Hyper-minimization for deterministic tree automata

Artur Jeż¹ and Andreas Maletti²

University of Wrocław, Poland
 University of Stuttgart, Germany

Porto, Portugal — July 17, 2012

Contents

- Overview
- Deterministic Tree Automata
- 3 Hyper-minimal DTA
- 4 Hyper-minimization
- Conclusion

Hyper-Minimization

Intuition

Minimize automaton allowing a finite number of errors

Hyper-Minimization

Intuition

Minimize automaton allowing a finite number of errors

model/process	hyper-minimization	hyper-optimization
DFA	$\mathcal{O}(m \log n)$	$\mathcal{O}(mn)$
DBA	$\mathcal{O}(mn)$???
DCA	$\mathcal{O}(mn)$???
DTA	$\mathcal{O}(\ell mn)$???

DTA = deterministic tree automaton
DBA / DCA = deterministic BÜCHI / Co-BÜCHI automaton

Why Tree Automata?

Applications

- Parsing (tree substitution grammars with latent variables)
- XML processing
- ...

Parsing

- requires huge tree automata
- typically non-deterministic (but can be determinized)
- obtained from corpora (linguistic resources)

Why Tree Automata?

Applications

- Parsing (tree substitution grammars with latent variables)
- XML processing
- ...

Parsing

- requires huge tree automata
- typically non-deterministic (but can be determinized)
- obtained from corpora (linguistic resources)

Parsing of Natural Languages

Standard approach

- supervised training (i.e., from annotated examples)
- but annotated samples are small, expensive
- can contain errors or inconsistencies

Intuition

- annotated sample not complete (positives only)
- annotation errors and inconsistencies (errors in annotation)
- → reasonable training must generalize from finite observations to infinite language

Parse Tree

Why Hyper-Minimization?

Advantages

- ullet makes the DTA smaller o efficiency gain
- reduces spurious, artificial effects
- allows inspection of the "core" (the recursive structure)

Disadvantages

- gains sometimes rather small (in particular for DTA)
- no discrimination between errors
- no non-trivial limit on the number of errors

Why Hyper-Minimization?

Advantages

- ullet makes the DTA smaller o efficiency gain
- reduces spurious, artificial effects
- allows inspection of the "core" (the recursive structure)

Disadvantages

- gains sometimes rather small (in particular for DTA)
- no discrimination between errors
- no non-trivial limit on the number of errors

Contents

- Overview
- Deterministic Tree Automata
- 3 Hyper-minimal DTA
- 4 Hyper-minimization
- 6 Conclusion

Definition (GÉCSEG, STEINBY 1984)

 (Q, Σ, δ, F) deterministic tree automaton (DTA)

- Q finite set
- Σ ranked alphabet
- $\delta \colon \Sigma(Q) \to Q$
- F ⊆ Q

states input symbols transitions final states

Definition

transition function extends to $\delta\colon \mathcal{T}_\Sigma(Q) o Q$ by

$$\delta(q) = q$$

 $\delta(\sigma(t_1, \ldots, t_k)) = \delta(\sigma(\delta(t_1), \ldots, \delta(t_k))$

Definition (GÉCSEG, STEINBY 1984)

 (Q, Σ, δ, F) deterministic tree automaton (DTA)

- Q finite set
- Σ ranked alphabet
- $\delta \colon \Sigma(Q) \to Q$
- F ⊆ Q

states

input symbols

transitions

final states

Definition

transition function extends to δ : $\mathcal{T}_{\Sigma}(Q) \to Q$ by

$$\frac{\delta(q) = q}{\delta(\sigma(t_1, \ldots, t_k))} = \delta(\sigma(\delta(t_1), \ldots, \delta(t_k)))$$

Example

- ullet states q_{lpha},q_{eta} (nonfinal) and q_{γ},q_{σ} (final)
- nullary input symbols α, β, γ and binary σ
- for all nullary symbols π, π'

$$\pi \mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'}) \mapsto q_{\sigma} \qquad \sigma(q_{\alpha},q_{\sigma}) \mapsto q_{\sigma}$$

