Composition Closure of Linear Extended Top-down Tree Transducers

Zoltán Fülöp and Andreas Maletti

maletti@ims.uni-stuttgart.de

Leipzig — April 8, 2014

Syntax-based Statistical Machine Translation

Syntax-based Statistical Machine Translation

Syntax-based Statistical Machine Translation

- for a tree-to-tree transformation device = tree transducer
- here: for a linear extended multi bottom-up tree transducer

Motivation

Tree transducer

- used in statistical machine translation [Knight, Graehl 2005]
- used in XML query processing [Benedikt et al. 2013]

Motivation

Tree transducer

- used in statistical machine translation [Knight, Graehl 2005]
- used in XML query processing [Benedikt et al. 2013]

Compositions

- τ_1 ; $\tau_2 = \{(s, u) \mid \exists t : (s, t) \in \tau_1, (t, u) \in \tau_2\}$
- support modular development
- allow integration of external knowledge sources
- occur naturally in query rewriting

Problem

Question:

given a class C of transformations, is there $n \in \mathbb{N}$ such that

$$C^n = \bigcup_{k \ge 1} C^k$$

$$C^k = \underbrace{C; \cdots; C}_{k \text{ times}}$$

Problem

Question:

given a class $\mathcal C$ of transformations, is there $n\in\mathbb N$ such that

$$C^n = \bigcup_{k \ge 1} C^k$$

$$C^k = \underbrace{C; \cdots; C}_{k \text{ times}}$$

Note

- $C^k \subseteq C^{k+1}$ for our classes C
- \rightarrow we search least n such that $\mathcal{C}^n = \mathcal{C}^{n+1}$

(if it exists)

Definition (MBOT)

linear extended multi bottom-up tree transducer (Q, Σ, I, R)

- finite set *Q* states
- ullet alphabet Σ input and output symbols
- $I \subseteq Q$ initial states
- finite set $R \subseteq T_{\Sigma}(Q) \times Q \times T_{\Sigma}(Q)^*$ rules
 - each $q \in Q$ occurs at most once in ℓ $(\ell, q, \vec{r}) \in R$
 - each $q \in Q$ that occurs in \vec{r} also occurs in ℓ $(\ell, q, \vec{r}) \in R$

Definition (Syntactic properties)

MBOT (Q, Σ, I, R) is

- linear extended top-down tree transducer with regular look-ahead (XTOP^R) if $|\vec{r}| \leq 1$ $\forall (\ell, q, \vec{r}) \in R$
- linear extended top-down tree transducer (XTOP) if $|\vec{r}|=1$

Definition (Syntactic properties)

MBOT (Q, Σ, I, R) is

- linear extended top-down tree transducer with regular look-ahead (XTOP^R) if $|\vec{r}| \leq 1$ $\forall (\ell, q, \vec{r}) \in R$
- linear extended top-down tree transducer (XTOP) if $|\vec{r}|=1$
- linear top-down tree transducer (TOP/TOPR) if XTOP/XTOPR and ℓ contains exactly one element of Σ
- ε -free (resp. strict) if $\ell \notin Q$ (resp. $\vec{r} \notin Q^+$)

Definition (Syntactic properties)

MBOT (Q, Σ, I, R) is

- linear extended top-down tree transducer with regular look-ahead (XTOP^R) if $|\vec{r}| \leq 1$ $\forall (\ell, q, \vec{r}) \in R$
- linear extended top-down tree transducer (XTOP) if $|\vec{r}| = 1$
- linear top-down tree transducer (TOP/TOPR) if XTOP/XTOPR and ℓ contains exactly one element of Σ
- ε -free (resp. strict) if $\ell \notin Q$ (resp. $\vec{r} \notin Q^+$)
- delabeling if it is a TOP and \vec{r} contains at most one element of Σ
- nondeleting if the same elements of Q occur in ℓ and \vec{r}

Properties

XTOPR. X XTOP: X TOP^R: X

TOP:

Properties

XTOP^R: X XTOP: X TOP^R: X TOP: X ε -free: \checkmark strict: \checkmark delabeling: X nondeleting: \checkmark

Another Example

Example (textual)

