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Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
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Motivation

Parse Forest of a CFG

Example

S→ NP VP VP→ MD VP
NP→ NP PP VP→ VB PP NP
MD→ must . . .
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Motivation

Local Tree Grammar

Definition (GÉCSEG, STEINBY 1984)
A local tree grammar G is a finite set of CFG productions
(together with a start nonterminal S)

Definition (Generated tree language)

L(G) contains exactly the trees in which
the root is labeled S
“label→ child labels” is a production of G for each internal node
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Motivation

Local Tree Grammar

Theorem
Local tree grammars recognize exactly the parse forests of CFG

Properties
3 simple
3 no ambiguity (unique explanation for each recognized tree)
7 not closed under BOOLEAN operations

(union/intersection/complement: 7/3/7)
7 not closed under (non-injective) relabelings
7 . . .
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Motivation

Local Tree Grammar

No ambiguity
S

NP

PRP$

My

NN

dog

VP

VBZ

sleeps

is in L(G) if and only if all the productions in it are in G
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Motivation

Local Tree Grammar

Theorem
Local tree languages are not closed under union

Proof.
The following single-element tree languages are local:

S

NP

PRP$

My

NN

dog

VP

VBZ

sleeps

S

NP

PRP

I

VP

VBD

scored

ADVP

RB

well

But their union is not local as it must also recognize:

My dog scored well *I sleeps
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Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
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How to represent a set of trees?
enumerate them
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Motivation

Local Tree Grammar

Generalization
CFG production L→ R1 R2 R3 represented by tree

L

R1 R2 R3

“Glue” fragments together to obtain larger trees:
S

NP

PRP

We

VP

MD

must

VP

VB PP NP
But why only small tree fragments?
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Motivation

Tree Substitution Grammar

Definition
A tree substitution grammar is a finite set of tree fragments
(together with a start nonterminal S)
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Motivation

Tree Substitution Grammar

Definition
A tree substitution grammar is a finite set of tree fragments
(together with a start nonterminal S)

Example (Typical fragments [POST, ACL 2011])

VP

VBD NP

CD

PP

S

NP

PRP

VP

S

NP VP

TO VP
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Motivation

Tree Substitution Grammar

Theorem
local tree languages ( tree substitution languages

Proof.
Can trivially express all finite tree languages

Remarks
can express many finite-distance dependencies
extended domain of locality

Trees Abound — Part I: Tree Automata A. Maletti · 12



Motivation

Tree Substitution Grammar

Properties
3 simple
3 more expressive than local tree grammars
7 ambiguity (several explanations for a recognized tree)
7 not closed under BOOLEAN operations

(union/intersection/complement: 7/7/7)
7 not closed under (non-injective) relabelings
7 . . .
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Motivation

Tree Substitution Grammar

Theorem
Tree substitution languages are not closed under union

Proof.
Counterexample must be infinite artificial example

S

C

C

a

a

S

C

C

b

b

L1 = {S(Cn(a),a) | n ∈ N} L2 = {S(Cn(b),b) | n ∈ N}

Their union is not a tree substitution language
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Motivation

Tree Substitution Grammar

Theorem
Tree substitution languages are not closed under intersection

Proof.

Ideas?
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Motivation

Tree Substitution Grammar

Experiment [POST, GILDEA, ACL 2009]

grammar size Prec. Recall F1
CFG 46k 75.37 70.05 72.61

“spinal” TSG 190k 80.30 78.10 79.18
“minimal subset” TSG 2,560k 76.40 78.29 77.33

(on WSJ Sect. 23)
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Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
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Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables
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Motivation

Tree Substitution Grammar with Latent Variables

Definition (SHINDO et al., ACL 2012 best paper)
A tree substitution grammar with latent variables is
a tree substitution grammar together with a functional relabeling

Remark
Typically symbols that are relabeled to X are written as X-n
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Definition (SHINDO et al., ACL 2012 best paper)
A tree substitution grammar with latent variables is
a tree substitution grammar together with a functional relabeling

Remark
Typically symbols that are relabeled to X are written as X-n

Example (Typical fragments)

S-1

NP-0

PRP-1

VP-0

S-0

NP-1 VP-0

VBP-3

love

NP-2

S-0

NP-0 VP-2

TO-0 VP-1
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Motivation

Tree Substitution Grammar with Latent Variables

Experiment [SHINDO et al., ACL 2012 best paper]