Example

- ullet states q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)
- nullary input symbols α, β, γ and binary σ
- for all nullary symbols π, π'

$$\pi \mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'}) \mapsto q_{\sigma} \qquad \sigma(q_{\alpha},q_{\sigma}) \mapsto q_{\sigma}$$

$$\begin{array}{c}
\sigma \\
\alpha \\
\gamma \\
\gamma \\
\beta
\end{array}
\rightarrow \begin{array}{c}
\sigma \\
q_{\alpha} \\
\gamma \\
\gamma
\end{array}$$

Example

- ullet states q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)
- nullary input symbols α, β, γ and binary σ
- for all nullary symbols π, π'

$$\pi \mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'}) \mapsto q_{\sigma} \qquad \sigma(q_{\alpha},q_{\sigma}) \mapsto q_{\sigma}$$

Example

- ullet states q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)
- nullary input symbols α, β, γ and binary σ
- for all nullary symbols π, π'

$$\pi \mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'}) \mapsto q_{\sigma} \qquad \sigma(q_{\alpha},q_{\sigma}) \mapsto q_{\sigma}$$

Example

- ullet states q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)
- nullary input symbols α, β, γ and binary σ
- for all nullary symbols π, π'

$$\pi \mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'}) \mapsto q_{\sigma} \qquad \sigma(q_{lpha},q_{\sigma}) \mapsto q_{\sigma}$$

Example

- ullet states q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)
- nullary input symbols α, β, γ and binary σ
- for all nullary symbols π, π'

$$\pi \mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'}) \mapsto q_{\sigma} \qquad \sigma(q_{lpha},q_{\sigma}) \mapsto q_{\sigma}$$

Shorthands

- $L(M)_{q'} = \bigcup_{f \in F} L(M)_{q'}^f$
- $L(M)^q = \delta^{-1}(q) \cap T_{\Sigma}$

Shorthands

- $\bullet L(M)_{q'}^q = \{c \in C_{\Sigma} \mid \delta(c[q']) = q\}$
- $L(M)_{q'} = \bigcup_{f \in F} L(M)_{q'}^f$
- $L(M)^q = \delta^{-1}(q) \cap T_{\Sigma}$

Shorthands

- $\bullet L(M)_{q'}^q = \{c \in C_{\Sigma} \mid \delta(c[q']) = q\}$
- $L(M)_{q'} = \bigcup_{f \in F} L(M)_{q'}^f$
- $L(M)^q = \delta^{-1}(q) \cap T_{\Sigma}$

Shorthands

- $\bullet L(M)_{q'}^q = \{c \in C_{\Sigma} \mid \delta(c[q']) = q\}$
- $L(M)_{q'} = \bigcup_{f \in F} L(M)_{q'}^f$
- $L(M)^q = \delta^{-1}(q) \cap T_{\Sigma}$

Definition

Recognized tree language $L(M) = \bigcup_{f \in F} L(M)^f$

Example

- ullet states q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)
- nullary input symbols α, β, γ and binary σ
- for all nullary symbols π, π'

$$\pi \mapsto q_{\pi} \qquad \sigma(q_{\pi}, q_{\pi'}) \mapsto q_{\sigma} \qquad \sigma(q_{\alpha}, q_{\sigma}) \mapsto q_{\sigma}$$

Recognized tree language

With
$$c = \sigma(\alpha, \square)$$

$$\{\gamma\} \cup \{c^n[\sigma(\pi,\pi')] \mid n \in \mathbb{N}, \text{ nullary } \pi,\pi'\}$$

Minimization

Definition

States q and q' are equivalent if $L(M)_q = L(M)_{q'}$

Theorem

DTA minimal \iff no different, but equivalent states

Theorem (HÖGBERG et al. 2008)

For every DTA we can efficiently construct an equivalent minimal DTA

Minimization

Definition

States q and q' are equivalent if $L(M)_q = L(M)_{q'}$

Theorem

DTA minimal ←⇒ no different, but equivalent states

Theorem (HÖGBERG et al. 2008)

For every DTA we can efficiently construct an equivalent minimal DTA

Minimization

Definition

States q and q' are equivalent if $L(M)_q = L(M)_{q'}$

Theorem

DTA minimal ← no different, but equivalent states

Theorem (HÖGBERG et al. 2008)