MBOT $M = (Q, \Sigma, \{\star\}, R)$

- $Q = \{\star, q, \mathsf{id}, \mathsf{id}'\}$
- $\Sigma = \{\sigma, \delta, \gamma, \alpha\}$
- the following rules in R:

$$\sigma(\star, q) \xrightarrow{\star} \sigma(\star, q) \qquad \sigma(\star, q) \xrightarrow{q} q$$
$$\delta(\mathsf{id}, \mathsf{id}') \xrightarrow{\star, q} \delta(\mathsf{id}, \mathsf{id}') \qquad \gamma(\mathsf{id}) \xrightarrow{\mathsf{id}, \mathsf{id}'} \gamma(\mathsf{id}) \qquad \alpha \xrightarrow{\mathsf{id}, \mathsf{id}'} \alpha$$

Another Example

Graphical representation

$$\mathsf{id} \overset{\delta}{\mathsf{id}'} \overset{\star,q}{\longrightarrow} \overset{\delta}{\mathsf{id}} \overset{\mathsf{id}}{\mathsf{id}'}$$

$$\alpha \stackrel{\mathsf{id},\mathsf{id}'}{\longrightarrow} \alpha$$

Properties

XTOP^R: ✓ XTOP: ✓

TOP^R: ✓

TOP:

Another Example

Graphical representation

$$\stackrel{\sigma}{\nearrow} q \stackrel{q}{\longrightarrow} q \qquad \stackrel{\gamma}{\mid} \stackrel{\text{id,id'}}{\mid} \stackrel{\gamma}{\mid} \qquad \alpha \stackrel{\text{id,ie}}{\mid}$$

Properties

XTOP^R: ✓ XTOP: ✓ TOP^R: ✓ TOP: ✓

 ε -free: \checkmark strict: \checkmark delabeling: \checkmark nondeleting:

Discussion

• typical semantics: derivation semantics; input-driven

Discussion

• typical semantics: derivation semantics; input-driven

- unsuitable for our purposes
- input and output fragments should always be visible

Definition (Generation step)

$$\langle t, A, D, u \rangle \Rightarrow_{M} \langle t', A', D', u' \rangle$$

if and only if $\exists q \in Q$, $\exists v \in pos(t)$ labeled by q, and $\exists \ell \stackrel{q}{\to} \vec{r} \in P$

- $|\vec{r}| = |A(v)|$ and $\vec{w} = A(v)$
- $t' = t[\ell]_{\nu}$ and $u' = u[\vec{r}]_{\vec{w}}$
- $A' = (A \setminus L) \cup \mathsf{links}_{v,\vec{w}}(\ell \stackrel{q}{\to} \vec{r}) \text{ and } D' = D \cup L \text{ with }$

$$L = \{(v, w) \mid w \in A(v)\}$$

Definition

state-computed dependencies:

$$\textit{M}_{\textit{q}} = \{ \langle \textit{t}, \textit{D}, \textit{u} \rangle \mid \textit{t}, \textit{u} \in \textit{T}_{\Sigma}, \, \langle \textit{q}, \{(\varepsilon, \varepsilon)\}, \emptyset, \textit{q} \rangle \Rightarrow^*_{\textit{M}} \langle \textit{t}, \emptyset, \textit{D}, \textit{u} \rangle \}$$

• computed dependencies: $dep(M) = \bigcup_{q \in I} M_q$

Definition

state-computed dependencies:

$$\textit{M}_{\textit{q}} = \{ \langle \textit{t}, \textit{D}, \textit{u} \rangle \mid \textit{t}, \textit{u} \in \textit{T}_{\Sigma}, \, \langle \textit{q}, \{ (\varepsilon, \varepsilon) \}, \emptyset, \textit{q} \rangle \Rightarrow^*_{\textit{M}} \langle \textit{t}, \emptyset, \textit{D}, \textit{u} \rangle \}$$

- computed dependencies: $dep(M) = \bigcup_{q \in I} M_q$
- computed transformation:

$$\tau_{\mathcal{M}} = \{(t, u) \mid \langle t, D, u \rangle \in \mathsf{dep}(\mathcal{M})\}$$

Definition

state-computed dependencies:

$$M_q = \{ \langle t, D, u \rangle \mid t, u \in T_{\Sigma}, \langle q, \{ (\varepsilon, \varepsilon) \}, \emptyset, q \rangle \Rightarrow_{M}^* \langle t, \emptyset, D, u \rangle \}$$

