Applications of Tree Automata Theory Lecture IV: Machine Translation — Basics

Andreas Maletti

Institute of Computer Science Universität Leipzig, Germany

on leave from: Institute for Natural Language Processing Universität Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Yekaterinburg — August 24, 2014

Roadmap

- Theory of Tree Automata
- Parsing Basics and Evaluation
- Parsing Advanced Topics
- Machine Translation Basics and Evaluation
- 5 Theory of Tree Transducers
- Machine Translation Advanced Topics

Always ask questions right away!

Statistical Machine Translation

Foundations

Statistical Machine Translation

Definition

A statistical machine translation system is a (usually fully automatic) computer system that translates based on statistical models learnt from parallel corpora.

Definition

A parallel corpus is a (linguistic) resource, in which text in one language is presented together with sentence-by-sentence translations into another language

Notes

- parallel corpus = sentence-aligned bi-text
- parallel corpus ≠ comparable corpus

Definition (Sentence alignment)

A sentence alignment is an injective (partial) mapping

 $f\colon \mathbb{N} \to \mathbb{N}$

(between sentence numbers)

Definition (Sentence alignment)

A sentence alignment is an injective (partial) mapping

 $f \colon \mathbb{N} \to \mathbb{N}$ (between sentence numbers)

Definition (Parallel corpus [formal])

A parallel corpus consists of three (partial) mappings:

 $lacksymbol{s} \colon \mathbb{N} o \Sigma^*$

(source sentences)

sentence alignment $f: \mathbb{N} \to \mathbb{N}$

 $t : \mathbb{N} \to \Lambda^*$

(target sentences)

Example (Aligned sentences)

- nice example:
 - "We can help countries catch up, but not by putting their neighbors on hold"
 - "Wir können Ländern beim Aufholen helfen, aber nicht, indem wir ihre Nachbarn in den Wartesaal schicken"

Example (Aligned sentences)

nice example:

- "We can help countries catch up, but not by putting their neighbors on hold"
- "Wir können Ländern beim Aufholen helfen, aber nicht, indem wir ihre Nachbarn in den Wartesaal schicken"

2 questionable example:

- "We must bear in mind the Community as a whole"
- "Wir müssen uns davor hüten, alles vergemeinschaften zu wollen"

English-Russian example

- "Indeed, Republican lawyers identified only 300 cases of electoral fraud in the United States in a decade."
- "К тому же юристы республиканцев насчитали" только 300 случаев электоральных фальсификаций в Соединенных Штатах за десять лет."

Definition

A sentence is a sequence of tokens

(the result of tokenization)

Definition

A sentence is a sequence of tokens

(the result of tokenization)

Notes

- normally the atomic unit is the word (dictionary entry)
- notable exceptions: Japanese, Chinese, etc.

Example

Sentence:

We must bear in mind the Community as a whole

■ Token sequence:

length: 10

must | bear | in | mind | the | Community | as | a

Definition

Given a sentence S of length n, we write

■ $pos(S) = \{1, ..., n\}$

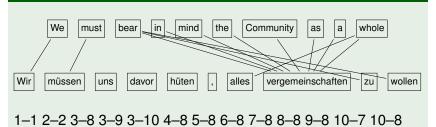
positions in S

- S[i] with $i \in pos(S)$ for its i-th token
- $S^{-1}[w] = \{i \in pos(S) \mid S[i] = w\}$ its inverse
- S[i,j] with $i,j \in pos(S)$, $i \leq j$ for its [i,j]-span

$$S[i,j] = S[i]S[i+1] \cdots S[j]$$

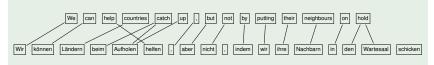
Example

S =We must bear in mind the Community as a whole

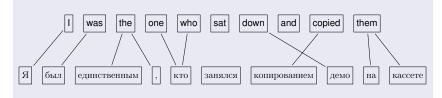

- $pos(S) = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- *S*[4] = in
- $S^{-1}[\text{must}] = \{2\}$
- lacksquare S[6,8] =the Community as

Word Alignment

Definition


A word alignment for two sentences S_1 and S_2 is a relation $\rho \subseteq pos(S_1) \times pos(S_2)$ on its positions