For every DTA we can efficiently construct an equivalent minimal DTA

Contents

- Overview
- Deterministic Tree Automata
- 3 Hyper-minimal DTA
- 4 Hyper-minimization
- 6 Conclusion

Almost Equivalence

Definition

States q and q' are almost equivalent if $L(M)_q$ and $L(M)_{q'}$ have finite difference

Example

States q_{α} , q_{β} (nonfinal) and q_{γ} , q_{σ} (final)

$$\pi\mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'})\mapsto q_{\sigma} \qquad \sigma(q_{\alpha},q_{\sigma})\mapsto q_{\sigma}$$

ightarrow minimal, but q_{eta} and q_{γ} almost equivalent

$$L(M)_{q_{\beta}} \ominus L(M)_{q_{\gamma}} = \{\Box\}$$

Almost Equivalence

Definition

States q and q' are almost equivalent if $L(M)_q$ and $L(M)_{q'}$ have finite difference

Example

States q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)

$$\pi \mapsto q_{\pi} \qquad \sigma(q_{\pi}, q_{\pi'}) \mapsto q_{\sigma} \qquad \sigma(q_{\alpha}, q_{\sigma}) \mapsto q_{\sigma}$$

ightarrow minimal, but q_{β} and q_{γ} almost equivalent

$$L(M)_{q_{\beta}}\ominus L(M)_{q_{\gamma}}=\{\Box\}$$

Lemma

Almost equivalent states agree on deep contexts

$$\delta(c[q_1]) = \delta(c[q_2])$$
 for suitably deep c

Contrast

On strings: the converse also holds On trees: the converse is **not** true

Lemma

Almost equivalent states agree on deep contexts

 $\delta(c[q_1]) = \delta(c[q_2])$ for suitably deep c

Contrast

On strings: the converse also holds
On trees: the converse is not true

Lemma (Lemma 2.10 of BADR et al. 2007)

- δ(c[q]) and δ(c[q']) are almost equivalent for almost equivalent q and q' and context c
- Almost equivalence is a congruence

Definition

DTA are almost equivalent if they recognize tree languages with finite difference

Lemma

Almost equivalent DTA evaluate trees to almost equivalent states $L(M)_{\delta(t)} \text{ and } L(N)_{\mu(t)} \text{ are almost equivalent}$

Lemma (Lemma 2.10 of BADR et al. 2007)

- δ(c[q]) and δ(c[q']) are almost equivalent for almost equivalent q and q' and context c
- Almost equivalence is a congruence

Definition

DTA are almost equivalent if they recognize tree languages with finite difference

Lemma

Almost equivalent DTA evaluate trees to almost equivalent states $L(M)_{\delta(t)} \text{ and } L(N)_{\mu(t)} \text{ are almost equivalent}$

Lemma (Lemma 2.10 of BADR et al. 2007)

- δ(c[q]) and δ(c[q']) are almost equivalent for almost equivalent q and q' and context c
- Almost equivalence is a congruence

Definition

DTA are almost equivalent if they recognize tree languages with finite difference

Lemma

Almost equivalent DTA evaluate trees to almost equivalent states $L(M)_{\delta(t)}$ and $L(N)_{\mu(t)}$ are almost e

Lemma (Lemma 2.10 of BADR et al. 2007)

- δ(c[q]) and δ(c[q']) are almost equivalent for almost equivalent q and q' and context c
- Almost equivalence is a congruence

Definition

DTA are almost equivalent if they recognize tree languages with finite difference

Lemma

Almost equivalent DTA evaluate trees to almost equivalent states $L(M)_{\delta(t)} \text{ and } L(N)_{\mu(t)} \text{ are almost equal}$

Definition

Merge of q into q': redirect all transitions leading to q into q'

Definition

State q is a preamble state if $L(M)^q$ is finite

Definition

Merge of q into q': redirect all transitions leading to q into q'

Definition

State q is a preamble state if $L(M)^q$ is finite

Lemma

lf

- q and q' are almost equivalent
- q is a preamble state

then merging q into q' yields an almost equivalent DTA

Lemma

If

- q and q' are almost equivalent
- q is a preamble state

then merging q into q' yields an almost equivalent DTA

Example (Original)