- computed dependencies: $dep(M) = \bigcup_{q \in I} M_q$
- computed transformation:

$$\tau_{M} = \{(t, u) \mid \langle t, D, u \rangle \in \mathsf{dep}(M)\}$$

• (can be made to) coincide with traditional semantics

Known Relations

Contents

- The problem
- 2 Upper bounds
- 3 Linking technique
- 4 Lower bounds

Known Results on Composition Closure

	TOP	XTOP	MBOT
arepsilon-free, strict, nondeleting	1		1
arepsilon-free, strict	2		1
arepsilon-free	2		1
otherwise (without delabeling)	2		1

Known Results on Composition Closure

	TOP	XTOP	MBOT
arepsilon-free, strict, nondeleting	1	2	1
arepsilon-free, strict	2	?	1
arepsilon-free	2	?	1
otherwise (without delabeling)	2	?	1

e =
$$\varepsilon$$
-free; d = delabeling
s = strict; n = nondeleting

$\mathsf{Theorem}$

switch delabeling from back to front:

$$\mathsf{e}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^\mathsf{R} \ ; \ [\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \subseteq \mathsf{e}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^\mathsf{R} \subseteq [\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \ ; \ \mathsf{esn}\mathsf{-}\mathsf{XTOP}$$

e =
$$\varepsilon$$
-free; d = delabeling
s = strict; n = nondeleting

$\mathsf{Theorem}$

switch delabeling from back to front:

$$e[s]-XTOP^R$$
; $[s]d-TOP^R \subseteq e[s]-XTOP^R \subseteq [s]d-TOP^R$; $esn-XTOP$

e =
$$\varepsilon$$
-free; d = delabeling
s = strict; n = nondeleting

$\mathsf{Theorem}$

switch delabeling from back to front:

$$\mathsf{e}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^\mathsf{R} \ ; \ [\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \subseteq \mathsf{e}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^\mathsf{R} \subseteq [\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \ ; \ \mathsf{esn}\mathsf{-}\mathsf{XTOP}$$

Notes

other transducer becomes strict and nondeleting

e =
$$\varepsilon$$
-free; d = delabeling
s = strict; n = nondeleting

$\mathsf{Theorem}$

switch delabeling from back to front:

$$\mathsf{e}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^\mathsf{R} \ ; \ [\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \subseteq \mathsf{e}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^\mathsf{R} \subseteq [\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R} \ ; \ \mathsf{esn}\mathsf{-}\mathsf{XTOP}$$

Notes

- other transducer becomes strict and nondeleting
- other transducer looses look-ahead

e =
$$\varepsilon$$
-free; d = delabeling
s = strict; n = nondeleting

$\mathsf{Theorem}$

$$(\mathsf{e}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^\mathsf{R})^n\subseteq [\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}^\mathsf{R}\ ; \, \mathsf{esn}\mathsf{-}\mathsf{XTOP}^2\subseteq (\mathsf{e}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^\mathsf{R})^3$$

e =
$$\varepsilon$$
-free; d = delabeling
s = strict; n = nondeleting

Theorem

$$(e[s]-XTOP^R)^n\subseteq [s]d-TOP^R$$
; $esn-XTOP^2\subseteq (e[s]-XTOP^R)^3$

Proof.

$$(e[s]-XTOP^R)^{n+1}$$

 \subset

 \subseteq

 \subset

e =
$$\varepsilon$$
-free; d = delabeling
s = strict; n = nondeleting

Theorem

$$(e[s]-XTOP^R)^n \subseteq [s]d-TOP^R$$
; $esn-XTOP^2 \subseteq (e[s]-XTOP^R)^3$

$$(e[s]-XTOP^R)^{n+1}$$

 $\subseteq e[s]-XTOP^R$; $[s]d-TOP^R$; $esn-XTOP^2$
 \subseteq

e =
$$\varepsilon$$
-free; d = delabeling
s = strict; n = nondeleting

$\mathsf{Theorem}$

$$(e[s]-XTOP^R)^n \subseteq [s]d-TOP^R$$
; $esn-XTOP^2 \subseteq (e[s]-XTOP^R)^3$

