
Trees Abound
Part I: Tree Automata

Andreas Maletti

Institute for Natural Language Processing
Universität Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Paris — September 26, 2012

Trees Abound — Part I: Tree Automata A. Maletti · 1

Motivation

Trees?

S

NP

PRP

We

VP

MD

must

VP

VB

bear

PP

IN

in

NP

NN

mind

NP

NP

DT

the

NN

Community

PP

IN

as

NP

DT

a

NN

whole

Trees Abound — Part I: Tree Automata A. Maletti · 2

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG

Trees Abound — Part I: Tree Automata A. Maletti · 3

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG

Trees Abound — Part I: Tree Automata A. Maletti · 3

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG

Trees Abound — Part I: Tree Automata A. Maletti · 3

Motivation

Parse Forest of a CFG

Example

S→ NP VP VP→ MD VP
NP→ NP PP VP→ VB PP NP
MD→ must . . .

Trees Abound — Part I: Tree Automata A. Maletti · 4

Motivation

Parse Forest of a CFG

Example

S→ NP VP VP→ MD VP
NP→ NP PP VP→ VB PP NP
MD→ must . . .

S

NP

PRP

We

VP

MD

must

VP

VB

bear

PP

IN

in

NP

NN

mind

NP

NP

DT

the

NN

Community

PP

IN

as

NP

DT

a

NN

whole

Trees Abound — Part I: Tree Automata A. Maletti · 4

Motivation

Parse Forest of a CFG

Example

S→ NP VP VP→ MD VP
NP→ NP PP VP→ VB PP NP
MD→ must . . .

S

NP

PRP

We

VP

MD

must

VP

VB

bear

PP

IN

in

NP

NN

mind

NP

NP

DT

the

NN

Community

PP

IN

as

NP

DT

a

NN

whole

Trees Abound — Part I: Tree Automata A. Maletti · 4

Motivation

Parse Forest of a CFG

Example

S→ NP VP VP→ MD VP
NP→ NP PP VP→ VB PP NP
MD→ must . . .

S

NP

PRP

We

VP

MD

must

VP

VB

bear

PP

IN

in

NP

NN

mind

NP

NP

DT

the

NN

Community

PP

IN

as

NP

DT

a

NN

whole

Trees Abound — Part I: Tree Automata A. Maletti · 4

Motivation

Parse Forest of a CFG

Example

S→ NP VP VP→ MD VP
NP→ NP PP VP→ VB PP NP
MD→ must . . .

S

NP

PRP

We

VP

MD

must

VP

VB

bear

PP

IN

in

NP

NN

mind

NP

NP

DT

the

NN

Community

PP

IN

as

NP

DT

a

NN

whole

Trees Abound — Part I: Tree Automata A. Maletti · 4

Motivation

Parse Forest of a CFG

Example

S→ NP VP VP→ MD VP
NP→ NP PP VP→ VB PP NP
MD→ must . . .

S

NP

PRP

We

VP

MD

must

VP

VB

bear

PP

IN

in

NP

NN

mind

NP

NP

DT

the

NN

Community

PP

IN

as

NP

DT

a

NN

whole

Trees Abound — Part I: Tree Automata A. Maletti · 4

Motivation

Parse Forest of a CFG

Example

S→ NP VP VP→ MD VP
NP→ NP PP VP→ VB PP NP
MD→ must . . .

S

NP

PRP

We

VP

MD

must

VP

VB

bear

PP

IN

in

NP

NN

mind

NP

NP

DT

the

NN

Community

PP

IN

as

NP

DT

a

NN

whole

Trees Abound — Part I: Tree Automata A. Maletti · 4

Motivation

Local Tree Grammar

Definition (GÉCSEG, STEINBY 1984)
A local tree grammar G is a finite set of CFG productions
(together with a start nonterminal S)

Definition (Generated tree language)

L(G) contains exactly the trees in which
the root is labeled S
“label→ child labels” is a production of G for each internal node

Trees Abound — Part I: Tree Automata A. Maletti · 5

Motivation

Local Tree Grammar

Definition (GÉCSEG, STEINBY 1984)
A local tree grammar G is a finite set of CFG productions
(together with a start nonterminal S)

Definition (Generated tree language)

L(G) contains exactly the trees in which
the root is labeled S
“label→ child labels” is a production of G for each internal node

Trees Abound — Part I: Tree Automata A. Maletti · 5

Motivation

Local Tree Grammar

Theorem
Local tree grammars recognize exactly the parse forests of CFG

Properties
3 simple
3 no ambiguity (unique explanation for each recognized tree)
7 not closed under BOOLEAN operations

(union/intersection/complement: 7/3/7)
7 not closed under (non-injective) relabelings
7 . . .

Trees Abound — Part I: Tree Automata A. Maletti · 6

Motivation

Local Tree Grammar

Theorem
Local tree grammars recognize exactly the parse forests of CFG

Properties
3 simple
3 no ambiguity (unique explanation for each recognized tree)
7 not closed under BOOLEAN operations

(union/intersection/complement: 7/3/7)
7 not closed under (non-injective) relabelings
7 . . .

Trees Abound — Part I: Tree Automata A. Maletti · 6

Motivation

Local Tree Grammar

No ambiguity
S

NP

PRP$

My

NN

dog

VP

VBZ

sleeps

is in L(G) if and only if all the productions in it are in G

Trees Abound — Part I: Tree Automata A. Maletti · 7

Motivation

Local Tree Grammar

Theorem
Local tree languages are not closed under union

Proof.
The following single-element tree languages are local:

S

NP

PRP$

My

NN

dog

VP

VBZ

sleeps

S

NP

PRP

I

VP

VBD

scored

ADVP

RB

well

But their union is not local as it must also recognize:

My dog scored well *I sleeps

Trees Abound — Part I: Tree Automata A. Maletti · 8

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG

Trees Abound — Part I: Tree Automata A. Maletti · 9

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG

Trees Abound — Part I: Tree Automata A. Maletti · 9

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar

Trees Abound — Part I: Tree Automata A. Maletti · 9

Motivation

Local Tree Grammar

Generalization
CFG production L→ R1 R2 R3 represented by tree

L

R1 R2 R3

“Glue” fragments together to obtain larger trees:
S

NP

PRP

We

VP

MD

must

VP

VB PP NP
But why only small tree fragments?

Trees Abound — Part I: Tree Automata A. Maletti · 10

Motivation

Local Tree Grammar

Generalization
CFG production L→ R1 R2 R3 represented by tree

L

R1 R2 R3

“Glue” fragments together to obtain larger trees:
S

NP

PRP

We

VP

MD

must

VP

VB PP NP
But why only small tree fragments?

Trees Abound — Part I: Tree Automata A. Maletti · 10

Motivation

Local Tree Grammar

Generalization
CFG production L→ R1 R2 R3 represented by tree

L

R1 R2 R3

“Glue” fragments together to obtain larger trees:
S

NP

PRP

We

VP

MD

must

VP

VB PP NP
But why only small tree fragments?

Trees Abound — Part I: Tree Automata A. Maletti · 10

Motivation

Local Tree Grammar

Generalization
CFG production L→ R1 R2 R3 represented by tree

L

R1 R2 R3

“Glue” fragments together to obtain larger trees:
S

NP

PRP

We

VP

MD

must

VP

VB PP NP
But why only small tree fragments?

Trees Abound — Part I: Tree Automata A. Maletti · 10

Motivation

Local Tree Grammar

Generalization
CFG production L→ R1 R2 R3 represented by tree

L

R1 R2 R3

“Glue” fragments together to obtain larger trees:
S

NP

PRP

We

VP

MD

must

VP

VB PP NP
But why only small tree fragments?