States q_{α} , q_{β} (nonfinal) and q_{γ} , q_{σ} (final)

$$\pi\mapsto q_{\pi}$$

$$\pi\mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'})\mapsto q_{\sigma} \qquad \sigma(q_{\alpha},q_{\sigma})\mapsto q_{\sigma}$$

$$\sigma(q_{lpha},q_{\sigma})\mapsto q_{\sigma}$$

$$\alpha \mapsto q_{\alpha}$$

$$\sigma(q_\pi,q_{\pi'})\mapsto q_\sigma$$

$$\sigma(q_{\alpha},q_{\sigma})\mapsto q_{\sigma}$$

$$\beta \mapsto q$$

$$\gamma \mapsto q$$

Example (Original)

States q_{α} , q_{β} (nonfinal) and q_{γ} , q_{σ} (final)

$$\pi\mapsto q_{\pi}$$

$$\pi\mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'})\mapsto q_{\sigma} \qquad \sigma(q_{\alpha},q_{\sigma})\mapsto q_{\sigma}$$

$$\sigma(q_{lpha},q_{\sigma})\mapsto q_{\sigma}$$

Example (Merged)

Merging q_{β} into q_{γ} yields

$$\alpha \mapsto q_{\alpha}$$

$$\sigma(q_{\pi},q_{\pi'})\mapsto q_{\sigma}$$

$$\sigma(q_{\alpha},q_{\sigma})\mapsto q_{\sigma}$$

$$\beta \mapsto q_{\gamma}$$

$$\gamma \mapsto q_{\gamma}$$

Definition

DTA hyper-minimal if there is no smaller DTA that is almost equivalent

Theorem

DTA hyper-minimal ← no different, but almost equivalent states involving a preamble state

Definition

DTA hyper-minimal if there is no smaller DTA that is almost equivalent

Theorem

DTA hyper-minimal \iff no different, but almost equivalent states involving a preamble state

Example (Original)

States q_{α}, q_{β} (nonfinal) and q_{γ}, q_{σ} (final)

$$\pi\mapsto q_\pi \qquad \sigma(q_\pi,q_{\pi'})\mapsto q_\sigma \qquad \sigma(q_lpha,q_\sigma)\mapsto q_\sigma$$

ightarrow not hyper-minimal (q_{eta} and q_{γ} almost equivalent)

Example (Merged

Merging q_{β} into q_{γ} yields

$$egin{array}{lll} lpha \mapsto oldsymbol{q}_lpha & \sigma(oldsymbol{q}_\pi,oldsymbol{q}_{\pi'}) \mapsto oldsymbol{q}_\sigma & \sigma(oldsymbol{q}_lpha,oldsymbol{q}_\sigma) \mapsto oldsymbol{q}_\gamma & oldsym$$

 $\gamma \mapsto q$

→ hyper-minima

Example (Original)

States q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)

$$\pi\mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'})\mapsto q_{\sigma} \qquad \sigma(q_{lpha},q_{\sigma})\mapsto q_{\sigma}$$

ightarrow not hyper-minimal (q_{eta} and q_{γ} almost equivalent)

Example (Merged)

Merging q_{β} into q_{γ} yields

$$egin{array}{lll} lpha \mapsto q_lpha & \sigma(q_\pi,q_{\pi'}) \mapsto q_\sigma & \sigma(q_lpha,q_\sigma) \mapsto q_\sigma \ eta \mapsto q_\gamma & \end{array}$$

$$\gamma \mapsto q_{\gamma}$$

→ hyper-minimal

Contents

- Overview
- Deterministic Tree Automata
- 3 Hyper-minimal DTA
- 4 Hyper-minimization
- Conclusion

Overview

```
Require: DTA M
```

Return: almost equivalent hyper-minimal DTA

```
M \leftarrow \mathsf{MINIMIZE}(M) // complexity: \mathcal{O}(\ell m \log n) 2: P \leftarrow \mathsf{COMPUTEPREAMBLE}(M) // complexity: \mathcal{O}(\ell m) \sim \leftarrow \{\langle q, q' \rangle \mid L(M_{\otimes})_{\langle q, q' \rangle} \text{ is finite}\} 4: \mathsf{for all } B \in (Q/\sim) \mathsf{do} select q_B \in B such that q_B \notin P if possible 6: merge each q \in B \cap P into q_B // complexity: \mathcal{O}(|B|) end \mathsf{for}
```