Example



Word Alignment

Nicer example

English-Russian example

1-1 2-2 3-3 3-4 4-5 5-5 9-7 7-8 10-9 10-10

EUROPARL German-English parallel corpus

- 1,920,209 parallel sentences
- 44,548,491 words in German
- 47,818,827 words in English
- sentence-aligned, but not word-aligned
- from parliament proceedings

MULTIUN Chinese-English parallel corpus

- 9,564,315 parallel sentences
- 256, 720, 000 words in English
- sentence-aligned, but not word-aligned
- from official UN documents

YANDEX parallel corpus

- ≈ 1M parallel sentences
- Russian-English

Statistical Machine Translation

Phrase-based Models

Key points [OCH, NEY, 2004]

- phrase as basic translation unit
- dominant model for many language pairs incl. Russian-English
- can deal with (arbitrary) many-to-many alignments
- words internally move together

Key points [OCH, NEY, 2004]

- phrase as basic translation unit
- dominant model for many language pairs incl. Russian-English
- can deal with (arbitrary) many-to-many alignments
- words internally move together

Definition (Phrase)

phrase is a contiguous sequence of words

(usually given by span [i, i'])

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

Algorithm

- 1 phrase pair ([j, j'], [i, i']) consistently aligned if
 - $\ell' \in [i, i']$ for all $\ell \in [j, j']$ and $(\ell, \ell') \in A$
 - $\ell \in [j,j']$ for all $\ell' \in [i,i']$ and $(\ell,\ell') \in A$

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

Algorithm

- 1 phrase pair ([j, j'], [i, i']) consistently aligned if
 - $\ell' \in [i, i']$ for all $\ell \in [j, j']$ and $(\ell, \ell') \in A$
 - $\ell \in [j,j']$ for all $\ell' \in [i,i']$ and $(\ell,\ell') \in A$
- extract all consistently aligned phrase pairs
- 3 (restrict length of phrases based on corpus size)

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

```
([1,1], [2,3]) ([2,2], [4,4]) ([3,3], [1,1])
([4,5], [5,5]) ([6,6], [6,6]) ([7,7], [7,7])
([8,8], [8,8]) ([9,11], [9,9]) ([12,13], [10,10])
```

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

```
\begin{array}{lll} ([1,1],[2,3]) & ([2,2],[4,4]) & ([3,3],[1,1]) \\ ([4,5],[5,5]) & ([6,6],[6,6]) & ([7,7],[7,7]) \\ ([8,8],[8,8]) & ([9,11],[9,9]) & ([12,13],[10,10]) \end{array}
```

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

```
\begin{array}{lll} ([1,1],[2,3]) & ([2,2],[4,4]) & ([3,3],[1,1]) \\ ([4,5],[5,5]) & ([6,6],[6,6]) & ([7,7],[7,7]) \\ ([8,8],[8,8]) & ([9,11],[9,9]) & ([12,13],[10,10]) \end{array}
```

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

```
\begin{array}{lll} ([1,1],[2,3]) & ([2,2],[4,4]) & ([3,3],[1,1]) \\ \hline ([4,5],[5,5]) & ([6,6],[6,6]) & ([7,7],[7,7]) \\ \hline ([8,8],[8,8]) & ([9,11],[9,9]) & ([12,13],[10,10]) \\ \end{array}
```

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

```
\begin{array}{lll} ([1,1],[2,3]) & ([2,2],[4,4]) & ([3,3],[1,1]) \\ ([4,5],[5,5]) & ([6,6],[6,6]) & ([7,7],[7,7]) \\ ([8,8],[8,8]) & ([9,11],[9,9]) & ([12,13],[10,10]) \end{array}
```

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

$$\begin{array}{lll} ([1,1],[2,3]) & ([2,2],[4,4]) & ([3,3],[1,1]) \\ ([4,5],[5,5]) & ([6,6],[6,6]) & ([7,7],[7,7]) \\ ([8,8],[8,8]) & ([9,11],[9,9]) & ([12,13],[10,10]) \end{array}$$

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₆ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

```
\begin{array}{lll} ([1,1],[2,3]) & ([2,2],[4,4]) & ([3,3],[1,1]) \\ ([4,5],[5,5]) & ([6,6],[6,6]) & ([7,7],[7,7]) \\ ([8,8],[8,8]) & ([9,11],[9,9]) & ([12,13],[10,10]) \end{array}
```