Trees Abound — Part I: Tree Automata A. Maletti · 10

Motivation

Local Tree Grammar

Generalization
CFG production L→ R1 R2 R3 represented by tree

L

R1 R2 R3

“Glue” fragments together to obtain larger trees:
S

NP

PRP

We

VP

MD

must

VP

VB PP NP
But why only small tree fragments?

Trees Abound — Part I: Tree Automata A. Maletti · 10

Motivation

Local Tree Grammar

Generalization
CFG production L→ R1 R2 R3 represented by tree

L

R1 R2 R3

“Glue” fragments together to obtain larger trees:
S

NP

PRP

We

VP

MD

must

VP

VB PP NP
But why only small tree fragments?

Trees Abound — Part I: Tree Automata A. Maletti · 10

Motivation

Local Tree Grammar

Generalization
CFG production L→ R1 R2 R3 represented by tree

L

R1 R2 R3

“Glue” fragments together to obtain larger trees:
S

NP

PRP

We

VP

MD

must

VP

VB PP NP
But why only small tree fragments?

Trees Abound — Part I: Tree Automata A. Maletti · 10

Motivation

Tree Substitution Grammar

Definition
A tree substitution grammar is a finite set of tree fragments
(together with a start nonterminal S)

Trees Abound — Part I: Tree Automata A. Maletti · 11

Motivation

Tree Substitution Grammar

Definition
A tree substitution grammar is a finite set of tree fragments
(together with a start nonterminal S)

Example (Typical fragments [POST, ACL 2011])

VP

VBD NP

CD

PP

S

NP

PRP

VP

S

NP VP

TO VP

Trees Abound — Part I: Tree Automata A. Maletti · 11

Motivation

Tree Substitution Grammar

Theorem
local tree languages (tree substitution languages

Proof.
Can trivially express all finite tree languages

Remarks
can express many finite-distance dependencies
extended domain of locality

Trees Abound — Part I: Tree Automata A. Maletti · 12

Motivation

Tree Substitution Grammar

Properties
3 simple
3 more expressive than local tree grammars
7 ambiguity (several explanations for a recognized tree)
7 not closed under BOOLEAN operations

(union/intersection/complement: 7/7/7)
7 not closed under (non-injective) relabelings
7 . . .

Trees Abound — Part I: Tree Automata A. Maletti · 13

Motivation

Tree Substitution Grammar

Theorem
Tree substitution languages are not closed under union

Proof.
Counterexample must be infinite artificial example

S

C

C

a

a

S

C

C

b

b

L1 = {S(Cn(a),a) | n ∈ N} L2 = {S(Cn(b),b) | n ∈ N}

Their union is not a tree substitution language

Trees Abound — Part I: Tree Automata A. Maletti · 14

Motivation

Tree Substitution Grammar

Theorem
Tree substitution languages are not closed under intersection

Proof.

Ideas?

Trees Abound — Part I: Tree Automata A. Maletti · 15

Motivation

Tree Substitution Grammar

Experiment [POST, GILDEA, ACL 2009]

grammar size Prec. Recall F1
CFG 46k 75.37 70.05 72.61

“spinal” TSG 190k 80.30 78.10 79.18
“minimal subset” TSG 2,560k 76.40 78.29 77.33

(on WSJ Sect. 23)

Trees Abound — Part I: Tree Automata A. Maletti · 16

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar

Trees Abound — Part I: Tree Automata A. Maletti · 17

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables

Trees Abound — Part I: Tree Automata A. Maletti · 17

Motivation

Tree Substitution Grammar with Latent Variables

Definition (SHINDO et al., ACL 2012 best paper)
A tree substitution grammar with latent variables is
a tree substitution grammar together with a functional relabeling

Remark
Typically symbols that are relabeled to X are written as X-n

Trees Abound — Part I: Tree Automata A. Maletti · 18

Motivation

Tree Substitution Grammar with Latent Variables

Definition (SHINDO et al., ACL 2012 best paper)
A tree substitution grammar with latent variables is
a tree substitution grammar together with a functional relabeling

Remark
Typically symbols that are relabeled to X are written as X-n

Example (Typical fragments)

S-1

NP-0

PRP-1

VP-0

S-0

NP-1 VP-0

VBP-3

love

NP-2

S-0

NP-0 VP-2

TO-0 VP-1

Trees Abound — Part I: Tree Automata A. Maletti · 18

Motivation

Tree Substitution Grammar with Latent Variables

Definition (SHINDO et al., ACL 2012 best paper)
A tree substitution grammar with latent variables is
a tree substitution grammar together with a functional relabeling

Remark
Typically symbols that are relabeled to X are written as X-n

Example (Typical fragments)

S

NP

PRP

VP

S

NP VP

VBP

love

NP

S

NP VP

TO VP

Trees Abound — Part I: Tree Automata A. Maletti · 18

Motivation

Tree Substitution Grammar with Latent Variables

Experiment [SHINDO et al., ACL 2012 best paper]

F1 score
grammar |w | ≤ 40 full

TSG [POST, GILDEA, 2009] 82.6
TSG [COHN et al., 2010] 85.4 84.7

CFGlv [COLLINS, 1999] 88.6 88.2
CFGlv [PETROV, KLEIN, 2007] 90.6 90.1
CFGlv [PETROV, 2010] 91.8

TSGlv (single) 91.6 91.1
TSGlv (multiple) 92.9 92.4

Discriminative Parsers

CARRERAS et al., 2008 91.1
CHARNIAK, JOHNSON, 2005 92.0 91.4
HUANG, 2008 92.3 91.7

Trees Abound — Part I: Tree Automata A. Maletti · 19

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables

Trees Abound — Part I: Tree Automata A. Maletti · 20

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables
parse forest of a CFG with latent variables
. . .

Trees Abound — Part I: Tree Automata A. Maletti · 20

Motivation

Tree Language

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables
parse forest of a CFG with latent variables
. . .

Let us look at a really old model

Trees Abound — Part I: Tree Automata A. Maletti · 20

Regular Tree Grammars

Overview

1 Motivation

2 Regular Tree Grammars

3 Theoretical Properties

4 Excursion

Trees Abound — Part I: Tree Automata A. Maletti · 21

Regular Tree Grammars

Regular Tree Grammar

Definition (BRAINERD, 1969)

A regular tree grammar is a tuple G = (Q,Σ, I,P) with
alphabet of nonterminals Q
alphabet of terminals Σ

initial nonterminals I ⊆ Q
finite set of productions P ⊆ Q × TΣ(Q)

Remark
Instead of (q, r) we write q → r

Trees Abound — Part I: Tree Automata A. Maletti · 22

Regular Tree Grammars

Regular Tree Grammar

Example

Q = {q0,q1,q2,q3,q4,q5,q6}
Σ = {VP,NP,S, . . . }
I = {q0}
and the following productions:

q4 →

VP

q5 NP

q2

q3 q0 →

S

NP

q1

q4 q0 →

S

q6 VP

q2 q4

Trees Abound — Part I: Tree Automata A. Maletti · 23

Regular Tree Grammars

Regular Tree Grammar

Definition (Derivation Semantics)

Sentential forms: t ,u ∈ TΣ(Q)

t ⇒G u

if there exist position w ∈ pos(t) and production q → r ∈ P
t = t [q]w

u = t [r]w

Definition (Recognized tree language)

L(G) = {t ∈ TΣ | ∃q ∈ I : q ⇒∗G t}

Trees Abound — Part I: Tree Automata A. Maletti · 24

Regular Tree Grammars

Regular Tree Grammar

Definition (Derivation Semantics)

Sentential forms: t ,u ∈ TΣ(Q)

t ⇒G u

if there exist position w ∈ pos(t) and production q → r ∈ P
t = t [q]w

u = t [r]w

Definition (Recognized tree language)