$$(e[s]-XTOP^R)^{n+1}$$

 $\subseteq e[s]-XTOP^R$; $[s]d-TOP^R$; $esn-XTOP^2$
 $\subseteq [s]d-TOP^R$; $esn-XTOP^3$

e =
$$\varepsilon$$
-free; d = delabeling
s = strict; n = nondeleting

$\mathsf{Theorem}$

$$(e[s]-XTOP^R)^n\subseteq [s]d-TOP^R$$
; $esn-XTOP^2\subseteq (e[s]-XTOP^R)^3$

$$(e[s]-XTOP^R)^{n+1}$$

 $\subseteq e[s]-XTOP^R$; $[s]d-TOP^R$; $esn-XTOP^2$
 $\subset [s]d-TOP^R$; $esn-XTOP^3$

$$\subseteq$$
 [s]d-TOP^R; esn-XTOP²

ε -free, but no Look-ahead

Corollary

 $\mathsf{e}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^n\subseteq\mathsf{QR}\ ;\ [\mathsf{s}]\mathsf{d}\mathsf{-}\mathsf{TOP}\ ;\ \mathsf{esn}\mathsf{-}\mathsf{XTOP}^2\subseteq\mathsf{e}[\mathsf{s}]\mathsf{-}\mathsf{XTOP}^4$

ε -free, but no Look-ahead

Corollary

 $e[s]-XTOP^n \subseteq QR$; [s]d-TOP; $esn-XTOP^2 \subseteq e[s]-XTOP^4$

Proof.

uses only standard encoding of look-ahead

Results so far

	TOP	e-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	
strict	2	
look-ahead	1	
_	2	

Results so far

	TOP	e-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	
strict	2	
look-ahead	1	≤ 3
_	2	≤ 4

$\mathsf{Theorem}$

delabeling homomorphism moving from front to back:

sd-HOM; $es-XTOP \subset es-XTOP \subset esn-XTOP$; sd-HOM

$\mathsf{Theorem}$

delabeling homomorphism moving from front to back:

sd-HOM; $es-XTOP \subseteq es-XTOP \subseteq esn-XTOP$; sd-HOM

Notes

Theorem

delabeling homomorphism moving from front to back:

sd-HOM; $es-XTOP \subset es-XTOP \subset esn-XTOP$; sd-HOM

Notes

other transducer becomes nondeleting

$\mathsf{Theorem}$

delabeling homomorphism moving from front to back:

 $\mathsf{sd} ext{-}\mathsf{HOM}$; $\mathsf{es} ext{-}\mathsf{XTOP}\subseteq\mathsf{es} ext{-}\mathsf{XTOP}\subseteq\mathsf{esn} ext{-}\mathsf{XTOP}$; $\mathsf{sd} ext{-}\mathsf{HOM}$

Notes

- other transducer becomes nondeleting
- other transducer needs to be strict and have no look-ahead

Theorem 1

 $(\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^n\subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP}$; $\mathsf{es}\mathsf{-}\mathsf{XTOP}\subseteq \mathsf{es}\mathsf{-}\mathsf{XTOP}^2$

Theorem

 $(\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^n\subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP}$; $\mathsf{es}\mathsf{-}\mathsf{XTOP}\subseteq \mathsf{es}\mathsf{-}\mathsf{XTOP}^2$

$$(es-XTOP^R)^{n+1} \subseteq (es-XTOP^R)^n$$
; $es-XTOP$

$$\subseteq$$

$$\subseteq$$

$$\subseteq$$

$$\subseteq$$

$\operatorname{\mathsf{Theorem}} olimits$

 $(\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^n\subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP}$; $\mathsf{es}\mathsf{-}\mathsf{XTOP}\subseteq \mathsf{es}\mathsf{-}\mathsf{XTOP}^2$

$$(\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^{n+1} \subseteq (\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^n \; ; \; \mathsf{es}\mathsf{-}\mathsf{XTOP} \\ \subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP} \; ; \; \mathsf{sd}\mathsf{-}\mathsf{HOM} \; ; \; \mathsf{es}\mathsf{-}\mathsf{XTOP}^2 \\ \subseteq \\ \subseteq \\ \subseteq \\ \subset$$