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

```
\begin{array}{lll} ([1,1],[2,3]) & ([2,2],[4,4]) & ([3,3],[1,1]) \\ ([4,5],[5,5]) & ([6,6],[6,6]) & ([7,7],[7,7]) \\ ([8,8],[8,8]) & ([9,11],[9,9]) & ([12,13],[10,10]) \end{array}
```

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

```
\begin{array}{lll} ([1,1],[2,3]) & ([2,2],[4,4]) & ([3,3],[1,1]) \\ ([4,5],[5,5]) & ([6,6],[6,6]) & ([7,7],[7,7]) \\ ([8,8],[8,8]) & ([9,11],[9,9]) & ([12,13],[10,10]) \end{array}
```

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

I₁ would₂ like₃ your₄ advice₅ about₆ Rule₇ 143₈ concerning₉ inadmissibility₁₀

Formally:

$$\begin{array}{lll} ([1,1],[2,3]) & ([2,2],[4,4]) & ([3,3],[1,1]) \\ ([4,5],[5,5]) & ([6,6],[6,6]) & ([7,7],[7,7]) \\ ([8,8],[8,8]) & ([9,11],[9,9]) & ([12,13],[10,10]) \end{array}$$

For better readability:

Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

 I_1 would $_2$ like $_3$ your $_4$ advice $_5$ about $_6$ Rule $_7$ 143 $_8$ concerning $_9$ inadmissibility $_{10}$

Notes

- these were only minimal phrase pairs
- extract all (sensible) combinations of these
- e.g., ([1,1],[2,3]) and ([2,2],[4,4]) yield ([1,2],[2,4])

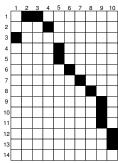
Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

 I_1 would $_2$ like $_3$ your $_4$ advice $_5$ about $_6$ Rule $_7$ 143 $_8$ concerning $_9$ inadmissibility $_{10}$

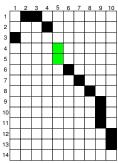
Notes

- these were only minimal phrase pairs
- extract all (sensible) combinations of these
- e.g., ([1,1],[2,3]) and ([2,2],[4,4]) yield ([1,2],[2,4])
- unaligned words can be added to neighboring phrases
- e.g., ([12, 13], [10, 10]) extends to ([12, 14], [10, 10])

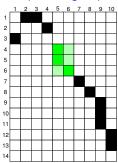
Könnten₁ Sie₂ mir₃ eine₄ Auskunft₅ zu₆ Artikel₇ 143₈ im₉ Zusammenhang₁₀ mit₁₁ der₁₂ Unzulässigkeit₁₃ geben₁₄

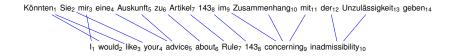

 I_1 would $_2$ like $_3$ your $_4$ advice $_5$ about $_6$ Rule $_7$ 143 $_8$ concerning $_9$ inadmissibility $_{10}$

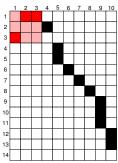
Notes


- these were only minimal phrase pairs
- extract all (sensible) combinations of these
- e.g., ([1,1],[2,3]) and ([2,2],[4,4]) yield ([1,2],[2,4])
- unaligned words can be added to neighboring phrases
- e.g., ([12, 13], [10, 10]) extends to ([12, 14], [10, 10])

Könnten Sie — would like your der Unzulässigkeit geben — inadmissibility







Extractable phrase pairs

I was — Я был

down and copied them — копированием демо на кассете

the one who sat — единственным, кто занялся

Notes

- phrases are not linguistic phrases!
 - (noun phrases, verb phrases, etc.)
- non-linguistic phrase pair: Sinne der keeping with the

Notes

- phrases are not linguistic phrases!
 - (noun phrases, verb phrases, etc.)
- non-linguistic phrase pair: Sinne der keeping with the
- having only linguistic phrases lowers translation quality

Notes

- phrases are not linguistic phrases!
 - (noun phrases, verb phrases, etc.)
- non-linguistic phrase pair: Sinne der keeping with the
- having only linguistic phrases lowers translation quality
- phrase translation table typically huge

(much larger than parallel corpus)

