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Overview

Tree Series

» Assigns weight (e.g. a probability) to each tree
» Weight drawn from semiring; e.g. (R, +,+,0,1)

Weighted Tree Automaton

» Finitely represents tree series

> Defines the recognizable tree series

Application

» Re-ranker for parse trees

> Representation of parses



Syntax

Definition
Weighted tree automaton (wta) is tuple (Q, X, A, F, T) where
> Q: finite set of states
» . ranked alphabet of input symbols
» A= (A +,-,0,1): semiring of weights
» F C Q: final states



Syntax

Definition
Weighted tree automaton (wta) is tuple (Q, X, A, F, T) where
> Q: finite set of states
» . ranked alphabet of input symbols
» A= (A +,-,0,1): semiring of weights
» F C Q: final states
» T: finite set of transitions of the form o(qu,.. ., gk) 34
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Semantics

Definition
Left-most derivations are defined as usual.
» Weight of a derivation:
product of the weights of the employed transitions
(each transition counted as often as it occurs)



Semantics

Definition
Left-most derivations are defined as usual.
» Weight of a derivation:
product of the weights of the employed transitions
(each transition counted as often as it occurs)
» Weight wt(t) of a tree t:
sum of the weights of all left-most derivations that start
with t and end in a final state
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Sample Derivations
Input tree: f(a,b)  Derivation: f(a, b)
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Sample Derivations
Input tree: f(a,b)  Derivation: f(1, b) with weight 1
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Sample Derivations
Input tree: f(a,b)  Derivation: f(1,2) with weight 1
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Sample Derivations
Input tree: f(a,b)  Derivation: 3 with weight 0.3
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Sample Automaton
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a/l

Sample Derivations

Input tree: f(a,b)  Derivation: 3 with weight 0.3
(4,2) with weight 1
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Deterministic wta: for every ¢ and g1, ..., gk there exists exactly
one transition o(qg1,...,qx) > g€ T
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Determinism

Definition
Deterministic wta: for every ¢ and g1, ..., gk there exists exactly
one transition o(qg1,...,qx) > g€ T
Advantage
One derivation for each tree
Notes

> Deterministic wta do not use addition

» Recognizable # deterministically recognizable

» Determinization sometimes possible [Borchardt & Vogler '03]
» Partial determinization [May & Knight '06]
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Known Minimization Results

deterministic

nondeterministic

string tree string tree
unweighted | O(Imlogn) | O(/mlogn) | PSPACE | PSPACE
weighted® | O(/mlog n) 7 P P

» /: maximal rank of symbols

» m: number of transitions

» n: number of states
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Overview

Applicability

» Deterministic wta

» Commutative semifield (i.e. multiplicative inverses)

Roadmap

» MYHILL-NERODE congruence relation [Borchardt '03]
» Determine signs of life

> Scale maps

>

Refinement



MYHILL-NERODE congruence

Definition
p = g: there exists nonzero a such that for every context C

wt(Clp]) = a - wt(Clq))



MYHILL-NERODE congruence

Definition
p = g: there exists nonzero a such that for every context C

wt(Clp]) = a - wt(Clq))

Notes

» Semifields are zero-divisor free

» Element a is unique if p is not dead



Signs of Life

Definition
Sign of life of g € Q: context C such that wt(C[q]) # 0

Example

State Sign of life ‘ State Sign of life
1 f(o,b) 2 f(1,0)
3 O 6 O




Compute Signs of Life

How?

start with final states
apply transition as in a grammar

record reached states and their signs of life

vV v.vYvY

rinse and repeat with those states



Compute Signs of Life

How?

start with final states
apply transition as in a grammar

record reached states and their signs of life

vV v.vYvY

rinse and repeat with those states

Theorem
We can determine signs of life in O(Im).



Scaling Map

Definition
f: @ — Ais scaling map for partition 1 of Q if
(i) f(g) =1 for every dead state g
(ii) for every block B & I1 there exists context C such that

wt(Clq]) = f(q) - wt(C[r(B)])

and C is a sign of life for every live g € B

Note
Scaling maps are nonzero everywhere.



Scaling Map

Definition
f: @ — Ais scaling map for partition 1 of Q if
(i) f(g) =1 for every dead state g
(ii) for every block B & I1 there exists context C such that

wt(Clq]) = f(q) - wt(C[r(B)])

and C is a sign of life for every live g € B

Note
Scaling maps are nonzero everywhere.

Theorem
A scaling map for I can be computed in time O(n?).



Refinement

Definition
Refinement of IM: Split each block B € I into two blocks, where
one block contains all g such that

(i) o(Clal) > ¢ =n p' & o(C[r(B)))
(iii) if ¢ is live, then

for all symbols o and contexts C.



Refinement

Definition
Refinement of IM: Split each block B € I into two blocks, where
one block contains all g such that

(i) o(Clal) > ¢ =n p' & o(C[r(B)))
(iii) if ¢ is live, then

for all symbols o and contexts C.

Theorem
Each refinement can be implemented to run in time O(Im).



Complete Algorithm

Algorithm
(M, sol, D) <~ CoMPUTESOL(M) // in O(Im)
2: M1 <+~ REFINECONG(IN) // classical minimization in O(/mlog n)
f « ComMPUTESM(IN) // in O(n?)

4: repeat
n«n // store old partition
6: [ <+ REFINE(, ) // in O(Im)
f« UPDATESM(I‘I, f) // in O(n)

8: until " =1
return minimized wta // in O(Im)



Complete Algorithm

Algorithm
(M, sol, D) «+— CoMPUTESOL(M)
2: M1 <+~ REFINECONG(IN) // classical minimization in O(/mlog n)
f « ComMPUTESM(IN)
4: repeat
n«n // store old partition

6: [+ REFINE([, )
f UPDATESM(I‘I, f)
8: until " =1
return minimized wta

Notes

» Algorithm runs in O(/mn)

» Returns equivalent minimal deterministic wta
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Experiments

State Count

Original | Minimal Reduction to
98 68 69%

394 308 78%
497 381 7%
727 515 71%
2701 1993 74%
3686 1766 48%




Experiments

State Count

Original | Minimal Reduction to
98 68 69%

394 308 78%
497 381 7%
727 515 71%
2701 1993 74%
3686 1766 48%

State & Transition Count

Error ‘ Original Minimal Reduction to

10~* | (727,6485) (629,6131) (87%,95%)
1072 | (727,6485) (525,3425) (72%,53%)
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