L(G) = {t ∈ TΣ | ∃q ∈ I : q ⇒∗G t}

Trees Abound — Part I: Tree Automata A. Maletti · 24

Regular Tree Grammars

Regular Tree Grammar

Example (Productions)

q4 →

VP

q5 NP

q2

q3 q0 →

S

NP

q1

q4 q0 →

S

q6 VP

q2 q4

Example (Derivation)

q0 ⇒G

S

NP

q1

q4 ⇒G

S

NP

q1

VP

q5 NP

q2

q3

Trees Abound — Part I: Tree Automata A. Maletti · 25

Regular Tree Grammars

Regular Tree Grammar

Example (Productions)

q4 →

VP

q5 NP

q2

q3 q0 →

S

NP

q1

q4 q0 →

S

q6 VP

q2 q4

Example (Derivation)

q0 ⇒G

S

NP

q1

q4 ⇒G

S

NP

q1

VP

q5 NP

q2

q3

Trees Abound — Part I: Tree Automata A. Maletti · 25

Regular Tree Grammars

Regular Tree Grammar

Example (Productions)

q4 →

VP

q5 NP

q2

q3 q0 →

S

NP

q1

q4 q0 →

S

q6 VP

q2 q4

Example (Derivation)

q0 ⇒G

S

NP

q1

q4 ⇒G

S

NP

q1

VP

q5 NP

q2

q3

Trees Abound — Part I: Tree Automata A. Maletti · 25

Regular Tree Grammars

Regular Tree Grammar

Theorem
tree substitution languages (regular tree languages

Proof.
We can express the union counterexample easily

Remarks
can organize finite information transport
(even over unbounded distance)

Trees Abound — Part I: Tree Automata A. Maletti · 26

Regular Tree Grammars

Regular Tree Grammar

Properties
3 simple
3 more expressive than tree substitution grammars
7 ambiguity (several explanations for a recognized tree)
3 closed under all BOOLEAN operations

(union/intersection/complement: 3/3/3)
3 closed under (non-injective) relabelings
3 . . .

Trees Abound — Part I: Tree Automata A. Maletti · 27

Regular Tree Grammars

Regular Tree Grammar

Definition (BRAINERD, 1969)

G is in normal form if r = σ(q1, . . . ,qk) with σ ∈ Σ and q1, . . . ,qk ∈ Q
for all q → r ∈ P

Trees Abound — Part I: Tree Automata A. Maletti · 28

Regular Tree Grammars

Regular Tree Grammar

Definition (BRAINERD, 1969)

G is in normal form if r = σ(q1, . . . ,qk) with σ ∈ Σ and q1, . . . ,qk ∈ Q
for all q → r ∈ P

Example (Productions)

q4 →

VP

q5 NP

q2

q3 q0 →

S

NP

q1

q4 q0 →

S

q6 VP

q2 q4

Trees Abound — Part I: Tree Automata A. Maletti · 28

Regular Tree Grammars

Regular Tree Grammar

Theorem (BRAINERD, 1969)
Any G is equivalent to a regular tree grammar in normal form

Proof.
Simply cut large rules introducing new states

q0 →

S

q6 VP

q2 q4

7→ q0 →
S

q6 q
q →

VP

q2 q4

Trees Abound — Part I: Tree Automata A. Maletti · 29

Regular Tree Grammars

Regular Tree Grammar

Theorem (FOLK, LORE, 1972)
regular tree languages = relabeled local tree languages

RTG

TSG with latent variables

TSG CFG with latent variables

CFG

Trees Abound — Part I: Tree Automata A. Maletti · 30

Regular Tree Grammars

Regular Tree Grammar

Theorem (FOLK, LORE, 1972)
regular tree languages = relabeled local tree languages

RTG

TSG with latent variables

TSG CFG with latent variables

CFG

Trees Abound — Part I: Tree Automata A. Maletti · 30

Regular Tree Grammars

Berkeley Parser

Example (Berkeley parser — English grammar)

S-1→ ADJP-2 S-1 0.0035453455987323125 · 100

S-1→ ADJP-1 S-1 2.108608433271444 · 10−6

S-1→ VP-5 VP-3 1.6367163259885093 · 10−4

S-2→ VP-5 VP-3 9.724998692152419 · 10−8

S-1→ PP-7 VP-0 1.0686659961009547 · 10−5

S-9→ “ NP-3 0.012551243773149695 · 100

 Regular tree grammar

Trees Abound — Part I: Tree Automata A. Maletti · 31

Regular Tree Grammars

Recent NLP Result

Corollary

The grammar of [SHINDO et al., ACL 2012 best paper]
can be implemented in the BERKELEY parser

Remark
the main contribution of SHINDO et al. is not the TSGlv
it is probably the intricate 3-layer back-off model

Trees Abound — Part I: Tree Automata A. Maletti · 32

Regular Tree Grammars

Recent NLP Result

Corollary

The grammar of [SHINDO et al., ACL 2012 best paper]
can be implemented in the BERKELEY parser

Remark
the main contribution of SHINDO et al. is not the TSGlv
it is probably the intricate 3-layer back-off model

Trees Abound — Part I: Tree Automata A. Maletti · 32

Regular Tree Grammars

Recent NLP Result

Corollary

The grammar of [SHINDO et al., ACL 2012 best paper]
can be implemented in the BERKELEY parser

Remark
the main contribution of SHINDO et al. is not the TSGlv
it is probably the intricate 3-layer back-off model

Trees Abound — Part I: Tree Automata A. Maletti · 32

Theoretical Properties

Overview

1 Motivation

2 Regular Tree Grammars

3 Theoretical Properties

4 Excursion

Trees Abound — Part I: Tree Automata A. Maletti · 33

Theoretical Properties

Tree Automaton

Definition (THATCHER, 1970; ROUNDS, 1970)
tree automaton is a regular tree grammar in normal form

Remarks
bottom-up: rules written as X(q1, . . . ,qk)→ q
top-down: rules written as q → X(q1, . . . ,qk)

Trees Abound — Part I: Tree Automata A. Maletti · 34

Theoretical Properties

Tree Automaton

Definition (THATCHER, 1970; ROUNDS, 1970)
tree automaton is a regular tree grammar in normal form

Remarks
bottom-up: rules written as X(q1, . . . ,qk)→ q
top-down: rules written as q → X(q1, . . . ,qk)

Trees Abound — Part I: Tree Automata A. Maletti · 34

Theoretical Properties

Determinism

Definition
top-down deterministic if ∀q ∈ Q, k ∈ N,X ∈ Σ
∃ at most one q1, . . . ,qk ∈ Q : q → X(q1, . . . ,qk) ∈ P
bottom-up deterministic if ∀k ∈ N,X ∈ Σ,q1, . . . ,qk ∈ Q
∃ at most one q ∈ Q : X(q1, . . . ,qk)→ q ∈ P

(red determines blue)

Theorem (THATCHER, WRIGHT, 1968; DONER, 1970)
top-down deterministic (bottom-up deterministic = RTL

Proof.
By a standard subset construction and a simple counterexample

Trees Abound — Part I: Tree Automata A. Maletti · 35

Theoretical Properties

Determinism

tree automata

top-down det. TA bottom-up det. TA

Remark
finite tree languages 6⊆ top-down deterministic

Trees Abound — Part I: Tree Automata A. Maletti · 36

Theoretical Properties

Determinism

tree automata

top-down det. TA bottom-up det. TA

Remark
finite tree languages 6⊆ top-down deterministic

Trees Abound — Part I: Tree Automata A. Maletti · 36

Theoretical Properties

Determinism

tree automata

top-down det. TA bottom-up det. TA

Remark
finite tree languages 6⊆ top-down deterministic

Trees Abound — Part I: Tree Automata A. Maletti · 36

Theoretical Properties

Operations on Regular Tree Languages

Theorem
Regular tree languages are closed under

all BOOLEAN operations
substitution (quotients) and iteration
(non-deterministic) relabelings
linear homomorphisms
inverse homomorphisms