F1 score
grammar |w | ≤ 40 full

TSG [POST, GILDEA, 2009] 82.6
TSG [COHN et al., 2010] 85.4 84.7

CFGlv [COLLINS, 1999] 88.6 88.2
CFGlv [PETROV, KLEIN, 2007] 90.6 90.1
CFGlv [PETROV, 2010] 91.8

TSGlv (single) 91.6 91.1
TSGlv (multiple) 92.9 92.4

Discriminative Parsers

CARRERAS et al., 2008 91.1
CHARNIAK, JOHNSON, 2005 92.0 91.4
HUANG, 2008 92.3 91.7
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Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables
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Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables
parse forest of a CFG with latent variables
. . .

Let us look at a really old model
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Regular Tree Grammars

Overview

1 Motivation

2 Regular Tree Grammars

3 Theoretical Properties

4 Excursion

Trees Abound — Part I: Tree Automata A. Maletti · 21



Regular Tree Grammars

Regular Tree Grammar

Definition (BRAINERD, 1969)

A regular tree grammar is a tuple G = (Q,Σ, I,P) with
alphabet of nonterminals Q
alphabet of terminals Σ

initial nonterminals I ⊆ Q
finite set of productions P ⊆ Q × TΣ(Q)

Remark
Instead of (q, r) we write q → r
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Regular Tree Grammars

Regular Tree Grammar

Example

Q = {q0,q1,q2,q3,q4,q5,q6}
Σ = {VP,NP,S, . . . }
I = {q0}
and the following productions:

q4 →

VP

q5 NP

q2

q3 q0 →

S

NP

q1

q4 q0 →

S

q6 VP

q2 q4
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Regular Tree Grammars

Regular Tree Grammar

Definition (Derivation Semantics)

Sentential forms: t ,u ∈ TΣ(Q)

t ⇒G u

if there exist position w ∈ pos(t) and production q → r ∈ P
t = t [q]w

u = t [r ]w

Definition (Recognized tree language)

L(G) = {t ∈ TΣ | ∃q ∈ I : q ⇒∗G t}
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Regular Tree Grammars

Regular Tree Grammar

Example (Productions)

q4 →

VP

q5 NP

q2

q3 q0 →

S

NP

q1

q4 q0 →

S

q6 VP

q2 q4

Example (Derivation)

q0 ⇒G

S

NP

q1

q4 ⇒G

S

NP

q1

VP

q5 NP

q2

q3
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Regular Tree Grammars

Regular Tree Grammar

Theorem
tree substitution languages ( regular tree languages

Proof.
We can express the union counterexample easily

Remarks
can organize finite information transport
(even over unbounded distance)
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Regular Tree Grammars

Regular Tree Grammar

Properties
3 simple
3 more expressive than tree substitution grammars
7 ambiguity (several explanations for a recognized tree)
3 closed under all BOOLEAN operations

(union/intersection/complement: 3/3/3)
3 closed under (non-injective) relabelings
3 . . .
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Regular Tree Grammars

Regular Tree Grammar

Definition (BRAINERD, 1969)

G is in normal form if r = σ(q1, . . . ,qk ) with σ ∈ Σ and q1, . . . ,qk ∈ Q
for all q → r ∈ P
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Regular Tree Grammars

Regular Tree Grammar

Theorem (BRAINERD, 1969)
Any G is equivalent to a regular tree grammar in normal form

Proof.
Simply cut large rules introducing new states

q0 →

S

q6 VP

q2 q4

7→ q0 →
S

q6 q
q →

VP

q2 q4
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Regular Tree Grammars

Regular Tree Grammar

Theorem (FOLK, LORE, 1972)
regular tree languages = relabeled local tree languages

RTG

TSG with latent variables

TSG CFG with latent variables

CFG

Trees Abound — Part I: Tree Automata A. Maletti · 30



Regular Tree Grammars

Regular Tree Grammar

Theorem (FOLK, LORE, 1972)
regular tree languages = relabeled local tree languages

RTG

TSG with latent variables

TSG CFG with latent variables

CFG

Trees Abound — Part I: Tree Automata A. Maletti · 30



Regular Tree Grammars

Berkeley Parser

Example (Berkeley parser — English grammar)