$\operatorname{\mathsf{Theorem}}$

 $(es-XTOP^R)^n \subseteq esn-XTOP$; $es-XTOP \subseteq es-XTOP^2$

$$(\mathsf{es}\text{-}\mathsf{XTOP}^\mathsf{R})^{n+1} \subseteq (\mathsf{es}\text{-}\mathsf{XTOP}^\mathsf{R})^n \; ; \; \mathsf{es}\text{-}\mathsf{XTOP}$$

$$\subseteq \mathsf{esn}\text{-}\mathsf{XTOP} \; ; \; \mathsf{sd}\text{-}\mathsf{HOM} \; ; \; \mathsf{es}\text{-}\mathsf{XTOP}^2$$

$$\subseteq \mathsf{esn}\text{-}\mathsf{XTOP}^3 \; ; \; \mathsf{sd}\text{-}\mathsf{HOM}$$

$$\subseteq$$

$$\subseteq$$

$$\subseteq$$

$$\subseteq$$

$\mathsf{Theorem}$

 $(es-XTOP^R)^n \subseteq esn-XTOP$; $es-XTOP \subseteq es-XTOP^2$

$$(\mathsf{es}\text{-}\mathsf{XTOP}^\mathsf{R})^{n+1} \subseteq (\mathsf{es}\text{-}\mathsf{XTOP}^\mathsf{R})^n \; ; \; \mathsf{es}\text{-}\mathsf{XTOP}$$

$$\subseteq \mathsf{esn}\text{-}\mathsf{XTOP} \; ; \; \mathsf{sd}\text{-}\mathsf{HOM} \; ; \; \mathsf{es}\text{-}\mathsf{XTOP}^2$$

$$\subseteq \mathsf{esn}\text{-}\mathsf{XTOP}^3 \; ; \; \mathsf{sd}\text{-}\mathsf{HOM}$$

$$\subseteq \mathsf{esn}\text{-}\mathsf{XTOP}^2 \; ; \; \mathsf{sd}\text{-}\mathsf{HOM}$$

$$\subseteq$$

$$\subseteq$$

$\mathsf{Theorem}$

 $(es-XTOP^R)^n \subseteq esn-XTOP$; $es-XTOP \subseteq es-XTOP^2$

$$(\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^{n+1} \subseteq (\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^n \; ; \; \mathsf{es}\mathsf{-}\mathsf{XTOP}$$

$$\subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP} \; ; \; \mathsf{sd}\mathsf{-}\mathsf{HOM} \; ; \; \mathsf{es}\mathsf{-}\mathsf{XTOP}^2$$

$$\subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP}^3 \; ; \; \mathsf{sd}\mathsf{-}\mathsf{HOM}$$

$$\subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP}^2 \; ; \; \mathsf{sd}\mathsf{-}\mathsf{HOM}$$

$$\subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP} \; ; \; \mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R}$$

$$\subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP} \; ; \; \mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R}$$

$\mathsf{Theorem}$

 $(es-XTOP^R)^n \subseteq esn-XTOP$; $es-XTOP \subseteq es-XTOP^2$

```
 (\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^{n+1} \subseteq (\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^n \; ; \; \mathsf{es}\mathsf{-}\mathsf{XTOP}   \subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP} \; ; \; \mathsf{sd}\mathsf{-}\mathsf{HOM} \; ; \; \mathsf{es}\mathsf{-}\mathsf{XTOP}^2   \subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP}^3 \; ; \; \mathsf{sd}\mathsf{-}\mathsf{HOM}   \subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP}^2 \; ; \; \mathsf{sd}\mathsf{-}\mathsf{HOM}   \subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP} \; ; \; \mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R}   \subseteq \mathsf{esn}\mathsf{-}\mathsf{XTOP} \; ; \; \mathsf{es}\mathsf{-}\mathsf{XTOP}
```


Upper Bounds

	TOP	e-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	
strict	2	
look-ahead	1	≤ 3
_	2	≤ 4

Upper Bounds

	TOP	e-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	≤ 2
strict	2	≤ 2
look-ahead	1	≤ 3
_	2	≤ 4

Contents

- 1 The problem
- 2 Upper bounds
- 3 Linking technique
- 4 Lower bounds

Definition (Hierarchy properties)