Trees Abound — Part I: Tree Automata A. Maletti · 37

Theoretical Properties

Operations on Regular Tree Languages

Theorem
Regular tree languages are closed under substitution

Definition
L,L′ ⊆ TΣ tree languages and X ∈ Σ

L[X← L′]

contains all trees obtained from a tree of L
by replacing each leaf labeled X by a tree of L′

Trees Abound — Part I: Tree Automata A. Maletti · 38

Theoretical Properties

Operations on Regular Tree Languages

Theorem
Regular tree languages are closed under substitution

L[X← L′]

t

t1 t2 t3

t ∈ L

t1, t2, t3 ∈ L′

Trees Abound — Part I: Tree Automata A. Maletti · 38

Theoretical Properties

Efficient Representation

Definition
A tree automaton is minimal in C
if all equivalent tree automata of C are at least as large

Theorem
Complexity of minimization problems:

outp. \ inp. model DTA NTA

C = DTA NL (EXPTIME)
C = NTA PSPACE PSPACE

Trees Abound — Part I: Tree Automata A. Maletti · 39

Excursion

Overview

1 Motivation

2 Regular Tree Grammars

3 Theoretical Properties

4 Excursion

Trees Abound — Part I: Tree Automata A. Maletti · 40

Excursion

Weighted Tree Automaton

Definition (BERSTEL, REUTENAUER, 1982)
A weighted tree automaton is a tree automaton
together with a map c : P → S

Semantics
S forms a semiring (S,+, ·,0,1)

production weights are multiplied (·) in a derivation
weights of multiple (left-most) derivations
for the same tree are summed (+)

Trees Abound — Part I: Tree Automata A. Maletti · 41

Excursion

Weighted Tree Automaton

Definition (BERSTEL, REUTENAUER, 1982)
A weighted tree automaton is a tree automaton
together with a map c : P → S

Semantics
S forms a semiring (S,+, ·,0,1)

production weights are multiplied (·) in a derivation
weights of multiple (left-most) derivations
for the same tree are summed (+)

Trees Abound — Part I: Tree Automata A. Maletti · 41

Excursion

Weighted Tree Automaton

Definition (BERSTEL, REUTENAUER, 1982)
A weighted tree automaton is a tree automaton
together with a map c : P → S

Semantics
S forms a semiring (S,+, ·,0,1)

production weights are multiplied (·) in a derivation
weights of multiple (left-most) derivations
for the same tree are summed (+)

Trees Abound — Part I: Tree Automata A. Maletti · 41

Excursion

Weighted Tree Automaton

Definition (BERSTEL, REUTENAUER, 1982)
A weighted tree automaton is a tree automaton
together with a map c : P → S

Semantics
S forms a semiring (S,+, ·,0,1)

production weights are multiplied (·) in a derivation
weights of multiple (left-most) derivations
for the same tree are summed (+)

Trees Abound — Part I: Tree Automata A. Maletti · 41

Excursion

Weighted Tree Automaton

Remarks
BERKELEY parser uses weighted tree automata
but has a best-derivation semantics

Theoretical research
Minimization wrt. best-derivation semantics
Minimization wrt. n-best-derivation semantics
Foundational investigation of those semantics

Trees Abound — Part I: Tree Automata A. Maletti · 42

Excursion

Weighted Tree Automaton

Remarks
BERKELEY parser uses weighted tree automata
but has a best-derivation semantics

Theoretical research
Minimization wrt. best-derivation semantics
Minimization wrt. n-best-derivation semantics
Foundational investigation of those semantics

Trees Abound — Part I: Tree Automata A. Maletti · 42

Excursion

Weighted Tree Automaton

Remarks
BERKELEY parser uses weighted tree automata
but has a best-derivation semantics

Theoretical research
Minimization wrt. best-derivation semantics
Minimization wrt. n-best-derivation semantics
Foundational investigation of those semantics

Trees Abound — Part I: Tree Automata A. Maletti · 42

Excursion

Weighted Tree Automaton

Remarks
BERKELEY parser uses weighted tree automata
but has a best-derivation semantics

Theoretical research
Minimization wrt. best-derivation semantics
Minimization wrt. n-best-derivation semantics
Foundational investigation of those semantics

Trees Abound — Part I: Tree Automata A. Maletti · 42

Excursion

Weighted Tree Automaton

Remarks
BERKELEY parser uses weighted tree automata
but has a best-derivation semantics

Theoretical research
Minimization wrt. best-derivation semantics
Minimization wrt. n-best-derivation semantics
Foundational investigation of those semantics

Trees Abound — Part I: Tree Automata A. Maletti · 42

Excursion

Bisimulation Minimization

(needs additive cancellation)

Experiment with BERKELEY parser

states productions

English grammar 1,133 100% 1,842,218 100%

backward minimal 548 48% 626,600 34%
forward minimal 791 70% 767,153 42%

backward/forward minimal 366 32% 272,675 15%
forward/backward minimal 381 34% 309,845 17%

f/b/f/b minimal 375 33% 295,836 16%

These might be buggy

Trees Abound — Part I: Tree Automata A. Maletti · 43

Excursion

Bisimulation Minimization

(needs additive cancellation)

Experiment with BERKELEY parser

states productions

English grammar 1,133 100% 1,842,218 100%

backward minimal 548 48% 626,600 34%
forward minimal 791 70% 767,153 42%

backward/forward minimal 366 32% 272,675 15%
forward/backward minimal 381 34% 309,845 17%

f/b/f/b minimal 375 33% 295,836 16%

These might be buggy

Trees Abound — Part I: Tree Automata A. Maletti · 43

Excursion

Full Minimization

Theorem (BERSTEL, REUTENAUER, 1982)
Weighted tree automata over fields can effectively be minimized

Remarks
even smaller than bisimulation-minimal WTA
implementations for weighted string automata are efficient
no implementation for WTA yet

Trees Abound — Part I: Tree Automata A. Maletti · 44

Excursion

Summary

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables
parse forest of a CFG with latent variables
. . .

regular tree grammar

Trees Abound — Part I: Tree Automata A. Maletti · 45

Excursion

Summary

How to represent a set of trees?
enumerate them
enumerate them cleverly (e.g., add sharing)
parse forest of a CFG
tree substitution grammar
tree substitution grammar with latent variables
parse forest of a CFG with latent variables
. . .

regular tree grammar

Many theoretical results still to be tried in practice!

Trees Abound — Part I: Tree Automata A. Maletti · 45

Trees Abound
Part II: Tree Transducers

Andreas Maletti

Institute for Natural Language Processing
Universität Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Paris — September 26, 2012

Trees Abound — Part II: Tree Transducers A. Maletti · 1

Quick Recall

From Automata to Transducers

Idea
Synchronous grammars have synchronous (linked) non-terminals
that develop at the same time

Example

join two productions q1 → r1 and q2 → r2 to (q1,q2)→ (r1, r2)

demand q1 = q = q2 for simplicity and write r1
q— r2

productions develop input and output trees at the same time

Trees Abound — Part II: Tree Transducers A. Maletti · 2

Quick Recall

From Automata to Transducers

Idea
Synchronous grammars have synchronous (linked) non-terminals
that develop at the same time

Example

join two productions q1 → r1 and q2 → r2 to (q1,q2)→ (r1, r2)

demand q1 = q = q2 for simplicity and write r1
q— r2

productions develop input and output trees at the same time

Trees Abound — Part II: Tree Transducers A. Maletti · 2

Quick Recall

From Automata to Transducers

Idea
Synchronous grammars have synchronous (linked) non-terminals
that develop at the same time

