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Hyper-Minimization

Intuition
Minimize automaton allowing a finite number of errors J
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Hyper-Minimization

Intuition
Minimize automaton allowing a finite number of errors

model/process | hyper-minimization hyper-optimization
DFA O(mlog n) O(mn)
DBA O(mn) ?77?
DCA O(mn) ?777?
DTA O(¢mn) ?77?

DTA = deterministic tree automaton
DBA / DCA = deterministic BUCHI / Co-BUCHI automaton
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Why Tree Automata?

Applications
@ Parsing (tree substitution grammars with latent variables)
@ XML processing
° ...
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Why Tree Automata?

Applications
@ Parsing (tree substitution grammars with latent variables)
@ XML processing
o ...

Parsing
@ requires huge tree automata
@ typically non-deterministic (but can be determinized)
@ obtained from corpora (linguistic resources)
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Parsing of Natural Languages

Standard approach
@ supervised training (i.e., from annotated examples)
@ but annotated samples are small, expensive
@ can contain errors or inconsistencies

Intuition
@ annotated sample not complete (positives only)

@ annotation errors and inconsistencies
(errors in annotation)

— reasonable training must generalize from finite observations to
infinite language
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Why Hyper-Minimization?

Advantages
@ makes the DTA smaller — efficiency gain
@ reduces spurious, artificial effects
@ allows inspection of the “core” (the recursive structure)
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Why Hyper-Minimization?

Advantages
@ makes the DTA smaller — efficiency gain
@ reduces spurious, artificial effects
@ allows inspection of the “core” (the recursive structure)

Disadvantages
@ gains sometimes rather small (in particular for DTA)
@ no discrimination between errors
@ no non-trivial limit on the number of errors
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Deterministic Tree Automaton

Definition (GECSEG, STEINBY 1984)

(Q, %, 4, F) deterministic tree automaton (DTA)
@ Qfinite set states
@ Y ranked alphabet input symbols
°:X(Q)—Q transitions
e FCQ final states |
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Deterministic Tree Automaton

Definition (GECSEG, STEINBY 1984)
(Q, %, 4, F) deterministic tree automaton (DTA)

@ Qfinite set states

@ Y ranked alphabet input symbols

°:X(Q)—Q transitions

e FCQ final statesj
Definition

transition function extends to 6: Tx(Q) — Q by

i(q)=q
S(o(ty, ..., %) = 6(a(5(tr), - .., 5(t)))
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Deterministic Tree Automaton

Example

@ states q., qs (nonfinal) and q,, g, (final)
@ nullary input symbols «, 5,~ and binary o
o for all nullary symbols 7, 7/

=0 0(Qr, Q) > G (G, Qo) 7 Qs

Evaluating a tree
(o)
/\
« (o)
/\
7 B

Hyper-minimization for deterministic tree automata A. Jez and A. Maletti

- 10




Deterministic Tree Automaton

Example

@ states q., qs (nonfinal) and q,, g, (final)
@ nullary input symbols «, 5,~ and binary o
o for all nullary symbols 7, 7/

=0 0(Qr, Q) > G (G, Qo) 7 Qs

Evaluating a tree

/\ /\

— Yo

/\ /\

Hyper-minimization for deterministic tree automata A. Jez and A. Maletti

- 10




Deterministic Tree Automaton

Example

@ states q., qs (nonfinal) and q,, g, (final)
@ nullary input symbols «, 5,~ and binary o
o for all nullary symbols 7, 7/

=0 0(Qr, Q) > G (G, Qo) 7 Qs

Evaluating a tree

/\ /\ /\

— Yo — Yo

/\ /\ /\

Hyper-minimization for deterministic tree automata A.Jez and A. Maletti - 10




Deterministic Tree Automaton

Example

@ states q., qs (nonfinal) and q,, g, (final)
@ nullary input symbols «, 5,~ and binary o
o for all nullary symbols 7, 7/

=0 0(Qr, Q) > G (G, Qo) 7 Qs

Evaluating a tree
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Deterministic Tree Automaton

Example

@ states q., qs (nonfinal) and q,, g, (final)
@ nullary input symbols «, 5,~ and binary o
o for all nullary symbols 7, 7/

=0 0(Qr, Q) > G (G, Qo) 7 Qs

Evaluating a tree

N /\ N\ i ”
AN - /\ - qaq/\ﬁ TN "
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Deterministic Tree Automaton

Example

@ states q., qs (nonfinal) and q,, g, (final)
@ nullary input symbols «, 5,~ and binary o
o for all nullary symbols 7, 7/

=0 0(Qr, Q) > G (G, Qo) 7 Qs

Evaluating a tree

N / \ A\ i ,
— Ga — 4o O — qa O — / \ — Yo
/ \ / \ / \ qv/ \qﬁ 4o 4o
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Deterministic Tree Automaton

Shorthands
o L(M)J, = {ce Cs |d(c[q]) = q}
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Deterministic Tree Automaton

Shorthands
o L(M)J, = {ce Cs |d(c[q]) = q}
o L(M)g = Urer LIM)g

AN
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Deterministic Tree Automaton