Overview

```
Require: DTA M
```

8: return M

Return: almost equivalent hyper-minimal DTA

```
M \leftarrow \mathsf{MINIMIZE}(M) // complexity: \mathcal{O}(\ell m \log n)
2: P \leftarrow \mathsf{COMPUTEPREAMBLE}(M) // complexity: \mathcal{O}(\ell m)
\sim \leftarrow \{\langle q, q' \rangle \mid L(M_{\otimes})_{\langle q, q' \rangle} \text{ is finite}\}
4: for all B \in (Q/\sim) do select q_B \in B such that q_B \notin P if possible
6: merge each q \in B \cap P into q_B // complexity: \mathcal{O}(|B|) end for
```

Overview

Require: DTA M

```
Return: almost equivalent hyper-minimal DTA  M \leftarrow \mathsf{MINIMIZE}(M) \qquad \qquad // \operatorname{complexity:} \mathcal{O}(\ell m \log n) \\ 2: P \leftarrow \mathsf{COMPUTEPREAMBLE}(M) \qquad \qquad // \operatorname{complexity:} \mathcal{O}(\ell m) \\ \sim \leftarrow \{\langle q, q' \rangle \mid L(M_{\otimes})_{\langle q, q' \rangle} \text{ is finite} \}
```

select $q_B \in B$ such that $q_B \notin P$ if possible

6: merge each $q \in B \cap P$ into q_B // complexity: $\mathcal{O}(|B|)$

end for

8: return M

4: for all $B \in (Q/\sim)$ do

Computing Preamble States

Lemma

The preamble states can be computed in time $O(\ell m)$

Computing Preamble States

Lemma

The preamble states can be computed in time $O(\ell m)$

Example

States q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)

$$\pi\mapsto q_{\pi} \qquad \sigma(q_{\pi},q_{\pi'})\mapsto q_{\sigma} \qquad \sigma(q_{lpha},q_{\sigma})\mapsto q_{\sigma}$$

Computing Preamble States

Lemma

The preamble states can be computed in time $O(\ell m)$

Example

States q_{lpha}, q_{eta} (nonfinal) and q_{γ}, q_{σ} (final)

$$\pi \mapsto q_{\pi} \qquad \sigma(q_{\pi}, q_{\pi'}) \mapsto q_{\sigma} \qquad \sigma(q_{\alpha}, q_{\sigma}) \mapsto q_{\sigma}$$

Computing Almost Equivalence

Definition

Exclusive-or single-point self-product

$$M_{\otimes} = (Q \cup Q^2, \Sigma, \delta \cup \delta', F')$$

- $F' = \{\langle q, q' \rangle \mid \text{ either } q \in F \text{ or } q' \in F\}$
- $\delta'(\sigma(c[\langle q, q' \rangle])) = \langle \delta(c[q]), \delta(c[q']) \rangle$

Lemma

We can construct M_{\otimes} in time $\mathcal{O}(\ell mn)$.

Theorem

 $L(M_{\otimes})_{\langle q,q'\rangle}$ is finite \iff q and q' are almost equivalent

Computing Almost Equivalence

Definition

Exclusive-or single-point self-product

$$M_{\otimes} = (Q \cup Q^2, \Sigma, \delta \cup \delta', F')$$

- $F' = \{ \langle q, q' \rangle \mid \text{ either } q \in F \text{ or } q' \in F \}$
- $\delta'(\sigma(c[\langle q, q' \rangle])) = \langle \delta(c[q]), \delta(c[q']) \rangle$

Lemma

We can construct M_{\otimes} in time $\mathcal{O}(\ell mn)$.