Hierarchical Phrase-based Models

Input Er₁ hat₂ ein₃ neues₄ ,₅ sparsames₆ Auto₇ gekauft₈

He₁ bought₂ a₃ new₄ fuel-efficient₅ car₆

Er₁ hat₂ ein₃ neues₄ ,₅ sparsames₆ Auto₇ gekauft₈ He₁ bought₂ a₃ new₄ fuel-efficient₅ car₆

Er₁ hat₂ ein₃ neues₄ ,₅ sparsames₆ Auto₇ gekauft₈ He₁ bought₂ a₃ new₄ fuel-efficient₅ car₆

Input

Er₁ hat₂ ein₃ neues₄ ,₅ sparsames₆ Auto₇ gekauft₈

He₁ bought₂ a₃ new₄ fuel-efficient₅ car₆

Problem

Only rule translating hat or gekauft has very limited use:

hat ein neues , sparsames Auto gekauft
— bought a new fuel-efficient car

Analysis

the restriction to phrases (i.e., contiguous segments) yields undesirably long phrase pairs

hat ein neues , sparsames Auto gekauft

bought a new fuel-efficient car

Analysis

- the restriction to phrases (i.e., contiguous segments) yields undesirably long phrase pairs
- it would be better to allow phrases inside phrases
- → hierarchical phrases [CHIANG, 2007]

hat ein neues, sparsames Auto gekauft

— bought a new fuel-efficient car

Hierarchical phrases

■ phrases with gaps (written as X)

$$hat X gekauft - bought X$$

Hierarchical phrases

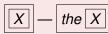
■ phrases with gaps (written as X)

■ gaps filled by other hierarchical phrases (maybe gaps)

Hierarchical phrases

■ phrases with gaps (written as X)

$$hat X gekauft - bought X$$


■ gaps filled by other hierarchical phrases (maybe gaps)

put together we have

Restrictions

must contain lexical item in source side

illegal:

Restrictions

must contain lexical item in source side

illegal:
$$X - the X$$

at most 5 gaps (for efficiency: at most 2 gaps)

illegal: $X_1 hat X_2 des X_3 - X_2 of X_3 was X_1$

Restrictions

must contain lexical item in source side

illegal:
$$X$$
 — the X

■ at most 5 gaps (for efficiency: at most 2 gaps)

illegal:
$$X_1 hat X_2 des X_3 - X_2 of X_3 was X_1$$

no adjacent gaps in source side

illegal:
$$ihm X_1 X_2 - the X_2 of X_1 to him$$

Algorithm

Extract phrase-pairs as usual

```
hat ein neues , sparsames Auto gekauft — bought a new fuel-efficient car

ein neues , sparsames Auto — a new fuel-efficient car

...— ...
```

Algorithm

Extract phrase-pairs as usual

```
hat ein neues , sparsames Auto gekauft — bought a new fuel-efficient car

ein neues , sparsames Auto — a new fuel-efficient car

...— ...
```

Find phrase-pair that contains another phrase-pair

Algorithm

1 Extract phrase-pairs as usual

```
hat ein neues , sparsames Auto gekauft — bought a new fuel-efficient car

ein neues , sparsames Auto — a new fuel-efficient car

...— ...
```

- Find phrase-pair that contains another phrase-pair
- Remove inner phrase-pair and leave new X_i (if possible)

Algorithm¹

Extract phrase-pairs as usual

- Find phrase-pair that contains another phrase-pair
- Remove inner phrase-pair and leave new X_i (if possible)

4 if there were changes, then go to 2

Evaluation

Translation

■ Input:

Республиканская стратегия сопротивления повторному избранию обамы

Translation

Input:

Республиканская стратегия сопротивления повторному избранию обамы

Hierarchical phrase-based (YANDEX corpus): Republican strategy resistance renewal elect obama

Translation

■ Input:

Республиканская стратегия сопротивления повторному избранию обамы

- Hierarchical phrase-based (YANDEX corpus): Republican strategy resistance renewal elect obama
- GOOGLE Translate:

The Republican strategy of resistance to the re-election of Obama

Translation

Input:

Республиканская стратегия сопротивления повторному избранию обамы

- Hierarchical phrase-based (YANDEX corpus): Republican strategy resistance renewal elect obama
- GOOGLE Translate:

 The Republican strategy of resistance to the re-election of Obama
- YANDEX Translate:

The Republican strategy of resistance for the re-election of Obama

Translation

Кроме того, эти законы сокращают период досрочного голосования, упраздняют пра во регистрации избирателя в день волеизъявления и отнимают право голоса у граждан, имеющих судимость.