Example

join two productions q1 → r1 and q2 → r2 to (q1,q2)→ (r1, r2)

demand q1 = q = q2 for simplicity and write r1
q— r2

productions develop input and output trees at the same time

Trees Abound — Part II: Tree Transducers A. Maletti · 2

Quick Recall

From Automata to Transducers

Idea
Synchronous grammars have synchronous (linked) non-terminals
that develop at the same time

Example

join two productions q1 → r1 and q2 → r2 to (q1,q2)→ (r1, r2)

demand q1 = q = q2 for simplicity and write r1
q— r2

productions develop input and output trees at the same time

Trees Abound — Part II: Tree Transducers A. Maletti · 2

Quick Recall

From Automata to Transducers

q q

Used rule: Next rule:

q q—

S

CONJ

wa

q

Trees Abound — Part II: Tree Transducers A. Maletti · 3

Quick Recall

From Automata to Transducers

q S

CONJ

wa

q

Used rule:

q q—

S

CONJ

wa

q

Next rule:

S

q1 VP

p q2

q—
S

p q1 q2

Trees Abound — Part II: Tree Transducers A. Maletti · 3

Quick Recall

From Automata to Transducers

S

q1 VP

p q2

S

CONJ

wa

S

p q1 q2

Used rule:

S

q1 VP

p q2

q—
S

p q1 q2

Next rule:

V

saw
p—

V

ra’aa

Trees Abound — Part II: Tree Transducers A. Maletti · 3

Quick Recall

From Automata to Transducers

S

q1 VP

V

saw

q2

S

CONJ

wa

S

V

ra’aa

q1 q2

Used rule:

V

saw
p—

V

ra’aa

Next rule:

NP

DT

the

r q1—
NP

r

Trees Abound — Part II: Tree Transducers A. Maletti · 3

Quick Recall

From Automata to Transducers

S

NP

DT

the

r

VP

V

saw

q2

S

CONJ

wa

S

V

ra’aa

NP

r

q2

Used rule:

NP

DT

the

r q1—
NP

r

Next rule:

N

boy
r—

N

atefl

Trees Abound — Part II: Tree Transducers A. Maletti · 3

Quick Recall

From Automata to Transducers

S

NP

DT

the

N

boy

VP

V

saw

q2

S

CONJ

wa

S

V

ra’aa

NP

N

atefl

q2

Used rule:

N

boy
r—

N

atefl

Next rule:

NP

DT

the

r q2—
NP

r

Trees Abound — Part II: Tree Transducers A. Maletti · 3

Quick Recall

From Automata to Transducers

S

NP

DT

the

N

boy

VP

V

saw

NP

DT

the

r

S

CONJ

wa

S

V

ra’aa

NP

N

atefl

NP

r

Used rule:

NP

DT

the

r q2—
NP

r

Next rule:

N

door
r—

N

albab

Trees Abound — Part II: Tree Transducers A. Maletti · 3

Quick Recall

From Automata to Transducers

S

NP

DT

the

N

boy

VP

V

saw

NP

DT

the

N

door

S

CONJ

wa

S

V

ra’aa

NP

N

atefl

NP

N

albab

Used rule:

N

door
r—

N

albab

Next rule:

Trees Abound — Part II: Tree Transducers A. Maletti · 3

Quick Recall

From Automata to Transducers

Remarks
synchronization breaks the normalization proof
the grammar/automaton model makes a difference

Output model: RTG and input model:
NTA linear top-down tree transducer
RTG linear extended top-down tree transducer

Trees Abound — Part II: Tree Transducers A. Maletti · 4

Top-down Tree Transducers

Overview

1 Quick Recall

2 Top-down Tree Transducers

3 Extended Top-down Tree Transducers

4 Extended Multi Bottom-up Tree Transducers

Trees Abound — Part II: Tree Transducers A. Maletti · 5

Top-down Tree Transducers

Rule Transformation

Synchronous grammar rule:

VP

q1 q2 q3

q—

VP

q2 VP

q1 q3

Top-down tree transducer rule:

q

VP

x1 x2 x3

→

VP

q2

x2

VP

q1

x1

q3

x3

Trees Abound — Part II: Tree Transducers A. Maletti · 6

Top-down Tree Transducers

Top-down Tree Transducer

Definition (THATCHER, 1970)

A top-down tree transducer is a system M = (Q,Σ,∆, I,R) with
alphabet of states Q
input alphabet Σ; output alphabet ∆

initial states I ⊆ Q
finite set of rules R ⊆ Q(Σ(X))× T∆(Q(X)) such that
var(r) ⊆ var(`) and ` is linear for all (`, r) ∈ R

Trees Abound — Part II: Tree Transducers A. Maletti · 7

Top-down Tree Transducers

Top-down Tree Transducer

Example

Mirror-image top-down tree transducer (Q,Σ,Σ,Q,R) with
Q = {q}
Σ = {σ(2), γ(1), α(0)}
the following rules in R

q

γ

x1

→

γ

q

x1

q

σ

x1 x2

→

σ

q

x2

q

x1

q

α
→ α

Trees Abound — Part II: Tree Transducers A. Maletti · 8

Top-down Tree Transducers

Top-down Tree Transducer

Definition
Sentential forms ξ, ζ ∈ T∆(Q(TΣ))

ξ ⇒M ζ

if there exist `→ r ∈ R, position w ∈ pos(ξ), substitution θ : X → TΣ

ξ = ξ[`θ]w

ζ = ξ[rθ]w

Trees Abound — Part II: Tree Transducers A. Maletti · 9

Top-down Tree Transducers

Derivation Example

q

γ

x1

→

γ

q

x1

q

σ

x1 x2

→

σ

q

x2

q

x1

q

α
→ α

Example
q

σ

γ

α

α
⇒M

σ

q

α

q

γ

α

⇒M

σ

α q

γ

α

⇒M

σ

α γ

q

α

⇒M

σ

α γ

α

Trees Abound — Part II: Tree Transducers A. Maletti · 10

Top-down Tree Transducers

Derivation Semantics

Definition

M = {〈t ,u〉 ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u}

Trees Abound — Part II: Tree Transducers A. Maletti · 11

Top-down Tree Transducers

Derivation Semantics

Definition

M = {〈t ,u〉 ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u}

Example
Top-down tree transducer N with

{〈σ(t ,u), σ(u, t)〉 | t ,u ∈ T{γ,α}} ⊆ N

q

γ

x1

→

γ

q

x1

q

σ

x1 x2

→

σ

q

x2

q

x1

q

α
→ α

Trees Abound — Part II: Tree Transducers A. Maletti · 11

Top-down Tree Transducers

Syntactic Restrictions

Definition
Transducer M = (Q,Σ,∆, I,R) is

linear if r is linear for every `→ r ∈ R
nondeleting if var(r) = var(`) for every `→ r ∈ R
strict if r /∈ Q(X) for every `→ r ∈ R

Trees Abound — Part II: Tree Transducers A. Maletti · 12

Top-down Tree Transducers

Syntactic Restrictions

Definition
Transducer M = (Q,Σ,∆, I,R) is

linear if r is linear for every `→ r ∈ R
nondeleting if var(r) = var(`) for every `→ r ∈ R
strict if r /∈ Q(X) for every `→ r ∈ R

Example
Mirror-image transducer is linear, nondeleting, and strict (lns-TOP)

q

γ

x1

→

γ

q

x1

q

σ

x1 x2

→

σ

q

x2

q

x1

q

α
→ α

Trees Abound — Part II: Tree Transducers A. Maletti · 12

Top-down Tree Transducers

Expressive Power

Properties [ENGELFRIET, 1975]
T1 “Copying of an input tree and processing the copies differently”
T2 Cannot inspect deleted input tree

Remark
T2 has been addressed
 top-down tree transducers with regular look-ahead
[ENGELFRIET, 1977]