Theorem

 $L(M_{\otimes})_{\langle q,q'\rangle}$ is finite \iff q and q' are almost equivalent

Computing Almost Equivalence

Definition

Exclusive-or single-point self-product

$$M_{\otimes} = (Q \cup Q^2, \Sigma, \delta \cup \delta', F')$$

- $F' = \{ \langle q, q' \rangle \mid \text{ either } q \in F \text{ or } q' \in F \}$
- $\delta'(\sigma(c[\langle q, q' \rangle])) = \langle \delta(c[q]), \delta(c[q']) \rangle$

Lemma

We can construct M_{\otimes} in time $\mathcal{O}(\ell mn)$.

Theorem

 $L(M_{\otimes})_{\langle q,q'\rangle}$ is finite \iff q and q' are almost equivalent

Main Result

Theorem

Hyper-minimization can be performed in time $O(\ell mn)$

Contents

- Overview
- Deterministic Tree Automata
- Hyper-minimal DTA
- 4 Hyper-minimization
- Conclusion

Remaining Issues

Reduction

Minimization linearly reduces to hyper-minimization

Efficiency Improvement

Using complex hashes we can improve hyper-minimization to

 $\mathcal{O}(\ell m \log n)$

Remaining Issues

Reduction

Minimization linearly reduces to hyper-minimization

Efficiency Improvement

Using complex hashes we can improve hyper-minimization to

 $\mathcal{O}(\ell m \log n)$

Definition

States q and q' are if $L(M)_q$ and $L(M)_{q'}$ are

equivalent

equal

Theorem

DTA minimal \iff no different, but equivalent states

Theorem ()

Definition

States q and q' are almost equivalent if $L(M)_q$ and $L(M)_{q'}$ are almost equal

Theorem

DTA minimal \iff no different, but equivalent states

Theorem ()

Definition

States q and q' are almost equivalent if $L(M)_q$ and $L(M)_{q'}$ are almost equal

Theorem

DTA minimal \iff no different, but

equivalent states

Theorem ()

Definition

States q and q' are almost equivalent if $L(M)_q$ and $L(M)_{q'}$ are almost equal

Theorem

DTA hyper-minimal \iff no different, but almost equivalent states involving a preamble state

Theorem (

Definition

States q and q' are almost equivalent if $L(M)_q$ and $L(M)_{q'}$ are almost equal

Theorem

DTA hyper-minimal \iff no different, but almost equivalent states involving a preamble state

Theorem (HÖGBERG et al. 2008)

We can efficiently construct an equivalent

minimal DTA

Definition

States q and q' are almost equivalent if $L(M)_q$ and $L(M)_{q'}$ are almost equal

Theorem

DTA hyper-minimal \iff no different, but almost equivalent states involving a preamble state

Theorem (here)

Solved problems

- Characterization of hyper-minimality
- Hyper-minimization algorithm $\mathcal{O}(\ell mn)$
- Minimization reduces to hyper-minimization

Open problems

- Can hashes be avoided in optimized version?
- Error optimization efficiently possible?
- Sub-quadratic error optimization?

Solved problems

- Characterization of hyper-minimality
- Hyper-minimization algorithm $\mathcal{O}(\ell mn)$
- Minimization reduces to hyper-minimization

Open problems

- Can hashes be avoided in optimized version?
- Error optimization efficiently possible?
- Sub-quadratic error optimization?

References

- BADR, GEFFERT, SHIPMAN: Hyper-minimizing minimized deterministic finite state automata. ITA 43, 2009
- BADR: Hyper-minimization in O(n²). IJFCS 20, 2009
- GAWRYCHOWSKI, JEŻ: Hyper-minimisation made efficient. MFCS 2009
- GAWRYCHOWSKI, JEŻ, MALETTI: On minimising automata with errors. MFCS 2011
- GÉCSEG, STEINBY: Tree automata. Akadémiai Kiadó, 1984
- Högberg, May, Maletti: Backward and forward bisimulation minimization of tree automata. TCS 410, 2009
- HOLZER, JAKOBI From aquivalence to almost-equivalence, and beyond minimizing automata with errors. DLT 2012
- HOLZER, MALETTI: An nlog n algorithm for hyper-minimizing states in a (minimized) deterministic automaton. TCS 411, 2010
- MALETTI, QUERNHEIM: Optimal hyper-minimization. IJFCS 22, 2011
- SCHEWE: Beyond hyper-minimisation minimising DBAs and DPAs is NP-complete. FSTTCS 2010