Translation

- Input:
 - Кроме того, эти законы сокращают период досрочного голосования, упраздняют пра во регистрации избирателя в день волеизъявления и отнимают право голоса у граждан, имеющих судимость.
- Hierarchical phrase-based (YANDEX corpus):
 In addition, these laws reduce period early voting, упраздняют right registering voters in the day of voting and take the citizens have the right to vote, have a criminal record.

Translation

- Input:
 - Кроме того, эти законы сокращают период досрочного голосования, упраздняют пра во регистрации избирателя в день волеизъявления и отнимают право голоса у граждан, имеющих судимость.
- Hierarchical phrase-based (YANDEX corpus):
 In addition, these laws reduce period early voting, упраздняют right registering voters in the day of voting and take the citizens have the right to vote, have a criminal record.
- **■** GOOGLE Translate:
 - In addition, these laws reduce the early voting period, abolish the right-in voter registration on the day of expression and the right to take away votes from citizens who have a criminal record.

Translation

- Input:
 - Кроме того, эти законы сокращают период досрочного голосования, упраздняют пра во регистрации избирателя в день волеизъявления и отнимают право голоса у граждан, имеющих судимость.
- Hierarchical phrase-based (YANDEX corpus): In addition, these laws reduce period early voting, упраздняют right registering voters in the day of voting and take the citizens have the right to vote, have a criminal record.
- GOOGLE Translate:
 In addition, these laws reduce the early voting period, abolish the right-in voter registration on the day of expression and the right to take away votes from citizens who have a criminal record.
- YANDEX Translate:
 In addition, these laws reduce the early voting period will void the law of registration of the voter on the day of will and take away the right to vote of citizens with criminal records.

BLEU — Bilingual Evaluation Understudy

Approach [PAPINENI et al., 2002]

- compare translation output T to reference translation R
- count *n*-gram matches (recall)
- normalize by count of all possible n-gram matches

$$prec_i = \frac{match_i(T, R)}{|T| - i + 1}$$

BLEU — Bilingual Evaluation Understudy

Approach [PAPINENI et al., 2002]

- compare translation output T to reference translation R
- count *n*-gram matches (recall)
- normalize by count of all possible n-gram matches

$$prec_i = \frac{match_i(T, R)}{|T| - i + 1}$$

■ BLEU-n = brev-pen · $\sqrt[n]{\prod_{i=1}^{n} \text{prec}_i}$ (geometric mean)

BLEU — Bilingual Evaluation Understudy

Approach [PAPINENI et al., 2002]

- compare translation output T to reference translation R
- count *n*-gram matches (recall)
- normalize by count of all possible n-gram matches

$$prec_i = \frac{match_i(T, R)}{|T| - i + 1}$$

- BLEU-n = brev-pen · $\sqrt[n]{\prod_{i=1}^{n} \text{prec}_i}$ (geometric mean)
- adjustment factor brevity penalty (punishes short output)

$$brev-pen = min(1, \frac{|T|}{|R|})$$

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-gram	ns 2-gra	ıms 3-gra	ms 4-grams
1 of 29	9 of 2	28 of 2	7 of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
1 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
2 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with $\frac{1}{2}$ miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-gran	ns 2-g	ırams 3-	grams 4	-grams
3 of 2	.9 o	f 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
4 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras $\frac{1}{2}$ mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
5 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
5 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
6 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London, where they are on the Internet.

1-grams	2-grams	3-grams	4-grams
6 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
6 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
8 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
9 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
10 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
11 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
11 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
12 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London, where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
13 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
14 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London, where they are on the Internet.

1-grams	2-grams	3-grams	4-grams
15 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
16 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
17 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are $\frac{1}{2}$ on the Internet .

1-grams	2-grams	3-grams	4-grams
17 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
18 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the $\underline{\text{Internet}}$.

1-grams	2-grams	3-grams	4-grams
19 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	1 of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	2 of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	3 of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	4 of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	5 of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	6 of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	7 of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	8 of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet.

1-grams	2-grams	3-grams	4-grams
20 of 29	9 of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the $\underline{\text{Internet}}$.

