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I TST = Tree Series Transducer

I WTA = Weighted Tree Automaton
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Tree Series

I Assigns weight (e.g. a probability) to each tree

I Weight drawn from semiring; e.g. (R;+; �; 0; 1)
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I Finitely represents tree series

I De�nes the recognizable tree series

Application

I Re-ranker for parse trees

I Representation of parses
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Syntax

De�nition
Weighted tree automaton (wta) is tuple (Q;�;A;F ;T ) where

I Q: �nite set of states

I �: ranked alphabet of input symbols

I A = (A;+; �; 0; 1): semiring of weights

I F � Q: �nal states

I T : �nite set of transitions of the form �(q1; : : : ; qk)
a
! q
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Semantics

De�nition
Left-most derivations are de�ned as usual.

I Weight of a derivation:
product of the weights of the employed transitions
(each transition counted as often as it occurs)

I Weight wt(t) of a tree t:
sum of the weights of all left-most derivations that start
with t and end in a �nal state
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Determinism

De�nition
Deterministic wta: for every � and q1; : : : ; qk there exists exactly
one transition �(q1; : : : ; qk)

a
! q 2 T

Advantage

One derivation for each tree

Notes

I Deterministic wta do not use addition

I Recognizable 6= deterministically recognizable

I Determinization sometimes possible [Borchardt & Vogler '03]

I Partial determinization [May & Knight '06]
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Known Minimization Results

deterministic nondeterministic
string tree string tree

unweighted O(lm log n) O(lm log n) PSPACE PSPACE

weighted� O(lm log n) ? P P

I l : maximal rank of symbols

I m: number of transitions

I n: number of states
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Overview

Applicability

I Deterministic wta

I Commutative semi�eld (i.e. multiplicative inverses)

Roadmap

I Myhill-Nerode congruence relation [Borchardt '03]

I Determine signs of life

I Scale maps

I Re�nement



Myhill-Nerode congruence

De�nition
p � q: there exists nonzero a such that for every context C

wt(C [p]) = a � wt(C [q])

Notes

I Semi�elds are zero-divisor free

I Element a is unique if p is not dead
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Signs of Life

De�nition
Sign of life of q 2 Q: context C such that wt(C [q]) 6= 0

Example

6 3

1 2

f=0:5f=0:3

a=1 b=1

State Sign of life State Sign of life

1 f (�; b) 2 f (1;�)
3 � 6 �



Compute Signs of Life

How?

I start with �nal states

I apply transition as in a grammar

I record reached states and their signs of life

I rinse and repeat with those states

Theorem
We can determine signs of life in O(lm).
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Scaling Map

De�nition
f : Q ! A is scaling map for partition � of Q if

(i) f (q) = 1 for every dead state q

(ii) for every block B 2 � there exists context C such that

wt(C [q]) = f (q) � wt(C [r(B)])

and C is a sign of life for every live q 2 B

Note
Scaling maps are nonzero everywhere.

Theorem
A scaling map for � can be computed in time O(n2).
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Re�nement

De�nition
Re�nement of �: Split each block B 2 � into two blocks, where
one block contains all q such that

(ii) �(C [q])
a
! q0 �� p0

b
 �(C [r(B)])

(iii) if q0 is live, then

f (q)�1 � a � f (q0) = b � f (p0)

for all symbols � and contexts C .

Theorem
Each re�nement can be implemented to run in time O(lm).
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Complete Algorithm

Algorithm

(�; sol;D) ComputeSoL(M) // in O(lm)

2: � RefineCong(�) // classical minimization in O(lm log n)

f  ComputeSM(�) // in O(n2)

4: repeat

�0  � // store old partition

6: � Refine(�; f ) // in O(lm)

f  UpdateSM(�; f ) // in O(n)

8: until �0 = �
return minimized wta // in O(lm)

Notes

I Algorithm runs in O(lmn)

I Returns equivalent minimal deterministic wta
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Experiments

State Count

Original Minimal Reduction to

98 68 69%
394 308 78%
497 381 77%
727 515 71%
2701 1993 74%
3686 1766 48%

State & Transition Count

Error Original Minimal Reduction to

10�4 (727; 6485) (629; 6131) (87%; 95%)
10�2 (727; 6485) (525; 3425) (72%; 53%)
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