Trees Abound — Part II: Tree Transducers A. Maletti · 13

Top-down Tree Transducers

Expressive Power

Properties [ENGELFRIET, 1975]
T1 “Copying of an input tree and processing the copies differently”
T2 Cannot inspect deleted input tree

Remark
T2 has been addressed
 top-down tree transducers with regular look-ahead
[ENGELFRIET, 1977]

Trees Abound — Part II: Tree Transducers A. Maletti · 13

Top-down Tree Transducers

Regular Look-Ahead

Can be simulated by allowing un-linked nonterminals on the input side

VP

q1 q2 q3

q—

VP

MD

q2

q3

these develop without effect on the output
can generate any regular tree language

Trees Abound — Part II: Tree Transducers A. Maletti · 14

Top-down Tree Transducers

Composition

Definition (COMP)

τ ⊆ TΣ × T∆ and τ ′ ⊆ T∆ × TΓ

τ ; τ ′ = {(s,u) | ∃t ∈ T∆ : (s, t) ∈ τ, (t ,u) ∈ τ ′}

Example (Double mirror-image)

N ; N = id

q

γ

x1

→

γ

q

x1

q

σ

x1 x2

→

σ

q

x2

q

x1

q

α
→ α

Trees Abound — Part II: Tree Transducers A. Maletti · 15

Top-down Tree Transducers

Expressive Power

TOPR
∞

TOP∞ l-TOPR
1

l-TOP2 ls-TOPR
1

ls-TOP2 ln-TOP1

lns-TOP1

composition closure indicated in subscript

Trees Abound — Part II: Tree Transducers A. Maletti · 16

Top-down Tree Transducers

Desirable Properties

Rotations

ROT = {〈σ(σ(t1, t2), t3), σ(t1, σ(t2, t3))〉 | t1, t2, t3 ∈ TΣ}

σ

σ

t1 t2

t3 7→

σ

t1 σ

t2 t3

Preservation of regularity (PRES)

Given τ ⊆ TΣ × T∆ and L ⊆ TΣ regular, is τ(L) regular?

τ(L) = {u | ∃t ∈ L : (t ,u) ∈ τ}

Trees Abound — Part II: Tree Transducers A. Maletti · 17

Top-down Tree Transducers

Desirable Properties

Rotations

ROT = {〈σ(σ(t1, t2), t3), σ(t1, σ(t2, t3))〉 | t1, t2, t3 ∈ TΣ}

σ

σ

t1 t2

t3 7→

σ

t1 σ

t2 t3

Preservation of regularity (PRES)

Given τ ⊆ TΣ × T∆ and L ⊆ TΣ regular, is τ(L) regular?

τ(L) = {u | ∃t ∈ L : (t ,u) ∈ τ}

Trees Abound — Part II: Tree Transducers A. Maletti · 17

Top-down Tree Transducers

Summary

Model \ Criterion ROT SYM PRES PRES−1 COMP

lns-TOP 7 7 3 3 3

ln-TOP 7 7 3 3 3

ls-TOP 7 7 3 3 72
l-TOP 7 7 3 3 72
ls-TOPR 7 7 3 3 3

l-TOPR 7 7 3 3 3

TOP 3 7 7 3 7∞
TOPR 3 7 7 3 7∞

(SYM = symmetric)

Trees Abound — Part II: Tree Transducers A. Maletti · 18

Extended Top-down Tree Transducers

Overview

1 Quick Recall

2 Top-down Tree Transducers

3 Extended Top-down Tree Transducers

4 Extended Multi Bottom-up Tree Transducers

Trees Abound — Part II: Tree Transducers A. Maletti · 19

Extended Top-down Tree Transducers

Extended Top-down Tree Transducer

Definition (GRAEHL et al., 2009)

A top-down tree transducer is a system M = (Q,Σ,∆, I,R)

finite set of states Q
input alphabet Σ; output alphabet ∆

initial states I ⊆ Q
finite set of rules R ⊆ Q(Σ(X))× T∆(Q(X)) such that
var(r) ⊆ var(`) and ` is linear for all (`, r) ∈ R

Trees Abound — Part II: Tree Transducers A. Maletti · 20

Extended Top-down Tree Transducers

Extended Top-down Tree Transducer

Definition (GRAEHL et al., 2009)

An extended top-down tree transducer is a system M = (Q,Σ,∆, I,R)

finite set of states Q
input alphabet Σ; output alphabet ∆

initial states I ⊆ Q
finite set of rules R ⊆ Q(TΣ(X))× T∆(Q(X)) such that
var(r) ⊆ var(`) and ` is linear for all (`, r) ∈ R

Trees Abound — Part II: Tree Transducers A. Maletti · 20

Extended Top-down Tree Transducers

Extended Top-down Tree Transducer

Example

q

x1

→
qS

x1

q

x1

→

S

CONJ

wa-

qS

x1

qS

S

x1 VP

x2 x3

→

S′

qV

x2

qNP

x1

qNP

x3

qV

V

saw

→
V

ra’aa

qNP

NP

DT

the

N

boy

→

NP

N

atefl

qNP

NP

DT

the

N

door

→

NP

N

albab

Trees Abound — Part II: Tree Transducers A. Maletti · 21

Extended Top-down Tree Transducers

Extended Top-down Tree Transducer

Definition
Sentential forms ξ, ζ ∈ T∆(Q(TΣ))

ξ ⇒M ζ

if there exist `→ r ∈ R, position w ∈ pos(ξ), substitution θ : X → TΣ

ξ = ξ[`θ]w

ζ = ξ[rθ]w

Definition

M = {〈t ,u〉 ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u}

Trees Abound — Part II: Tree Transducers A. Maletti · 22

Extended Top-down Tree Transducers

Extended Top-down Tree Transducer

Definition
Sentential forms ξ, ζ ∈ T∆(Q(TΣ))

ξ ⇒M ζ

if there exist `→ r ∈ R, position w ∈ pos(ξ), substitution θ : X → TΣ

ξ = ξ[`θ]w

ζ = ξ[rθ]w

Definition

M = {〈t ,u〉 ∈ TΣ × T∆ | ∃q ∈ I : q(t)⇒∗M u}

Trees Abound — Part II: Tree Transducers A. Maletti · 22

Extended Top-down Tree Transducers

Derivation Example

qS

S

x1 VP

x2 x3

→

S′

qV

x2

qNP

x1

qNP

x3

Example
qS

S

t1 VP

t2 t3

⇒M

S′

qV

t2

qNP

t1

qNP

t3

⇒M · · ·

Trees Abound — Part II: Tree Transducers A. Maletti · 23

Extended Top-down Tree Transducers

Simulation by Copying and Deletion

qS

S

x1 x2

→

S′

qV

x2

qNP

x1

qNP

x2

qV

VP

x1 x2

→
qV

x1

qNP

VP

x1 x2

→
qNP

x2

Example
qS

S

t1 VP

t2 t3

⇒M

S′

qV

VP

t2 t3

qNP

t1

qNP

VP

t2 t3

⇒M

S′

qV

t2

qNP

t1

qNP

VP

t2 t3

⇒M

S′

qV

t2

qNP

t1

qNP

t3

Trees Abound — Part II: Tree Transducers A. Maletti · 24

Extended Top-down Tree Transducers

Syntactic Restrictions

Definition
Extended top-down tree transducer M = (Q,Σ,∆, I,R) is

linear, nondeleting, strict as before
ε-free if ` /∈ Q(X) for every `→ r ∈ R

Trees Abound — Part II: Tree Transducers A. Maletti · 25

Extended Top-down Tree Transducers

Syntactic Restrictions

Definition
Extended top-down tree transducer M = (Q,Σ,∆, I,R) is

linear, nondeleting, strict as before
ε-free if ` /∈ Q(X) for every `→ r ∈ R

Trees Abound — Part II: Tree Transducers A. Maletti · 25

Extended Top-down Tree Transducers

Syntactic Restrictions

Definition
Extended top-down tree transducer M = (Q,Σ,∆, I,R) is

linear, nondeleting, strict as before
ε-free if ` /∈ Q(X) for every `→ r ∈ R

Example
Our example transducer is linear, nondeleting, strict, and ε-free

q

x1

→
qS

x1

q

x1

→

S

CONJ

wa-

qS

x1

qS

S

x1 VP

x2 x3

→

S′

qV

x2

qNP

x1

qNP

x3

qV

V

saw

→
V

ra’aa

qNP

NP

DT

the

N

boy

→

NP

N

atefl

qNP

NP

DT

the

N

door

→

NP

N

albab

Trees Abound — Part II: Tree Transducers A. Maletti · 25

Extended Top-down Tree Transducers

Expressive Power

Properties [GRAEHL et al., 2009]
X1 Finite look-ahead
X2 Deep attachment of variables
X3 Infinitely many outputs for one input