1-grams	2-grams	3-grams	4-grams
20 of 29	10 of 28	of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	10 of 28	1 of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	10 of 28	2 of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	10 of 28	3 of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London, where they are on the Internet.

1-grams	2-grams	3-grams	4-grams
20 of 29	10 of 28	4 of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet.

1-grams	2-grams	3-grams	4-grams
20 of 29	10 of 28	5 of 27	of 26

Translation:

(Google Translate)

The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

1-grams	2-grams	3-grams	4-grams
20 of 29	10 of 28	5 of 27	1 of 26

Translation:

(Google Translate)

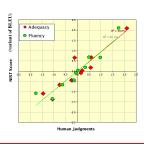
The rotated with miniature cameras mounted on helmets recordings are checked at the airbase in Kandahar and then sent to London , where they are on the Internet .

BLEU-4 =
$$\frac{29}{34} \cdot \sqrt[4]{\frac{20 \cdot 10 \cdot 5 \cdot 1}{29 \cdot 28 \cdot 27 \cdot 26}} = 17.46\%$$

Notes

- should be used with multiple references
- should be used for documents

(not sentences)


- primary evaluation for MT systems
- correlates reasonably well with human judgements

Notes

- should be used with multiple references
- should be used for documents

(not sentences)

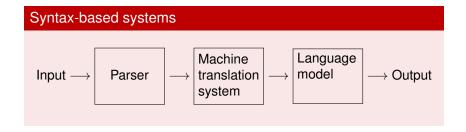
- primary evaluation for MT systems
- correlates reasonably well with human judgements

(Figure from [Koehn, 2010])

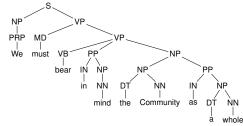
Evaluation

Russian-to-English

System	BLEU-4
WMT '13 winner [PINO et al., 2013]	25.9
(hierarchical phrase-based)	
hierarchical phrase-based (vanilla)	21.9
MBOT string-to-tree (vanilla)	20.7
string-to-tree (vanilla)	19.8


WMT '13 winner: Hierarchical phrase-based translation with wFSTs.

Pre-processing: STANFORD CoreNLP, Morfessor, Stem+POStag (TreeTagger)


Post-processing: lattices 5-gram-LM rescored and union of lattices rescored via Lattice Minimum Bayes Risk.

Statistical Machine translation

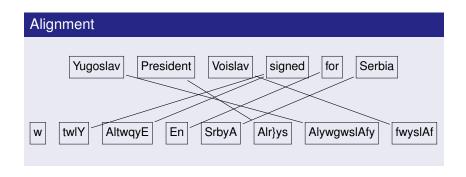
Syntax-based Models

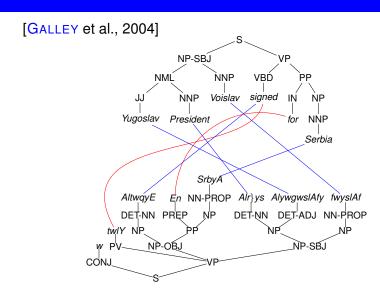
CHARNIAK parser: [CHARNIAK, JOHNSON, 2005]

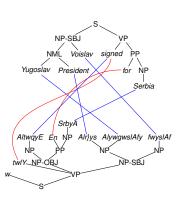
Arabic-English

Yugoslav President Voislav signed for Serbia. و تولى التوقيع عن صربيا الرئيس اليوغوسلافي فويسلاف Translit.: w twlY AltwavE En SrbvA Alr}vs AlvwawslAfv fwvslAf.

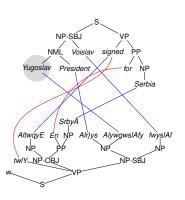
And then the matter was decided, and everything was put in place.

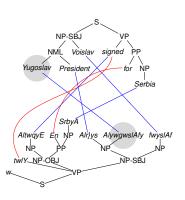

ف كان ان تم الحسم و وضعت الأمور في نصاب ها

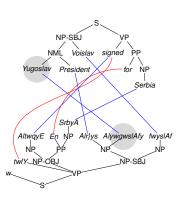

<u>Translit.:</u> f kAn An tm AlHsm w wDEt Al>mwr fy nSAb hA.