Shorthands
o L(M)g ={ce Cs|dclq]) = q}
o L(M)g = Urer LIM),
@ LIMI=5Tg)NTs

ININ L

Hyper-minimization for deterministic tree automata A.Jez and A. Maletti - 11




Deterministic Tree Automaton

Shorthands
o L(M)g ={ce Cs|dclq]) = q}
o L(M)g = Urer LIM),
@ LIMI=5Tg)NTs

/\ /

Definition
Recognized tree language L(M) = ;g L(M)"
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Deterministic Tree Automaton

Example
@ states q., qs (nonfinal) and q,, g, (final)
@ nullary input symbols «, 5,~ and binary o
o for all nullary symbols 7, 7/

I C i R I C e D )

Recognized tree language

With ¢ = o(a, 0) /"\
(VYU {co(r,7')] | n € N, nullary 7,7} “ |
Y -
Oé/ \O'

/N
a/Bly  afB/y
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Minimization
Definition
States g and q' are equivalent if L(M)q = L(M)y J
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Minimization

Definition
States g and q' are equivalent if L(M)q = L(M)y J
Theorem
DTA minimal < no different, but equivalent states J
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Minimization

Definition
States g and q' are equivalent if L(M)q = L(M)y J
Theorem
DTA minimal < no different, but equivalent states J

Theorem (HOGBERG et al. 2008)
For every DTA we can efficiently construct an equivalent minimal DTA J
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Almost Equivalence

Definition
States g and @’ are almost equivalent
if L(M)q and L(M)q have finite difference
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Almost Equivalence

Definition
States g and @’ are almost equivalent
if L(M)q and L(M)q have finite difference

Example
States q., qs (nonfinal) and g, g, (final)

T 0r  0(Qr,qr) = Qe 0(Qa: o) = Qs
— minimal, but q3 and g, almost equivalent

L(M)q, © L(M)q, = {0}
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Properties of Almost Equivalence

Lemma
Almost equivalent states agree on deep contexts

o(c[qi]) = 6(c[qge]) for suitably deep c
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Properties of Almost Equivalence

Lemma
Almost equivalent states agree on deep contexts

o(c[qi]) = 6(c[qge]) for suitably deep c

Contrast

On strings: the converse also holds
On trees: the converse is not true
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Properties of Almost Equivalence

Lemma (Lemma 2.10 of BADR et al. 2007)

@ 4(c[q]) and 6(c[q]) are almost equivalent
for almost equivalent g and q' and context ¢
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Properties of Almost Equivalence

Lemma (Lemma 2.10 of BADR et al. 2007)

@ 4(c[q]) and 6(c[q]) are almost equivalent
for almost equivalent g and q' and context ¢

@ Almost equivalence is a congruence
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Properties of Almost Equivalence

Lemma (Lemma 2.10 of BADR et al. 2007)

@ 4(c[q]) and 6(c[q]) are almost equivalent
for almost equivalent g and q' and context ¢

@ Almost equivalence is a congruence

Definition

DTA are almost equivalent if they recognize tree languages
with finite difference
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Properties of Almost Equivalence

Lemma (Lemma 2.10 of BADR et al. 2007)

@ 4(c[q]) and 6(c[q]) are almost equivalent
for almost equivalent g and q' and context ¢

@ Almost equivalence is a congruence

Definition
DTA are almost equivalent if they recognize tree languages
with finite difference

Lemma
Almost equivalent DTA evaluate trees to almost equivalent states

L(M)sy and L(N) ) are almost equal
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State Merging

Definition
Merge of g into q': redirect all transitions leading to g into ¢’ J
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State Merging

Definition
Merge of g into q': redirect all transitions leading to g into ¢’ J
Definition
State g is a preamble state if L(M)9 is finite J
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State Merging

Lemma
If
@ g and q' are almost equivalent
@ g is a preamble state
then merging q into q' yields an almost equivalent DTA
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State Merging

Lemma
If
@ g and q' are almost equivalent
@ g is a preamble state
then merging q into q' yields an almost equivalent DTA

~ q
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State Merging

Example (Original)
States q., gz (nonfinal) and g, g, (final)

T—=0¢  0(Qngv)~q& (9w, qs) — Qs
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State Merging

Example (Original)
States q., gz (nonfinal) and g, g, (final)

T—=0¢  0(Qngv)~q& (9w, qs) — Qs

Example (Merged)
Merging g into g, yields

o = Qo O'(qm QW’) = Qo J(qaa qo) = Qo
B gy
Y= Gy
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Hyper-minimal DTA

Definition
DTA hyper-minimal if there is no smaller DTA that is almost equivalent J
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Hyper-minimal DTA

Definition
DTA hyper-minimal if there is no smaller DTA that is almost equivalent J

Theorem

DTA hyper-minimal <= no different, but almost equivalent states
involving a preamble state
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Hyper-minimal DTA

Example (Original)
States q., gz (nonfinal) and g, g, (final)

