The Power of Regularity-Preserving Multi Bottom-up Tree Transducers

Andreas Maletti

maletti@ims.uni-stuttgart.de

Gießen — August 2, 2014

Extracted rules

Definition (MBOT)

linear extended multi bottom-up tree transducer (Q, Σ, I, R)

- finite set Q states
- ullet alphabet Σ input and output symbols
- $I \subseteq Q$ initial states
- finite set $R \subseteq T_{\Sigma}(Q) \times Q \times T_{\Sigma}(Q)^*$ rules
 - each $q \in Q$ occurs at most once in ℓ $(\ell, q, \vec{r}) \in R$
 - each $q \in Q$ that occurs in \vec{r} also occurs in ℓ $(\ell, q, \vec{r}) \in R$

Definition (Syntactic properties)

MBOT (Q, Σ, I, R) is

- linear extended top-down tree transducer with regular look-ahead (XTOP^R) if $|\vec{r}| \leq 1$ $\forall (\ell, q, \vec{r}) \in R$
- linear extended top-down tree transducer (XTOP) if $|\vec{r}| = 1$ $\forall (\ell, q, \vec{r}) \in R$

Definition (Syntactic properties)

MBOT (Q, Σ, I, R) is

- linear extended top-down tree transducer with regular look-ahead (XTOP^R) if $|\vec{r}| \leq 1$ $\forall (\ell, q, \vec{r}) \in R$
- linear extended top-down tree transducer (XTOP) if $|\vec{r}| = 1$ $\forall (\ell, q, \vec{r}) \in R$
- ε -free if $\ell \notin Q$

$$\forall (\ell, q, \vec{r}) \in R$$

Extracted rules

Properties

XTOPR:

XTOP: X

 ε -free: \checkmark

Another Example

Example (textual)

MBOT $M = (Q, \Sigma, \{\star\}, R)$

- $Q = \{\star, q, \mathsf{id}, \mathsf{id}'\}$
- $\Sigma = \{\sigma, \delta, \gamma, \alpha\}$
- the following rules in R:

$$\begin{split} \sigma(\star,q) &\stackrel{\star}{\longrightarrow} \sigma(\star,q) & \quad \sigma(\star,q) \stackrel{q}{\longrightarrow} q \\ \delta(\mathsf{id},\mathsf{id}') &\stackrel{\star,q}{\longrightarrow} \delta(\mathsf{id},\mathsf{id}') & \quad \gamma(\mathsf{id}) \stackrel{\mathsf{id},\mathsf{id}'}{\longrightarrow} \gamma(\mathsf{id}) & \quad \alpha \stackrel{\mathsf{id},\mathsf{id}'}{\longrightarrow} \alpha \end{split}$$

Another Example

Graphical representation

Properties

XTOP^R: ✓

$$\begin{matrix} \gamma & \gamma & \gamma \\ | & \underline{\mathsf{id}}, \underline{\mathsf{id}}' & | \\ \mathrm{id} & & \underline{\mathsf{id}}\end{matrix}$$

$$\alpha \xrightarrow{\mathsf{id},\mathsf{id}'} \alpha$$

$$\begin{matrix} \gamma & \gamma & \gamma \\ | & id, id' & | \\ id & & id \end{matrix}$$

$$\alpha \stackrel{\mathsf{id},\mathsf{id}'}{\longrightarrow} \alpha$$

Definition (sentential forms)

$$\langle t, A, D, u \rangle$$

- $t \in T_{\Sigma}(Q)$
- $A \subseteq \mathbb{N}^* \times \mathbb{N}^*$
- $D \subseteq \mathbb{N}^* \times \mathbb{N}^*$
- $u \in T_{\Sigma}(Q)$

input tree active links (red)

disabled links (gray)

output tree

Definition (Generation step)

$$\langle t, A, D, u \rangle \Rightarrow_{M} \langle t', A', D', u' \rangle$$

if and only if $\exists q \in Q$, $\exists v \in pos(t)$ labeled by q, and $\exists \ell \stackrel{q}{\to} \vec{r} \in P$

- $|\vec{r}| = |A(v)|$ and $\vec{w} = A(v)$
- $t' = t[\ell]_{\nu}$ and $u' = u[\vec{r}]_{\vec{w}}$
- $A' = (A \setminus L) \cup \mathsf{links}_{v,\vec{w}}(\ell \stackrel{q}{\to} \vec{r}) \text{ and } D' = D \cup L \text{ with }$

$$L = \{(v, w) \mid w \in A(v)\}$$

Definition

state-computed dependencies:

$$M_q = \{ \langle t, D, u \rangle \mid t, u \in T_{\Sigma}, \langle q, \{(\varepsilon, \varepsilon)\}, \emptyset, q \rangle \Rightarrow_{M}^{*} \langle t, \emptyset, D, u \rangle \}$$

