighted transducers

Proof.
Achieved by induction using the decomposition:

s-wXTT ⊆ REL ; Bfus-wXTT

and the compositions:

s-wXTT ; REL ⊆ s-wXTT and REL ; s-wXTT ⊆ s-wXTT

s-wXTTn+1 = s-wXTTn ; s-wXTT

⊆ s-wXTTn ; REL ; Bfus-wXTT

⊆ s-wXTTn ; Bfus-wXTT

⊆ REL ; Bfus-wXTTn ; Bfus-wXTT

= REL ; Bfus-wXTTn+1
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Main theorem

Theorem

s-wXTT3 = s-wXTT2

The composition hierarchy of simple extended top-down tree transf.
collapses to the second level

Proof idea:

s-wXTT3 = REL ; Bfus-wXTT3 (normal form)

⊆ REL ; Bs-wXTT2︸ ︷︷ ︸
functional

(unweighted result)

⊆ REL ; Bfus-wXTT2 (. . . to be seen . . . )

⊆ s-wXTT2 (normal form)
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Uniformizer lemma

function f uniformizer of relation R if f ⊆ R and dom(f ) = dom(R)

Lemma
Given relations R1, . . . , Rn and functions f1, . . . , fn such that

R1 ; · · · ; Rn is functional
range(Rj) ⊆ dom(Rj+1) for all j

fj is a uniformizer of Rj for all j

then f1 ; · · · ; fn = R1 ; · · · ; Rn

23



Back to the proof

Lemma (Benedikt, Engelfriet, Maneth 2017)
Relations of Bs-wXTT have uniformizers in Bfs-wXTT

Proof of main theorem:

s-wXTT3 = REL ; Bfus-wXTT3 (normal form)

⊆ REL ; Bs-wXTT2︸ ︷︷ ︸
functional

(unweighted result)

⊆ REL ; Bfs-wXTT2 (uniformizer lemma)

⊆ REL ; Bfus-wXTT2 (Bfs-wXTT = Bfus-wXTT)

⊆ s-wXTT2 (normal form)
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That’s all folks!

Theorem (Full version of main theorem)
For all commutative semirings

6εnsl-XTT3 = 6εnsl-XTT2

6εsl-XTT3 = 6εsl-XTT2

(6εsl-XTTR)3 = (6εsl-XTTR)2

(6εl-XTTR)4 = (6εl-XTTR)3

6εl-XTT5 = 6εl-XTT4

Thank you for your attention!
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