A dependency $\langle t, D, u \rangle$ is

- input hierarchical if
 - \bullet $w_2 \not< w_1$
 - **2** $\exists (v_1, w_1') \in D \text{ with } w_1' \leq w_2$

for all $(v_1, w_1), (v_2, w_2) \in D$ with $v_1 < v_2$

Definition (Hierarchy properties)

A dependency $\langle t, D, u \rangle$ is

- input hierarchical if
 - \bullet $w_2 \not< w_1$
 - **2** $\exists (v_1, w_1') \in D \text{ with } w_1' \leq w_2$

for all $(v_1, w_1), (v_2, w_2) \in D$ with $v_1 < v_2$

Definition (Hierarchy properties)

A dependency $\langle t, D, u \rangle$ is

- input hierarchical if
 - $0 w_2 \not< w_1$
 - **2** $\exists (v_1, w_1') \in D \text{ with } w_1' \leq w_2$

for all
$$(v_1, w_1), (v_2, w_2) \in D$$
 with $v_1 < v_2$

- strictly input hierarchical if

 - ② $v_1 = v_2$ implies $w_1 \le w_2$ or $w_2 \le w_1$

for all
$$(v_1, w_1), (v_2, w_2) \in D$$

Definition (Distance properties)

A dependency $\langle t, D, u \rangle$ is

• input link-distance bounded by $b \in \mathbb{N}$ if for all $(v_1, w_1), (v_1v', w_2) \in D$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$

Definition (Distance properties)

A dependency $\langle t, D, u \rangle$ is

• input link-distance bounded by $b \in \mathbb{N}$ if for all $(v_1, w_1), (v_1v', w_2) \in D$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$

Definition (Distance properties)

A dependency $\langle t, D, u \rangle$ is

- input link-distance bounded by $b \in \mathbb{N}$ if for all $(v_1, w_1), (v_1v', w_2) \in D$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$
- strict input link-distance bounded by b if for all $v_1, v_1v' \in pos(t)$ with |v'| > b $\exists (v_1v, w_3) \in D$ such that v < v' and $1 \le |v| \le b$

Dependencies

Dependencies

strictly input hierarchical

strictly input hierarchical and strictly output hierarchical

strictly input hierarchical and strictly output hierarchical with strict input link-distance 2

strictly input hierarchical and strictly output hierarchical with strict input link-distance 2 and strict output link-distance 1

Theorem on Dependency Properties

	hierarchical		link-distance bounded	
$Model \setminus Property$	input	output	input	output
n-XTOP XTOP ^R MBOT	strictly strictly	strictly strictly strictly	strictly ✓	strictly strictly strictly

Theorem

Let M_1, \ldots, M_k be ε -free XTOP^R over Σ such that

$$\{(c[t_1,\ldots,t_n],\,c'[t_1,\ldots,t_n])\mid t_1,\ldots,t_n\in\mathcal{T}\}\subseteq\tau_{M_1}\,;\cdots\,;\tau_{M_k}$$

for some contexts $c, c' \in C_{\Sigma}(X_n)$ and special $T \subseteq T_{\Sigma}$.

$$\forall 1 \leq i \leq k, \ \forall 1 \leq j \leq n$$

 $\exists t_j \in T, \exists \langle u_{i-1}, D_i, u_i \rangle \in \mathsf{dep}(M_i), \exists (v_{ji}, w_{ji}) \in D_i \text{ such that }$

- $u_0 = c[t_1, \ldots, t_n]$ and $u_k = c'[t_1, \ldots, t_n]$
- $pos_{x_i}(c') \leq w_{jk}$
- $v_{ji} \leq w_{j(i-1)}$ if $i \geq 2$
- $pos_{x_j}(c) \leq v_{j1}$

Corollary [see Sect. 3.4 in [Arnold, Dauchet 1982]]

The illustrated tree transformation τ cannot be computed by any $\varepsilon\text{-free XTOP}^{\mathsf{R}}$

Corollary [see Thm. 5.2 in [Maletti et al. 2009]]

The illustrated tree transformation τ cannot be computed by any $\varepsilon\text{-free XTOP}^{R}$

Corollary

Topicalization cannot be computed by any composition chain of ε -free XTOP^R

Linking Theorem for ε -free MBOT

$\mathsf{Theorem}$

Let $M = (Q, \Sigma, I, R)$ be an ε -free MBOT such that

$$\{(c[t_1,\ldots,t_n],\,c'[t_1,\ldots,t_n])\mid t_1,\ldots,t_n\in\,T\}\subseteq\tau_M$$

for some contexts $c, c' \in C_{\Sigma}(X_n)$ and special $T \subseteq T_{\Sigma}$.