• computed dependencies:

$$\operatorname{dep}(M) = \bigcup_{q \in I} M_q$$

Definition

state-computed dependencies:

$$M_{q} = \{ \langle t, D, u \rangle \mid t, u \in T_{\Sigma}, \langle q, \{(\varepsilon, \varepsilon)\}, \emptyset, q \rangle \Rightarrow_{M}^{*} \langle t, \emptyset, D, u \rangle \}$$

computed dependencies:

$$dep(M) = \bigcup_{q \in I} M_q$$

computed transformation:

$$\tau_{M} = \{(t, u) \mid \langle t, D, u \rangle \in \operatorname{dep}(M)\}\$$

Definition (Regularity-preserving)

```
transformation \tau \subseteq T_{\Sigma} \times T_{\Sigma} preserves regularity if \tau(L) = \{u \mid (t, u) \in \tau, t \in L\} is regular for all regular L \subseteq T_{\Sigma}
```

rp-MBOT = class of all regularity preserving transformations computable by MBOT

Compositions

- τ_1 ; $\tau_2 = \{(s, u) \mid \exists t : (s, t) \in \tau_1, (t, u) \in \tau_2\}$
- support modular development
- allow integration of external knowledge sources
- occur naturally in query rewriting

Known:

- $XTOP^R \subsetneq MBOT$
- MBOT is closed under composition
- all $\tau \in \mathsf{XTOP}^\mathsf{R}$ preserve regularity

Known:

- XTOP^R ⊆ MBOT
- MBOT is closed under composition
- all $\tau \in \mathsf{XTOP}^\mathsf{R}$ preserve regularity

Question:

Is
$$(XTOP^R)^* \subsetneq rp\text{-}MBOT$$
? $(XTOP^R)^* \subseteq rp\text{-}MBOT$ is true
$$(XTOP^R)^* = \bigcup_{k \geq 1} \underbrace{XTOP^R \; ; \; \cdots \; ; \; XTOP^R}_{k \; factors}$$

Motivation

- we use regularity-preserving MBOT for efficiency in our translation systems
- their power is currently not well understood

Motivation

- we use regularity-preserving MBOT for efficiency in our translation systems
- their power is currently not well understood
- e.g. general MBOT can handle discontinuities
- Is this still possible with regularity-preserving MBOT?
 or do they have the same power as compositions of XTOP

Contents

The problem

Linking technique

Results

Properties of Dependencies

Definition (Hierarchical properties)

A dependency $\langle t, D, u \rangle$ is

- input hierarchical if
 - 1. $w_2 \not< w_1$
 - 2. $\exists (v_1, w_1') \in D \text{ with } w_1' \leq w_2$

for all $(v_1, w_1), (v_2, w_2) \in D$ with $v_1 < v_2$

Properties of Dependencies

Definition (Hierarchical properties)

A dependency $\langle t, D, u \rangle$ is

- input hierarchical if
 - 1. $w_2 \not< w_1$
 - 2. $\exists (v_1, w_1') \in D \text{ with } w_1' \leq w_2$

for all $(v_1, w_1), (v_2, w_2) \in D$ with $v_1 < v_2$

Properties of Dependencies

Definition (Hierarchical properties)

A dependency $\langle t, D, u \rangle$ is

- input hierarchical if
 - 1. $w_2 \not< w_1$
 - 2. $\exists (v_1, w_1') \in D \text{ with } w_1' \leq w_2$

for all $(v_1, w_1), (v_2, w_2) \in D$ with $v_1 < v_2$

- strictly input hierarchical if
 - 1. $v_1 < v_2$ implies $w_1 \le w_2$
 - 2. $v_1 = v_2$ implies $w_1 \le w_2$ or $w_2 \le w_1$

for all $(v_1, w_1), (v_2, w_2) \in D$

Definition (Distance properties)

A dependency $\langle t, D, u \rangle$ is

• input link-distance bounded by $b \in \mathbb{N}$ if for all $(v_1, w_1), (v_1v', w_2) \in D$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$

Definition (Distance properties)

A dependency $\langle t, D, u \rangle$ is

• input link-distance bounded by $b \in \mathbb{N}$ if for all $(v_1, w_1), (v_1v', w_2) \in D$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$

Definition (Distance properties)

A dependency $\langle t, D, u \rangle$ is

- input link-distance bounded by $b \in \mathbb{N}$ if for all $(v_1, w_1), (v_1v', w_2) \in D$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$
- strict input link-distance bounded by b if for all $v_1, v_1v' \in pos(t)$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$

strictly input hierarchical

strictly input hierarchical and strictly output hierarchical

strictly input hierarchical and strictly output hierarchical with strict input link-distance 2

strictly input hierarchical and strictly output hierarchical with strict input link-distance 2 and strict output link-distance 1

	hierarchical		link-distance bounded	
${\sf Model} \setminus {\sf Property}$	input	output	input	output
XTOP ^R MBOT	strictly ✓	strictly strictly	√ ✓	strictly strictly