S-1→ ADJP-2 S-1 0.0035453455987323125 · 100

S-1→ ADJP-1 S-1 2.108608433271444 · 10−6

S-1→ VP-5 VP-3 1.6367163259885093 · 10−4

S-2→ VP-5 VP-3 9.724998692152419 · 10−8

S-1→ PP-7 VP-0 1.0686659961009547 · 10−5

S-9→ “ NP-3 0.012551243773149695 · 100

 Regular tree grammar
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Regular Tree Grammars

Recent NLP Result

Corollary

The grammar of [ SHINDO et al., ACL 2012 best paper]
can be implemented in the BERKELEY parser

Remark
the main contribution of SHINDO et al. is not the TSGlv
it is probably the intricate 3-layer back-off model
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Theoretical Properties

Overview

1 Motivation

2 Regular Tree Grammars

3 Theoretical Properties

4 Excursion

Trees Abound — Part I: Tree Automata A. Maletti · 33



Theoretical Properties

Tree Automaton

Definition (THATCHER, 1970; ROUNDS, 1970)
tree automaton is a regular tree grammar in normal form

Remarks
bottom-up: rules written as X(q1, . . . ,qk )→ q
top-down: rules written as q → X(q1, . . . ,qk )
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Theoretical Properties

Determinism

Definition
top-down deterministic if ∀q ∈ Q, k ∈ N,X ∈ Σ
∃ at most one q1, . . . ,qk ∈ Q : q → X(q1, . . . ,qk ) ∈ P
bottom-up deterministic if ∀k ∈ N,X ∈ Σ,q1, . . . ,qk ∈ Q
∃ at most one q ∈ Q : X(q1, . . . ,qk )→ q ∈ P

(red determines blue)

Theorem (THATCHER, WRIGHT, 1968; DONER, 1970)
top-down deterministic ( bottom-up deterministic = RTL

Proof.
By a standard subset construction and a simple counterexample
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Theoretical Properties

Determinism

tree automata

top-down det. TA bottom-up det. TA

Remark
finite tree languages 6⊆ top-down deterministic
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Theoretical Properties

Operations on Regular Tree Languages

Theorem
Regular tree languages are closed under

all BOOLEAN operations
substitution (quotients) and iteration
(non-deterministic) relabelings
linear homomorphisms
inverse homomorphisms
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Theoretical Properties

Operations on Regular Tree Languages

Theorem
Regular tree languages are closed under substitution

Definition
L,L′ ⊆ TΣ tree languages and X ∈ Σ

L[X← L′]

contains all trees obtained from a tree of L
by replacing each leaf labeled X by a tree of L′
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Theoretical Properties

Operations on Regular Tree Languages

Theorem
Regular tree languages are closed under substitution

L[X← L′]

t

t1 t2 t3

t ∈ L

t1, t2, t3 ∈ L′
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Theoretical Properties

Efficient Representation

Definition
A tree automaton is minimal in C
if all equivalent tree automata of C are at least as large

Theorem
Complexity of minimization problems:

outp. \ inp. model DTA NTA

C = DTA NL (EXPTIME)
C = NTA PSPACE PSPACE

Trees Abound — Part I: Tree Automata A. Maletti · 39



Excursion

Overview

1 Motivation

2 Regular Tree Grammars

3 Theoretical Properties

4 Excursion
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Excursion

Weighted Tree Automaton

Definition (BERSTEL, REUTENAUER, 1982)
A weighted tree automaton is a tree automaton
together with a map c : P → S

Semantics
S forms a semiring (S,+, ·,0,1)

production weights are multiplied (·) in a derivation
weights of multiple (left-most) derivations
for the same tree are summed (+)
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Excursion

Weighted Tree Automaton

Remarks
BERKELEY parser uses weighted tree automata
but has a best-derivation semantics

Theoretical research
Minimization wrt. best-derivation semantics
Minimization wrt. n-best-derivation semantics
Foundational investigation of those semantics
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Excursion

Weighted Tree Automaton

Remarks
BERKELEY parser uses weighted tree automata
but has a best-derivation semantics