 $\forall 1 \leq j \leq n, \ \exists t_j \in T, \ \exists \langle u, D, u' \rangle \in \mathsf{dep}(M), \ \exists (v_j, w_j) \in D \ \textit{with}$

- $u = c[t_1, ..., t_n]$ and $u' = c'[t_1, ..., t_n]$
- $pos_{x_j}(c) \leq v_j$
- $pos_{x_j}(c') \leq w_j$

Linking Theorem for ε -free MBOT

Corollary

Inverse of topicalization cannot be computed by any ε -free MBOT

Contents

- 1 The problem
- 2 Upper bounds
- 3 Linking technique
- 4 Lower bounds

Known Result

Theorem [see [Maletti et al. 2009]]

$$\mathsf{es}\mathsf{-}\mathsf{XTOP} \subsetneq \mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R} \subsetneq \mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{2} = (\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^2$$

Known Result

Theorem [see [Maletti et al. 2009]]

$$\mathsf{es}\mathsf{-}\mathsf{XTOP} \subsetneq \mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R} \subsetneq \mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{2} = (\mathsf{es}\mathsf{-}\mathsf{XTOP}^\mathsf{R})^2$$

Proof.

- look-ahead adds power at first level
- none of the basic classes is closed under composition

Lower Bounds

	TOP	e-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	≤ 2
strict	2	≤ 2
look-ahead	1	≤ 3
_	2	≤ 4

Lower Bounds

	TOP	e-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	2
strict	2	2
look-ahead	1	≤ 3
_	2	≤ 4

Theorem

 $\text{e-XTOP}^2 \subseteq (\text{e-XTOP}^R)^2 \subsetneq \text{e-XTOP}^3 \subseteq (\text{e-XTOP}^R)^3$

Theorem

$$\operatorname{e-XTOP}^2 \subseteq (\operatorname{e-XTOP}^R)^2 \subsetneq \operatorname{e-XTOP}^3 \subseteq (\operatorname{e-XTOP}^R)^3$$

 $v \not \preceq v_{i-1}$ and $v \preceq v_i$ and $v \preceq v_{i+1}$

Theorem

 $\operatorname{e-XTOP}^2 \subseteq (\operatorname{e-XTOP}^R)^2 \subsetneq \operatorname{e-XTOP}^3 \subseteq (\operatorname{e-XTOP}^R)^3$

 $v \not \preceq v_{i-1}$ and $v \preceq v_i$ and $v \preceq v_{i+1}$

Theorem

$$e-XTOP^2 \subseteq (e-XTOP^R)^2 \subseteq e-XTOP^3 \subseteq (e-XTOP^R)^3$$

 $v \not\preceq v_{i-1}$ and $v \preceq v_i$ and $v \preceq v_{i+1}$

 $v' \leq v_{i-1}$ and $v' \leq v_i$ and $v' \not \leq v_{i+1}$

Lower Bounds

	TOP	e-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	2
strict	2	2
look-ahead	1	≤ 3
_	2	≤ 4

Lower Bounds

	TOP	e-XTOP
strict, nondeleting	1	2
strict, look-ahead	1	2
strict	2	2
look-ahead	1	3
_	2	3–4 (4)

Missing Cases

	TOP	XTOP	XTOPR
arepsilon-free, nondeleting	1	∞	∞
strict	2	∞	∞
nondeleting	1	∞	∞
strict, nondeleting	1	∞	∞
_	2	∞	∞

Proof.

• completely different technique [Fülöp, Maletti, 2013]

Summary

	TOP	XTOP	XTOPR	МВОТ
ε -free, strict, nondeleting	1	2	2	1
arepsilon-free, strict	2	2	2	1
arepsilon-free	2	4	3	1
otherwise (without delabeling)	2	∞	∞	1

Summary