Linking Theorem for ε -free XTOP^R

Theorem

Let M_1, \ldots, M_k be ε -free XTOP^R over Σ such that

$$\{(c[t_1,\ldots,t_n],\,c'[t_1,\ldots,t_n])\mid t_1,\ldots,t_n\in\mathcal{T}\}\subseteq\tau_{M_1}\,;\cdots\,;\tau_{M_k}$$

for some contexts $c, c' \in C_{\Sigma}(X_n)$ and special $T \subseteq T_{\Sigma}$.

$$\forall 1 \leq i \leq k, \ \forall 1 \leq j \leq n$$

 $\exists t_j \in T, \ \exists \langle u_{i-1}, D_i, u_i \rangle \in \mathsf{dep}(M_i), \ \exists (v_{ji}, w_{ji}) \in D_i \ such \ that$

- $u_0 = c[t_1, \ldots, t_n]$ and $u_k = c'[t_1, \ldots, t_n]$
- $pos_{x_j}(c') \leq w_{jk}$
- $v_{ji} \leq w_{j(i-1)}$ if $i \geq 2$
- $pos_{x_j}(c) \leq v_{j1}$

Linking Theorem for ε -free XTOP^R

Corollary [see Sect. 3.4 in [Arnold, Dauchet 1982]]

The illustrated tree transformation τ cannot be computed by any $\varepsilon\text{-free XTOP}^{\mathsf{R}}$

Linking Theorem for ε -free XTOP^R

Corollary [see Thm. 5.2 in [Maletti et al. 2009]]

The illustrated tree transformation τ cannot be computed by any $\varepsilon\text{-free XTOP}^{\mathsf{R}}$

Contents

The problem

Linking technique

Results

Example

• It rained yesterday night.

Topicalized: Yesterday night, it rained.

Example

• It rained yesterday night.

Topicalized: Yesterday night, it rained.

• We toiled all day yesterday at the restaurant that charges extra for clean plates.

Topicalized: At the restaurant that charges extra for clean plates, we toiled all day yesterday.

Example (on the tree level)

Example (on the tree level)

Abstract Topicalization

Abstract Topicalization

Theorem

Abstract topicalization

- preserves regularity and
- can be computed by an MBOT

Abstract Topicalization

Theorem

Abstract topicalization cannot be computed by any composition chain of ε -free XTOP^R

Consequence

Corollary

$$(\mathsf{XTOP}^\mathsf{R})^* \subsetneq \mathsf{rp}\text{-}\mathsf{MBOT}$$

Linking Theorem for ε -free MBOT

Theorem

Let $M = (Q, \Sigma, I, R)$ be an ε -free MBOT such that

$$\{(c[t_1,\ldots,t_n],\,c'[t_1,\ldots,t_n])\mid t_1,\ldots,t_n\in\,T\}\subseteq\tau_M$$

for some contexts $c, c' \in C_{\Sigma}(X_n)$ and special $T \subseteq T_{\Sigma}$.

 $\forall 1 \leq j \leq n, \ \exists t_j \in T, \ \exists \langle u, D, u' \rangle \in \mathsf{dep}(M), \ \exists (v_j, w_j) \in D \ \textit{with}$

- $u = c[t_1, ..., t_n]$ and $u' = c'[t_1, ..., t_n]$
- $pos_{x_j}(c) \leq v_j$
- $pos_{x_i}(c') \leq w_j$

Linking Theorem for ε -free MBOT

Corollary

Inverse of topicalization cannot be computed by any ε -free MBOT

Summary & References

Summary

- 1. $(XTOP^R)^* \subsetneq rp\text{-}MBOT$
- 2. rp-MBOT not closed under inverses
- 3. What happens to invertable MBOT?

Summary & References

Summary

- 1. $(XTOP^R)^* \subsetneq rp\text{-}MBOT$
- 2. rp-MBOT not closed under inverses
- 3. What happens to invertable MBOT?

References

- J. Engelfriet, E. Lilin, ~: Extended multi bottom-up tree transducers Composition and decomposition. Acta Inf., 2009
- Z. Fülöp, ~: Composition closure of ε-free linear extended top-down tree transducers. Proc. 17th DLT, LNCS 7907, 2013
- P. Koehn: Statistical machine translation. Cambridge Univ. Press, 2009
- ~, J. Graehl, M. Hopkins, K. Knight: The power of extended top-down tree transducers. SIAM J. Comput., 2009