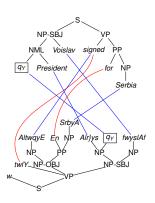

Below are the male and female winners in the different categories.

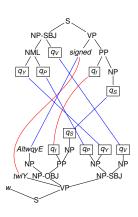
و هنا الأوائل و الأوليات في مختلف الفئات


<u>Translit.:</u> w hnA Al>wA}l w Al>wlyAt fy mxtlf Alf}At.




Select next node bottom-up

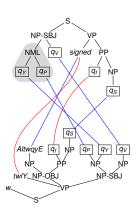

- Select next node bottom-up
- Identify maximal subtree of aligned nodes


- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.

- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state

- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat Yugoslav ^q AlywgwslAfy

- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat


 Yugoslav ^q AlywgwslAfy

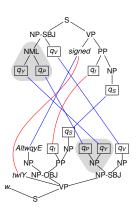
 President ^q Alr}ys

 Voislav ^q fwyslAf

 for ^q En

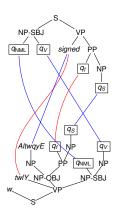
 Serbia ^q SrbyA

- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat

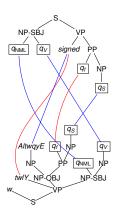

 Yugoslav ^q AlywgwslAfy

 President ^q Alr}ys

 Voislav ^q fwyslAf

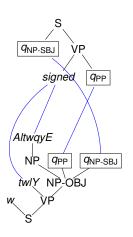

 for ^q En

 Serbia ^q SrbyA


- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat

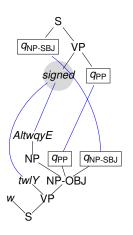
$$\mathsf{NML}(q_Y, q_P) \stackrel{q_{\mathsf{NML}}}{=} \mathsf{NP}(q_P, q_Y)$$

- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat


$$\mathsf{NML}(q_Y,q_P) \stackrel{q_{\mathsf{NML}}}{=} \mathsf{NP}(q_P,q_Y)$$

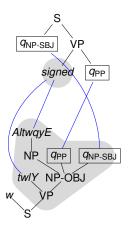
- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat

$$\mathsf{NML}(q_Y,q_P) \stackrel{q_{\mathsf{NML}}}{=} \mathsf{NP}(q_P,q_Y) \ \mathsf{NP}(q_S) \stackrel{q_{\mathsf{NP}}}{=} \mathsf{NP}(q_S) \ \mathsf{PP}(q_f,q_{\mathsf{NP}}) \stackrel{q_{\mathsf{PP}}}{=} \mathsf{PP}(q_f,q_{\mathsf{NP}}) \ \mathsf{NP}(q_S) \ \mathsf{NP}(q_S$$


$$\mathsf{NP} ext{-}\mathsf{SBJ}(q_{\mathsf{NML}},q_V)\stackrel{q_{\mathsf{NP} ext{-}\mathsf{SBJ}}}{=}\mathsf{NP} ext{-}\mathsf{SBJ}(q_{\mathsf{NML}},\mathsf{NP}(q_V))$$

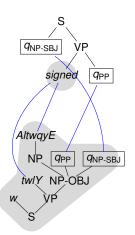
- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat

$$egin{aligned} \mathsf{NML}(q_Y,q_P) & \stackrel{q_{\mathsf{NML}}}{=} \mathsf{NP}(q_P,q_Y) \\ & \mathsf{NP}(q_S) & \stackrel{q_{\mathsf{NP}}}{=} \mathsf{NP}(q_S) \\ & \mathsf{PP}(q_f,q_{\mathsf{NP}}) & \stackrel{q_{\mathsf{PP}}}{=} \mathsf{PP}(q_f,q_{\mathsf{NP}}) \end{aligned}$$


$$NP-SBJ(q_{NML}, q_V) \stackrel{q_{NP-SBJ}}{=} NP-SBJ(q_{NML}, NP(q_V))$$

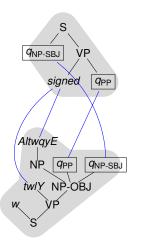
- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat

$$egin{aligned} \mathsf{NML}(q_Y,q_P) & \stackrel{q_{\mathsf{NML}}}{\longrightarrow} \mathsf{NP}(q_P,q_Y) \\ & \mathsf{NP}(q_S) & \stackrel{q_{\mathsf{NP}}}{\longrightarrow} \mathsf{NP}(q_S) \\ & \mathsf{PP}(q_f,q_{\mathsf{NP}}) & \stackrel{q_{\mathsf{PP}}}{\longrightarrow} \mathsf{PP}(q_f,q_{\mathsf{NP}}) \end{aligned}$$


$$NP-SBJ(q_{NML}, q_V) \stackrel{q_{NP-SBJ}}{=} NP-SBJ(q_{NML}, NP(q_V))$$

- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat

$$\mathsf{NML}(q_Y, q_P) \stackrel{q_{\mathsf{NML}}}{=} \mathsf{NP}(q_P, q_Y) \ \mathsf{NP}(q_S) \stackrel{q_{\mathsf{NP}}}{=} \mathsf{NP}(q_S) \ \mathsf{PP}(q_f, q_{\mathsf{NP}}) \stackrel{q_{\mathsf{PP}}}{=} \mathsf{PP}(q_f, q_{\mathsf{NP}}) \$$


$$NP-SBJ(q_{NML}, q_V) \stackrel{q_{NP-SBJ}}{=} NP-SBJ(q_{NML}, NP(q_V))$$

- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat

$$\mathsf{NML}(q_Y, q_P) \stackrel{q_{\mathsf{NML}}}{=} \mathsf{NP}(q_P, q_Y) \ \mathsf{NP}(q_S) \stackrel{q_{\mathsf{NP}}}{=} \mathsf{NP}(q_S) \ \mathsf{PP}(q_f, q_{\mathsf{NP}}) \stackrel{q_{\mathsf{PP}}}{=} \mathsf{PP}(q_f, q_{\mathsf{NP}}) \ \mathsf{NP}(q_S) \ \mathsf{NP}$$

$$NP-SBJ(q_{NML}, q_V) \stackrel{q_{NP-SBJ}}{=} NP-SBJ(q_{NML}, NP(q_V))$$

- Select next node bottom-up
- Identify maximal subtree of aligned nodes
- Identify subtree of nodes aligned to aligned nodes, etc.
- Extract rule and leave state
- Repeat

$$\mathsf{NML}(q_Y, q_P) \stackrel{q_{\mathsf{NML}}}{=} \mathsf{NP}(q_P, q_Y) \ \mathsf{NP}(q_S) \stackrel{q_{\mathsf{NP}}}{=} \mathsf{NP}(q_S) \ \mathsf{PP}(q_f, q_{\mathsf{NP}}) \stackrel{q_{\mathsf{PP}}}{=} \mathsf{PP}(q_f, q_{\mathsf{NP}}) \ \mathsf{NP}(q_S) \ \mathsf{NP}$$

$$NP-SBJ(q_{NML}, q_V) \stackrel{q_{NP-SBJ}}{=} NP-SBJ(q_{NML}, NP(q_V))$$

Rules

Rules

→ Rules of an Extended Top-down Tree Transducer

Extended Top-down Tree Transducer

Advantages

- ✓ simple and natural model
- ✓ easy to train
 [GRAEHL et al., 2008]
- ✓ symmetric

(from linguistic resources)

Extended Top-down Tree Transducer

Advantages

- simple and natural model
- ✓ easy to train [GRAEHL et al., 2008]
- ✓ symmetric

(from linguistic resources)

Generic implementation

■ TIBURON [MAY, KNIGHT, 2006]

Extended Top-down Tree Transducer

Disadvantages (also of STSG)

- × no discontinuities
- not binarizable [AHO, ULLMAN, 1972; ZHANG et al., 2006]
- ✗ inefficient input/output restriction [∼, SATTA, 2010]
- not composable [ARNOLD, DAUCHET, 1982]

Literature

Selected references

CHIANG: Hierarchical Phrase-Based Translation Comput. Linguist. 33, 2007

GALLEY, HOPKINS, KNIGHT, MARCU What's in a Translation Rule?

Proc. NAACL, 2004

KOFHN: Statistical Machine Translation Cambridge University Press, 2010

OCH, NEY: The Alignment Template Approach to Statistical Machine Translation. Comput. Linguist. 30, 2004

PAPINENI, ROUKOS, WARD, ZHU: BLEU: A Method for Automatic Evaluation of Machine Translation. Proc. 40th ACL, 2002