Theoretical research
Minimization wrt. best-derivation semantics
Minimization wrt. n-best-derivation semantics
Foundational investigation of those semantics
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Excursion

Bisimulation Minimization

(needs additive cancellation)

Experiment with BERKELEY parser

states productions

English grammar 1,133 100% 1,842,218 100%

backward minimal 548 48% 626,600 34%
forward minimal 791 70% 767,153 42%

backward/forward minimal 366 32% 272,675 15%
forward/backward minimal 381 34% 309,845 17%

f/b/f/b minimal 375 33% 295,836 16%

These might be buggy
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Excursion

Full Minimization

Theorem (BERSTEL, REUTENAUER, 1982)
Weighted tree automata over fields can effectively be minimized

Remarks
even smaller than bisimulation-minimal WTA
implementations for weighted string automata are efficient
no implementation for WTA yet

Trees Abound — Part I: Tree Automata A. Maletti · 44



Excursion

Summary

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables
parse forest of a CFG with latent variables
. . .

regular tree grammar
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Excursion

Summary

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables
parse forest of a CFG with latent variables
. . .

regular tree grammar

Many theoretical results still to be tried in practice!
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Quick Recall

From Automata to Transducers

Idea
Synchronous grammars have synchronous (linked) non-terminals
that develop at the same time

Example

join two productions q1 → r1 and q2 → r2 to (q1,q2)→ (r1, r2)

demand q1 = q = q2 for simplicity and write r1
q— r2

productions develop input and output trees at the same time
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Synchronous grammars have synchronous (linked) non-terminals
that develop at the same time

Example

join two productions q1 → r1 and q2 → r2 to (q1,q2)→ (r1, r2)

demand q1 = q = q2 for simplicity and write r1
q— r2

productions develop input and output trees at the same time
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Quick Recall

From Automata to Transducers

q q

Used rule: Next rule:

q q—

S

CONJ

wa

q
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Quick Recall

From Automata to Transducers

q S

CONJ

wa

q

Used rule:

q q—

S

CONJ

wa

q

Next rule:

S

q1 VP

p q2

q—
S

p q1 q2
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Quick Recall

From Automata to Transducers

S

q1 VP

p q2

S

CONJ

wa

S

p q1 q2

Used rule:
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q1 VP

p q2

q—
S

p q1 q2
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Quick Recall

From Automata to Transducers

S

q1 VP

V

saw

q2

S

CONJ

wa

S

V

ra’aa

q1 q2

Used rule:

V

saw
p—

V

ra’aa

Next rule:

NP

DT

the

r q1—
NP

r
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Quick Recall

From Automata to Transducers

S

NP

DT

the

r

VP

V

saw

q2

S

CONJ

wa

S

V

ra’aa

NP

r

q2

Used rule:

NP

DT

the

r q1—
NP

r

Next rule:

N

boy
r—

N

atefl

Trees Abound — Part II: Tree Transducers A. Maletti · 3



Quick Recall

From Automata to Transducers

S

NP

DT

the

N

boy

VP

V

saw

q2

S

CONJ

wa

S

V

ra’aa

NP

N

atefl

q2

Used rule:

N

boy
r—

N

atefl

Next rule:

NP

DT

the

r q2—
NP

r
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Quick Recall

From Automata to Transducers

S

NP

DT

the

N

boy

VP

V

saw

NP

DT

the

r

S

CONJ

wa

S

V

ra’aa

NP

N

atefl

NP

r

Used rule:

NP

DT

the

r q2—
NP

r

Next rule:

N

door
r—

N

albab
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Quick Recall

From Automata to Transducers

S

NP

DT

the

N

boy

VP

V

saw

NP

DT

the

N

door

S

CONJ

wa

S

V

ra’aa

NP

N

atefl

NP

N

albab

Used rule:

N

door
r—

N

albab

Next rule:
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Quick Recall

From Automata to Transducers

Remarks
synchronization breaks the normalization proof
the grammar/automaton model makes a difference

Output model: RTG and input model:
NTA linear top-down tree transducer
RTG linear extended top-down tree transducer
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Top-down Tree Transducers

Overview

1 Quick Recall

2 Top-down Tree Transducers

3 Extended Top-down Tree Transducers

4 Extended Multi Bottom-up Tree Transducers
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Top-down Tree Transducers