Remark
T1 and T2 still apply

Trees Abound — Part II: Tree Transducers A. Maletti · 26

Extended Top-down Tree Transducers

Expressive Power

Properties [GRAEHL et al., 2009]
X1 Finite look-ahead
X2 Deep attachment of variables
X3 Infinitely many outputs for one input

Remark
T1 and T2 still apply

Trees Abound — Part II: Tree Transducers A. Maletti · 26

Extended Top-down Tree Transducers

Expressive Power
XTOP∞ XTOPR

∞

l-XTOP∞ l-XTOPR
∞

ln-XTOP∞ ε-XTOP∞ TOPR
∞

lns-XTOP∞ lε-XTOP4 lε-XTOPR
3

lnε-XTOP∞ lsε-XTOPR
2

lnsε-XTOP2 lsε-XTOP2 l-TOPF
2 l-TOPR

1

TOP∞

ls-TOP2 l-TOP2

ln-TOP1

lns-TOP1

composition closure indicated in subscript
Trees Abound — Part II: Tree Transducers A. Maletti · 27

Extended Top-down Tree Transducers

Summary

Model \ Criterion ROT SYM PRES PRES−1 COMP

ln-TOP 7 7 3 3 3
l-TOP 7 7 3 3 72
l-TOPR 7 7 3 3 3

TOPR 3 7 7 3 7∞

lnsε-XTOP 3 3 3 3 72
lns-XTOP 3 7 3 3 7∞
lsε-XTOP(R) 3 7 3 3 72
lε-XTOP 3 7 3 3 74
lε-XTOPR 3 7 3 3 73

(s)l-XTOP(R) 3 7 3 3 7∞
XTOP 3 7 7 3 7∞
XTOPR 3 7 7 3 7∞

Trees Abound — Part II: Tree Transducers A. Maletti · 28

Extended Multi Bottom-up Tree Transducers

Overview

1 Quick Recall

2 Top-down Tree Transducers

3 Extended Top-down Tree Transducers

4 Extended Multi Bottom-up Tree Transducers

Trees Abound — Part II: Tree Transducers A. Maletti · 29

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

Definition
An extended multi bottom-up tree transducer M = (Q,Σ,∆,F ,R) with

ranked alphabet of states Q
input alphabet Σ; output alphabet ∆

final states F ⊆ Q1 (all unary)
finite set of rules R ⊆ TΣ(Q(X))×Q(T∆(X)) such that
var(r) ⊆ var(`) and ` is linear for all (`, r) ∈ R

Properties
linear, nondeleting, strict, ε-free as before

Trees Abound — Part II: Tree Transducers A. Maletti · 30

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

Definition
An extended multi bottom-up tree transducer M = (Q,Σ,∆,F ,R) with

ranked alphabet of states Q
input alphabet Σ; output alphabet ∆

final states F ⊆ Q1 (all unary)
finite set of rules R ⊆ TΣ(Q(X))×Q(T∆(X)) such that
var(r) ⊆ var(`) and ` is linear for all (`, r) ∈ R

Properties
linear, nondeleting, strict, ε-free as before

Trees Abound — Part II: Tree Transducers A. Maletti · 30

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

Example (Duplication)

Extended multi bottom-up tree transducer (Q,Σ,Σ, {f},R)

Q = {q(2), f (1)}
Σ = {σ, a,b,e}
R contains:

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2

→

q

b

x1

b

x2

q

x1 x2

→
f

σ

x1 x2

Properties
linear, nondeleting, strict, and ε-free

Trees Abound — Part II: Tree Transducers A. Maletti · 31

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

Example (Duplication)

Extended multi bottom-up tree transducer (Q,Σ,Σ, {f},R)

Q = {q(2), f (1)}
Σ = {σ, a,b,e}
R contains:

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2

→

q

b

x1

b

x2

q

x1 x2

→
f

σ

x1 x2

Properties
linear, nondeleting, strict, and ε-free

Trees Abound — Part II: Tree Transducers A. Maletti · 31

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer
Rule: σ

σ

q

x1 x2

p

q

x3 x4
→

q

δ

x2 x4 x3

x1

Derivation:

t

σ

σ

q

u1 u2

p

q

u3 u4

⇒M

t

q

δ

u2 u4 u3

u1

Trees Abound — Part II: Tree Transducers A. Maletti · 32

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2

→

q

b

x1

b

x2

q

x1 x2

→
f

σ

x1 x2

Example (Derivation)

a

b

b

e

Trees Abound — Part II: Tree Transducers A. Maletti · 33

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2

→

q

b

x1

b

x2

q

x1 x2

→
f

σ

x1 x2

Example (Derivation)

a

b

b

e

⇒M

a

b

b

q

e e

Trees Abound — Part II: Tree Transducers A. Maletti · 33

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2

→

q

b

x1

b

x2

q

x1 x2

→
f

σ

x1 x2

Example (Derivation)

a

b

b

e

⇒M

a

b

b

q

e e

⇒M

a

b

q

b

e

b

e

Trees Abound — Part II: Tree Transducers A. Maletti · 33

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2

→

q

b

x1

b

x2

q

x1 x2

→
f

σ

x1 x2

Example (Derivation)

a

b

b

e

⇒M

a

b

b

q

e e

⇒M

a

b

q

b

e

b

e

⇒M

a

q

b

b

e

b

b

e

Trees Abound — Part II: Tree Transducers A. Maletti · 33

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2

→

q

b

x1

b

x2

q

x1 x2

→
f

σ

x1 x2

Example (Derivation)

a

b

b

e

⇒M

a

b

b

q

e e

⇒M

a

b

q

b

e

b

e

⇒M

a

q

b

b

e

b

b

e

⇒M

q

a

b

b

e

a

b

b

e

Trees Abound — Part II: Tree Transducers A. Maletti · 33

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2

→

q

b

x1

b

x2

q

x1 x2

→
f

σ

x1 x2

Example (Derivation)

a

b

b

e

⇒M

a

b

b

q

e e

⇒M

a

b

q

b

e

b

e

⇒M

a

q

b

b

e

b

b

e

⇒M

q

a

b

b

e

a

b

b

e

⇒M

f

σ

a

b

b

e

a

b

b

e

Trees Abound — Part II: Tree Transducers A. Maletti · 33

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

Definition

τM = {(t ,u) ∈ TΣ × T∆ | ∃q ∈ F : t ⇒∗M q(u)}

Trees Abound — Part II: Tree Transducers A. Maletti · 34

Extended Multi Bottom-up Tree Transducers

Extended Multi Bottom-up Tree Transducer

Definition

τM = {(t ,u) ∈ TΣ × T∆ | ∃q ∈ F : t ⇒∗M q(u)}

Example (Duplication)