T—=0¢  0(Qngv)~q& (9w, qs) — Qs

— not hyper-minimal (qg and g, almost equivalent)
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Hyper-minimization for deterministic tree automata

Hyper-minimal DTA

Example (Original)
States q., gz (nonfinal) and g, g, (final)

T—=0¢  0(Qngv)~q& (9w, qs) — Qs

— not hyper-minimal (qg and g, almost equivalent)

Example (Merged)

Merging q; into g, yields
o = Qo J(qﬂ-, QW’) — Qo O'(qow qo) = Qo
B qy
v Gy

— hyper-minimal
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Overview

Require: DTA M
Return: almost equivalent hyper-minimal DTA

M «+ MINIMIZE(M) /I complexity: O(¢£mlog n)
2: P < COMPUTEPREAMBLE(M) /I complexity: O(¢m)

~ <+ {(q,q9) | L(M®)<q7ql> is finite}
4: forall B e (Q/~) do
select gg € B such that gg ¢ P if possible
6: merge each g € BN Pinto gg /Il complexity: O(|B|)
end for
8: return M
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Overview

Require: DTA M
Return: almost equivalent hyper-minimal DTA

M «+ MINIMIZE(M) /I complexity: O(¢£mlog n)
2: P < COMPUTEPREAMBLE(M) /I complexity: O(¢m)

~ <+ {(q,9) | L(Mg)q,q) is finite}
4: forall B e (Q/~) do
select gg € B such that gg ¢ P if possible
6: merge each g € BN Pinto gg /Il complexity: O(|B|)
end for
8: return M
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Computing Preamble States

Lemma
The preamble states can be computed in time O(¢m) J
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Computing Preamble States

Lemma
The preamble states can be computed in time O(¢m)

Example
States q., gz (nonfinal) and g, g, (final)

=G 09 qv) =9  0(Ga, Q) — Qo

25
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Computing Preamble States

Lemma
The preamble states can be computed in time O(¢m)

Example
States q., gz (nonfinal) and g, g, (final)

=G 09 qv) =9  0(Ga, Q) — Qo

25
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Computing Almost Equivalence

Definition
Exclusive-or single-point self-product

My = (QUQ@2,X,6U6, F')

© FF={(q,q) | eitherge Forq € F}
o §'(o(cl(g,q)])) = (d(clal), é(cla)

Hyper-minimization for deterministic tree automata A.Jez and A. Maletti - 26



Computing Almost Equivalence

Definition
Exclusive-or single-point self-product

My = (QUQ@2,X,6U6, F')

© FF={(q,q) | eitherge Forq € F}
o §'(o(cl(g,q)])) = (d(clal), é(cla)

Lemma
We can construct Mg, in time O(¢mn).
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Computing Almost Equivalence
Definition
Exclusive-or single-point self-product

My = (QUQ@2,X,6U6, F')

© FF={(q,q) | eitherge Forq € F}
o §'(o(cl(g,q)])) = (d(clal), é(cla)

Lemma
We can construct Mg, in time O(¢mn).

Theorem
L(Mg)q,q) is finite <= q and q' are almost equivalent J
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Main Result

Theorem
Hyper-minimization can be performed in time O(¢mn) J
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Remaining Issues

Reduction
Minimization linearly reduces to hyper-minimization

o a
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Remaining Issues

Reduction
Minimization linearly reduces to hyper-minimization

o a

Efficiency Improvement

Using complex hashes we can improve hyper-minimization to

O(¢mlog n)

Hyper-minimization for deterministic tree automata
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Conclusion

Definition
States g and ¢’ are equivalent
if L(M)q and L(M)q are equal
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Conclusion

Definition
States g and @’ are almost equivalent
if L(M)q and L(M)q are almost equal
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Conclusion

Definition
States g and @’ are almost equivalent
if L(M)q and L(M)q are almost equal

Theorem

DTA hyper-minimal <= no different, but almost equivalent states
involving a preamble state
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Conclusion

Definition
States g and @’ are almost equivalent
if L(M)q and L(M)q are almost equal

Theorem

DTA hyper-minimal <= no different, but almost equivalent states
involving a preamble state

Theorem (HOGBERG et al. 2008)
We can efficiently construct an equivalent minimal DTA J
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Conclusion

Definition
States g and @’ are almost equivalent
if L(M)q and L(M)q are almost equal

Theorem

DTA hyper-minimal <= no different, but almost equivalent states
involving a preamble state

Theorem (here)
We can efficiently construct an equivalent hyper-minimal DTA
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Conclusion

Solved problems
@ Characterization of hyper-minimality
@ Hyper-minimization algorithm O(¢mn)
@ Minimization reduces to hyper-minimization
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Conclusion

Solved problems
@ Characterization of hyper-minimality
@ Hyper-minimization algorithm O(¢mn)
@ Minimization reduces to hyper-minimization

Open problems
@ Can hashes be avoided in optimized version?
@ Error optimization efficiently possible?
@ Sub-quadratic error optimization?

Hyper-minimization for deterministic tree automata
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