Rule Transformation

Synchronous grammar rule:

VP

q1 q2 q3

q—

VP

q2 VP

q1 q3

Top-down tree transducer rule:

q

VP

x1 x2 x3

→

VP

q2

x2

VP

q1

x1

q3

x3
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Top-down Tree Transducers

Top-down Tree Transducer

Definition (THATCHER, 1970)

A top-down tree transducer is a system M = (Q,Σ,∆, I,R) with
alphabet of states Q
input alphabet Σ; output alphabet ∆

initial states I ⊆ Q
finite set of rules R ⊆ Q(Σ(X ))× T∆(Q(X )) such that
var(r) ⊆ var(`) and ` is linear for all (`, r) ∈ R
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Top-down Tree Transducers

Top-down Tree Transducer

Example

Mirror-image top-down tree transducer (Q,Σ,Σ,Q,R) with
Q = {q}
Σ = {σ(2), γ(1), α(0)}
the following rules in R

q

γ

x1

→

γ

q

x1

q

σ

x1 x2

→

σ

q

x2

q

x1

q

α
→ α
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Top-down Tree Transducers

Top-down Tree Transducer

Definition
Sentential forms ξ, ζ ∈ T∆(Q(TΣ))

ξ ⇒M ζ

if there exist `→ r ∈ R, position w ∈ pos(ξ), substitution θ : X → TΣ

ξ = ξ[`θ]w

ζ = ξ[rθ]w

Trees Abound — Part II: Tree Transducers A. Maletti · 9



Top-down Tree Transducers

Derivation Example

q

γ

x1

→

γ

q

x1

q

σ

x1 x2

→

σ

q

x2

q

x1

q

α
→ α

Example
q

σ

γ

α

α
⇒M

σ

q

α

q

γ

α

⇒M

σ

α q

γ

α

⇒M

σ

α γ

q

α

⇒M

σ

α γ

α
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Top-down Tree Transducers

Derivation Semantics

Definition

M = {〈t ,u〉 ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u}
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Top-down Tree Transducers

Derivation Semantics

Definition

M = {〈t ,u〉 ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u}

Example
Top-down tree transducer N with

{〈σ(t ,u), σ(u, t)〉 | t ,u ∈ T{γ,α}} ⊆ N

q

γ

x1

→

γ

q

x1

q

σ

x1 x2

→

σ

q

x2

q

x1

q

α
→ α

Trees Abound — Part II: Tree Transducers A. Maletti · 11



Top-down Tree Transducers

Syntactic Restrictions

Definition
Transducer M = (Q,Σ,∆, I,R) is

linear if r is linear for every `→ r ∈ R
nondeleting if var(r) = var(`) for every `→ r ∈ R
strict if r /∈ Q(X ) for every `→ r ∈ R
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Top-down Tree Transducers

Syntactic Restrictions

Definition
Transducer M = (Q,Σ,∆, I,R) is

linear if r is linear for every `→ r ∈ R
nondeleting if var(r) = var(`) for every `→ r ∈ R
strict if r /∈ Q(X ) for every `→ r ∈ R

Example
Mirror-image transducer is linear, nondeleting, and strict (lns-TOP)

q

γ

x1

→

γ

q

x1

q

σ

x1 x2

→

σ

q

x2

q

x1

q

α
→ α
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Top-down Tree Transducers

Expressive Power

Properties [ENGELFRIET, 1975]
T1 “Copying of an input tree and processing the copies differently”
T2 Cannot inspect deleted input tree

Remark
T2 has been addressed
 top-down tree transducers with regular look-ahead
[ENGELFRIET, 1977]
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Top-down Tree Transducers

Regular Look-Ahead

Can be simulated by allowing un-linked nonterminals on the input side

VP

q1 q2 q3

q—

VP

MD

q2

q3

these develop without effect on the output
can generate any regular tree language
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Top-down Tree Transducers

Composition

Definition (COMP)

τ ⊆ TΣ × T∆ and τ ′ ⊆ T∆ × TΓ

τ ; τ ′ = {(s,u) | ∃t ∈ T∆ : (s, t) ∈ τ, (t ,u) ∈ τ ′}

Example (Double mirror-image)