It computes {(t ,
σ

t t
) | t ∈ TΣ}

Its image is not a regular tree language

Trees Abound — Part II: Tree Transducers A. Maletti · 34

Extended Multi Bottom-up Tree Transducers

Subclasses

Definition
Extended multi bottom-up tree transducer (Q,Σ,∆,F ,R) is

extended bottom-up tree transducer if Q = Q1

multi bottom-up tree transducer if ` ∈ Σ(Q(X)) for all `→ r ∈ R
bottom-up tree transducer if both previous conditions hold

Trees Abound — Part II: Tree Transducers A. Maletti · 35

Extended Multi Bottom-up Tree Transducers

Subclasses

Definition
Extended multi bottom-up tree transducer (Q,Σ,∆,F ,R) is

extended bottom-up tree transducer if Q = Q1

multi bottom-up tree transducer if ` ∈ Σ(Q(X)) for all `→ r ∈ R
bottom-up tree transducer if both previous conditions hold

Example (Duplication)

e→
q

e e

a

q

x1 x2

→

q

a

x1

a

x2

b

q

x1 x2

→

q

b

x1

b

x2

q

x1 x2

→
f

σ

x1 x2

Trees Abound — Part II: Tree Transducers A. Maletti · 35

Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

l-XTOPR = l-XBOT

Proof.
Standard construction trading input-deletion for output-deletion
see l-TOP ⊆ l-BOT by [ENGELFRIET ’75]

Trees Abound — Part II: Tree Transducers A. Maletti · 36

Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

l-XTOPR = l-XBOT

Proof.
Standard construction trading input-deletion for output-deletion
see l-TOP ⊆ l-BOT by [ENGELFRIET ’75]

ln-XMBOT

ln-XBOT l-XBOT ln-MBOT

ln-XTOP l-XTOP l-MBOT

lε-XMBOT

sen-XTOP

Trees Abound — Part II: Tree Transducers A. Maletti · 36

Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

XMBOT = n-XMBOT

Proof.
guess subtrees that will be deleted
process them in nullary states (i.e. look-ahead)

Trees Abound — Part II: Tree Transducers A. Maletti · 37

Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

XMBOT = n-XMBOT

Proof.
guess subtrees that will be deleted
process them in nullary states (i.e. look-ahead)

Trees Abound — Part II: Tree Transducers A. Maletti · 37

Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

XMBOT = n-XMBOT

Proof.
guess subtrees that will be deleted
process them in nullary states (i.e. look-ahead)

ln-XMBOT

ln-XBOT l-XBOT ln-MBOT

ln-XTOP l-XTOP l-MBOT

lε-XMBOT

sen-XTOP

Trees Abound — Part II: Tree Transducers A. Maletti · 37

Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

XMBOT = n-XMBOT

Proof.
guess subtrees that will be deleted
process them in nullary states (i.e. look-ahead)

ln-XMBOT

ln-XBOT l-XBOT ln-MBOT

ln-XTOP l-XTOP l-MBOT

lε-XMBOT

sen-XTOP

Trees Abound — Part II: Tree Transducers A. Maletti · 37

Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

ε-XMBOT = MBOT

Proof.
decompose large left-hand sides using “multi”-states
attach finite effect of ε-rules

Trees Abound — Part II: Tree Transducers A. Maletti · 38

Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

ε-XMBOT = MBOT

Proof.
decompose large left-hand sides using “multi”-states
attach finite effect of ε-rules

Trees Abound — Part II: Tree Transducers A. Maletti · 38

Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

ε-XMBOT = MBOT

Proof.
decompose large left-hand sides using “multi”-states
attach finite effect of ε-rules

ln-XMBOT

ln-XBOT l-XBOT ln-MBOT

ln-XTOP l-XTOP l-MBOT

lε-XMBOT

sen-XTOP

Trees Abound — Part II: Tree Transducers A. Maletti · 38

Extended Multi Bottom-up Tree Transducers

Expressive Power

Theorem (ENGELFRIET et al. ’09)

ε-XMBOT = MBOT

Proof.
decompose large left-hand sides using “multi”-states
attach finite effect of ε-rules

ln-XMBOT

ln-XBOT l-XBOT ln-MBOT

ln-XTOP l-XTOP l-MBOT

lε-XMBOT

sen-XTOP

Trees Abound — Part II: Tree Transducers A. Maletti · 38

Extended Multi Bottom-up Tree Transducers

Expressive Power

Definition
XTOP M sensible if |u| ∈ O(|t |) for all (t ,u) ∈ M

Theorem (MALETTI ’12)

sensible XTOP ⊆ ln-MBOT

Proof.
use (essentially) construction of [ENGELFRIET, MANETH ’03]
obtain finitely copying ε-XTOP
apply [ENGELFRIET et al. ’09] to obtain lε-XMBOT
previous theorems yield ln-MBOT

Trees Abound — Part II: Tree Transducers A. Maletti · 39

Extended Multi Bottom-up Tree Transducers

Expressive Power

Definition
XTOP M sensible if |u| ∈ O(|t |) for all (t ,u) ∈ M

Theorem (MALETTI ’12)

sensible XTOP ⊆ ln-MBOT

Proof.
use (essentially) construction of [ENGELFRIET, MANETH ’03]
obtain finitely copying ε-XTOP
apply [ENGELFRIET et al. ’09] to obtain lε-XMBOT
previous theorems yield ln-MBOT

Trees Abound — Part II: Tree Transducers A. Maletti · 39

Extended Multi Bottom-up Tree Transducers

Expressive Power

Definition
XTOP M sensible if |u| ∈ O(|t |) for all (t ,u) ∈ M

Theorem (MALETTI ’12)

sensible XTOP ⊆ ln-MBOT

Proof.
use (essentially) construction of [ENGELFRIET, MANETH ’03]
obtain finitely copying ε-XTOP
apply [ENGELFRIET et al. ’09] to obtain lε-XMBOT
previous theorems yield ln-MBOT

Trees Abound — Part II: Tree Transducers A. Maletti · 39

Extended Multi Bottom-up Tree Transducers

Expressive Power

Corollary
All relevant extended top-down tree transducers can be simulated by
linear and nondeleting extended multi bottom-up tree transducers

Trees Abound — Part II: Tree Transducers A. Maletti · 40

Extended Multi Bottom-up Tree Transducers

Further Properties

Theorem

ln-MBOT 6⊆ XTOPR

Theorem (GILDEA ’12)

yield
out

(ln-MBOT) = LCFRS

Trees Abound — Part II: Tree Transducers A. Maletti · 41

Extended Multi Bottom-up Tree Transducers

Further Properties

Theorem

ln-MBOT 6⊆ XTOPR

Theorem (GILDEA ’12)

yield
out

(ln-MBOT) = LCFRS

Trees Abound — Part II: Tree Transducers A. Maletti · 41

Extended Multi Bottom-up Tree Transducers

Summary

Model \ Criterion ROT SYM PRES PRES−1 COMP

ln-TOP 7 7 3 3 3

l-TOP 7 7 3 3 72

l-TOPR 7 7 3 3 3

TOPR 3 7 7 3 7∞

lnsε-XTOP 3 3 3 3 72

lns-XTOP 3 7 3 3 7∞
lsε-XTOP(R) 3 7 3 3 72

lε-XTOP 3 7 3 3 74

lε-XTOPR 3 7 3 3 73

(s)l-XTOP(R) 3 7 3 3 7∞
XTOP(R) 3 7 7 3 7∞

l(n)-XMBOT 3 7 7 3 3

XMBOT 3 7 7 3 7∞
reg.-preserving l-XMBOT 3 7 3 3 3

invertable l-XMBOT 3 3 3 3 3

Trees Abound — Part II: Tree Transducers A. Maletti · 42

	Motivation
	Regular Tree Grammars
	Theoretical Properties
	Excursion