N ; N = id

q

γ

x1

→

γ

q

x1

q

σ

x1 x2

→

σ

q

x2

q

x1

q

α
→ α
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Top-down Tree Transducers

Expressive Power

TOPR
∞

TOP∞ l-TOPR
1

l-TOP2 ls-TOPR
1

ls-TOP2 ln-TOP1

lns-TOP1

composition closure indicated in subscript
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Top-down Tree Transducers

Desirable Properties

Rotations

ROT = {〈σ(σ(t1, t2), t3), σ(t1, σ(t2, t3))〉 | t1, t2, t3 ∈ TΣ}

σ

σ

t1 t2

t3 7→

σ

t1 σ

t2 t3

Preservation of regularity (PRES)

Given τ ⊆ TΣ × T∆ and L ⊆ TΣ regular, is τ(L) regular?

τ(L) = {u | ∃t ∈ L : (t ,u) ∈ τ}
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Top-down Tree Transducers

Summary

Model \ Criterion ROT SYM PRES PRES−1 COMP

lns-TOP 7 7 3 3 3

ln-TOP 7 7 3 3 3

ls-TOP 7 7 3 3 72
l-TOP 7 7 3 3 72
ls-TOPR 7 7 3 3 3

l-TOPR 7 7 3 3 3

TOP 3 7 7 3 7∞
TOPR 3 7 7 3 7∞

(SYM = symmetric)
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Extended Top-down Tree Transducers

Overview

1 Quick Recall

2 Top-down Tree Transducers

3 Extended Top-down Tree Transducers

4 Extended Multi Bottom-up Tree Transducers

Trees Abound — Part II: Tree Transducers A. Maletti · 19



Extended Top-down Tree Transducers

Extended Top-down Tree Transducer

Definition (GRAEHL et al., 2009)

A top-down tree transducer is a system M = (Q,Σ,∆, I,R)

finite set of states Q
input alphabet Σ; output alphabet ∆

initial states I ⊆ Q
finite set of rules R ⊆ Q(Σ(X ))× T∆(Q(X )) such that
var(r) ⊆ var(`) and ` is linear for all (`, r) ∈ R
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Extended Top-down Tree Transducer

Definition (GRAEHL et al., 2009)

An extended top-down tree transducer is a system M = (Q,Σ,∆, I,R)

finite set of states Q
input alphabet Σ; output alphabet ∆

initial states I ⊆ Q
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Extended Top-down Tree Transducers

Extended Top-down Tree Transducer

Example

q

x1

→
qS

x1

q

x1

→

S

CONJ

wa-

qS

x1

qS

S

x1 VP

x2 x3

→

S′

qV

x2

qNP

x1

qNP

x3

qV

V

saw

→
V

ra’aa

qNP

NP

DT

the

N

boy

→

NP

N

atefl

qNP

NP

DT

the

N

door

→

NP

N

albab
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Extended Top-down Tree Transducers

Extended Top-down Tree Transducer

Definition
Sentential forms ξ, ζ ∈ T∆(Q(TΣ))

ξ ⇒M ζ

if there exist `→ r ∈ R, position w ∈ pos(ξ), substitution θ : X → TΣ

ξ = ξ[`θ]w

ζ = ξ[rθ]w

Definition

M = {〈t ,u〉 ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u}

Trees Abound — Part II: Tree Transducers A. Maletti · 22



Extended Top-down Tree Transducers

Extended Top-down Tree Transducer

Definition
Sentential forms ξ, ζ ∈ T∆(Q(TΣ))

ξ ⇒M ζ

if there exist `→ r ∈ R, position w ∈ pos(ξ), substitution θ : X → TΣ

ξ = ξ[`θ]w

ζ = ξ[rθ]w

Definition

M = {〈t ,u〉 ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u}
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Extended Top-down Tree Transducers

Derivation Example

qS

S

x1 VP

x2 x3

→

S′

qV

x2

qNP

x1

qNP

x3

Example
qS

S

t1 VP

t2 t3

⇒M

S′

qV

t2

qNP

t1

qNP

t3

⇒M · · ·
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Extended Top-down Tree Transducers

Simulation by Copying and Deletion

qS

S

x1 x2

→

S′

qV

x2

qNP

x1

qNP

x2

qV

VP

x1 x2

→
qV

x1

qNP

VP

x1 x2

→
qNP

x2

Example
qS

S

t1 VP

t2 t3

⇒M

S′

qV

VP

t2 t3

qNP

t1

qNP

VP

t2 t3

⇒M

S′

qV

t2

qNP

t1

qNP

VP

t2 t3

⇒M

S′

qV

t2

qNP

t1

qNP

t3
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Extended Top-down Tree Transducers

Syntactic Restrictions

Definition
Extended top-down tree transducer M = (Q,Σ,∆, I,R) is

linear, nondeleting, strict as before
ε-free if ` /∈ Q(X ) for every `→ r ∈ R
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Extended Top-down Tree Transducers

Syntactic Restrictions

Definition
Extended top-down tree transducer M = (Q,Σ,∆, I,R) is

linear, nondeleting, strict as before
ε-free if ` /∈ Q(X ) for every `→ r ∈ R

Example
Our example transducer is linear, nondeleting, strict, and ε-free

q

x1

→
qS

x1

q

x1

→

S

CONJ

wa-

qS

x1

qS

S

x1 VP

x2 x3

→

S′

qV

x2

qNP

x1

qNP

x3

qV

V

saw

→
V

ra’aa

qNP

NP

DT

the

N

boy

→

NP

N

atefl

qNP

NP

DT

the

N

door

→

NP

N

albab
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Extended Top-down Tree Transducers

Expressive Power

Properties [GRAEHL et al., 2009]
X1 Finite look-ahead
X2 Deep attachment of variables
X3 Infinitely many outputs for one input

Remark
T1 and T2 still apply
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Extended Top-down Tree Transducers

Expressive Power
XTOP∞ XTOPR

∞

l-XTOP∞ l-XTOPR
∞

ln-XTOP∞ ε-XTOP∞ TOPR
∞

lns-XTOP∞ lε-XTOP4 lε-XTOPR
3

lnε-XTOP∞ lsε-XTOPR
2

lnsε-XTOP2 lsε-XTOP2 l-TOPF
2 l-TOPR

1

TOP∞

ls-TOP2 l-TOP2

ln-TOP1

lns-TOP1

composition closure indicated in subscript
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Extended Top-down Tree Transducers

Summary

Model \ Criterion ROT SYM PRES PRES−1 COMP

ln-TOP 7 7 3 3 3
l-TOP 7 7 3 3 72
l-TOPR 7 7 3 3 3

TOPR 3 7 7 3 7∞

lnsε-XTOP 3 3 3 3 72
lns-XTOP 3 7 3 3 7∞
lsε-XTOP(R) 3 7 3 3 72
lε-XTOP 3 7 3 3 74
lε-XTOPR 3 7 3 3 73

(s)l-XTOP(R) 3 7 3 3 7∞
XTOP 3 7 7 3 7∞
XTOPR 3 7 7 3 7∞
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Extended Multi Bottom-up Tree Transducers

Overview

1 Quick Recall
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Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

Definition
An extended multi bottom-up tree transducer M = (Q,Σ,∆,F ,R) with

ranked alphabet of states Q
input alphabet Σ; output alphabet ∆

final states F ⊆ Q1 (all unary)
finite set of rules R ⊆ TΣ(Q(X ))×Q(T∆(X )) such that
var(r) ⊆ var(`) and ` is linear for all (`, r) ∈ R

Properties
linear, nondeleting, strict, ε-free as before
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Extended Multi Bottom-up Tree Transducer

Example (Duplication)

Extended multi bottom-up tree transducer (Q,Σ,Σ, {f},R)

Q = {q(2), f (1)}
Σ = {σ, a,b,e}
R contains:

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2

→

q

b

x1

b

x2

q

x1 x2

→
f

σ

x1 x2

Properties
linear, nondeleting, strict, and ε-free
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Extended Multi Bottom-up Tree Transducer
Rule: σ

σ

q

x1 x2

p

q

x3 x4
→

q

δ

x2 x4 x3

x1

Derivation:

t

σ

σ

q

u1 u2

p

q

u3 u4

⇒M

t

q

δ

u2 u4 u3

u1
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Extended Multi Bottom-up Tree Transducer

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2
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Example (Derivation)
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b

b

e
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Extended Multi Bottom-up Tree Transducer

Definition

τM = {(t ,u) ∈ TΣ × T∆ | ∃q ∈ F : t ⇒∗M q(u)}
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Extended Multi Bottom-up Tree Transducer

Definition

τM = {(t ,u) ∈ TΣ × T∆ | ∃q ∈ F : t ⇒∗M q(u)}

Example (Duplication)

It computes {(t ,
σ

t t
) | t ∈ TΣ}

Its image is not a regular tree language

Trees Abound — Part II: Tree Transducers A. Maletti · 34



Extended Multi Bottom-up Tree Transducers

Subclasses

Definition
Extended multi bottom-up tree transducer (Q,Σ,∆,F ,R) is

extended bottom-up tree transducer if Q = Q1

multi bottom-up tree transducer if ` ∈ Σ(Q(X )) for all `→ r ∈ R
bottom-up tree transducer if both previous conditions hold
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Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

l-XTOPR = l-XBOT

Proof.
Standard construction trading input-deletion for output-deletion
see l-TOP ⊆ l-BOT by [ENGELFRIET ’75]
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Proof.
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Expressive Power

Theorem (ENGELFRIET et al. ’09)

XMBOT = n-XMBOT

Proof.
guess subtrees that will be deleted
process them in nullary states (i.e. look-ahead)

Trees Abound — Part II: Tree Transducers A. Maletti · 37



Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

XMBOT = n-XMBOT

Proof.
guess subtrees that will be deleted
process them in nullary states (i.e. look-ahead)

Trees Abound — Part II: Tree Transducers A. Maletti · 37



Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

XMBOT = n-XMBOT

Proof.
guess subtrees that will be deleted
process them in nullary states (i.e. look-ahead)

ln-XMBOT

ln-XBOT l-XBOT ln-MBOT

ln-XTOP l-XTOP l-MBOT

lε-XMBOT

sen-XTOP

Trees Abound — Part II: Tree Transducers A. Maletti · 37



Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

XMBOT = n-XMBOT

Proof.
guess subtrees that will be deleted
process them in nullary states (i.e. look-ahead)

ln-XMBOT

ln-XBOT l-XBOT ln-MBOT

ln-XTOP l-XTOP l-MBOT

lε-XMBOT

sen-XTOP

Trees Abound — Part II: Tree Transducers A. Maletti · 37



Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

ε-XMBOT = MBOT

Proof.
decompose large left-hand sides using “multi”-states
attach finite effect of ε-rules
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Extended Multi Bottom-up Tree Transducers

Expressive Power

Definition
XTOP M sensible if |u| ∈ O(|t |) for all (t ,u) ∈ M

Theorem (MALETTI ’12)

sensible XTOP ⊆ ln-MBOT

Proof.
use (essentially) construction of [ENGELFRIET, MANETH ’03]
obtain finitely copying ε-XTOP
apply [ENGELFRIET et al. ’09] to obtain lε-XMBOT
previous theorems yield ln-MBOT
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Extended Multi Bottom-up Tree Transducers

Expressive Power

Corollary
All relevant extended top-down tree transducers can be simulated by
linear and nondeleting extended multi bottom-up tree transducers
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Extended Multi Bottom-up Tree Transducers

Further Properties

Theorem

ln-MBOT 6⊆ XTOPR

Theorem (GILDEA ’12)

yield
out

(ln-MBOT) = LCFRS
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Extended Multi Bottom-up Tree Transducers

Summary

Model \ Criterion ROT SYM PRES PRES−1 COMP

ln-TOP 7 7 3 3 3

l-TOP 7 7 3 3 72

l-TOPR 7 7 3 3 3

TOPR 3 7 7 3 7∞

lnsε-XTOP 3 3 3 3 72

lns-XTOP 3 7 3 3 7∞
lsε-XTOP(R) 3 7 3 3 72

lε-XTOP 3 7 3 3 74

lε-XTOPR 3 7 3 3 73

(s)l-XTOP(R) 3 7 3 3 7∞
XTOP(R) 3 7 7 3 7∞

l(n)-XMBOT 3 7 7 3 3

XMBOT 3 7 7 3 7∞
reg.-preserving l-XMBOT 3 7 3 3 3

invertable l-XMBOT 3 3 3 3 3
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