
Minimization of

Deterministic Weighted Tree Automata

Andreas Maletti

March 6, 2009

Syntax-based MT

Overview

Parse
Trees

)
Translation
(e.g. TST)

)
Parse
Trees

)
Reranking
(e.g. WTA)

)
Parse
Trees

* +

Input
Text

Final
Outputs

Abbreviations

I TST = Tree Series Transducer

I WTA = Weighted Tree Automaton

Table of Contents

Weighted Tree Automata

Minimization

Our Algorithm

Some Experimental Results

Table of Contents

Weighted Tree Automata

Minimization

Our Algorithm

Some Experimental Results

Overview

Tree Series

I Assigns weight (e.g. a probability) to each tree

I Weight drawn from semiring; e.g. (R;+; �; 0; 1)

Weighted Tree Automaton

I Finitely represents tree series

I De�nes the recognizable tree series

Application

I Re-ranker for parse trees

I Representation of parses

Overview

Tree Series

I Assigns weight (e.g. a probability) to each tree

I Weight drawn from semiring; e.g. (R;+; �; 0; 1)

Weighted Tree Automaton

I Finitely represents tree series

I De�nes the recognizable tree series

Application

I Re-ranker for parse trees

I Representation of parses

Overview

Tree Series

I Assigns weight (e.g. a probability) to each tree

I Weight drawn from semiring; e.g. (R;+; �; 0; 1)

Weighted Tree Automaton

I Finitely represents tree series

I De�nes the recognizable tree series

Application

I Re-ranker for parse trees

I Representation of parses

Syntax

De�nition
Weighted tree automaton (wta) is tuple (Q;�;A;F ;T) where

I Q: �nite set of states

I �: ranked alphabet of input symbols

I A = (A;+; �; 0; 1): semiring of weights

I F � Q: �nal states

I T : �nite set of transitions of the form �(q1; : : : ; qk)
a
! q

Syntax

De�nition
Weighted tree automaton (wta) is tuple (Q;�;A;F ;T) where

I Q: �nite set of states

I �: ranked alphabet of input symbols

I A = (A;+; �; 0; 1): semiring of weights

I F � Q: �nal states

I T : �nite set of transitions of the form �(q1; : : : ; qk)
a
! q

Syntax | Illustration

Sample Automaton

3 6

1 2 4 5

f=0:5f=0:3

a=1 b=1 a=1 a=1

Semantics

De�nition
Left-most derivations are de�ned as usual.

I Weight of a derivation:
product of the weights of the employed transitions
(each transition counted as often as it occurs)

I Weight wt(t) of a tree t:
sum of the weights of all left-most derivations that start
with t and end in a �nal state

Semantics

De�nition
Left-most derivations are de�ned as usual.

I Weight of a derivation:
product of the weights of the employed transitions
(each transition counted as often as it occurs)

I Weight wt(t) of a tree t:
sum of the weights of all left-most derivations that start
with t and end in a �nal state

Semantics | Illustration

Sample Automaton

3 6

1 2 4 5

f=0:5f=0:3

a=1 b=1 a=1 a=1

Sample Derivations

Input tree: f (a; b) Derivation: f (a; b)

Semantics | Illustration

Sample Automaton

3 6

1 2 4 5

f=0:5f=0:3

a=1 b=1 a=1 a=1

Sample Derivations

Input tree: f (a; b) Derivation: f (1; b) with weight 1

Semantics | Illustration

Sample Automaton

3 6

1 2 4 5

f=0:5f=0:3

a=1 b=1 a=1 a=1

Sample Derivations

Input tree: f (a; b) Derivation: f (1; 2) with weight 1

Semantics | Illustration

Sample Automaton

3 6

1 2 4 5

f=0:5f=0:3

a=1 b=1 a=1 a=1

Sample Derivations

Input tree: f (a; b) Derivation: 3 with weight 0:3

Semantics | Illustration

Sample Automaton

3 6

1 2 4 5

f=0:5f=0:3

a=1 b=1 a=1 a=1

Sample Derivations

Input tree: f (a; b) Derivation: 3 with weight 0:3
f (4; b) with weight 1

Semantics | Illustration

Sample Automaton

3 6

1 2 4 5

f=0:5f=0:3

a=1 b=1 a=1 a=1

Sample Derivations

Input tree: f (a; b) Derivation: 3 with weight 0:3
f (4; 2) with weight 1

Determinism

De�nition
Deterministic wta: for every � and q1; : : : ; qk there exists exactly
one transition �(q1; : : : ; qk)

a
! q 2 T

Advantage

One derivation for each tree

Notes

I Deterministic wta do not use addition

I Recognizable 6= deterministically recognizable

I Determinization sometimes possible [Borchardt & Vogler '03]

I Partial determinization [May & Knight '06]

Determinism

De�nition
Deterministic wta: for every � and q1; : : : ; qk there exists exactly
one transition �(q1; : : : ; qk)

a
! q 2 T

Advantage

One derivation for each tree

Notes

I Deterministic wta do not use addition

I Recognizable 6= deterministically recognizable

I Determinization sometimes possible [Borchardt & Vogler '03]

I Partial determinization [May & Knight '06]

Determinism

De�nition
Deterministic wta: for every � and q1; : : : ; qk there exists exactly
one transition �(q1; : : : ; qk)

a
! q 2 T

Advantage

One derivation for each tree

Notes

I Deterministic wta do not use addition

I Recognizable 6= deterministically recognizable

I Determinization sometimes possible [Borchardt & Vogler '03]

I Partial determinization [May & Knight '06]

Table of Contents

Weighted Tree Automata

Minimization

Our Algorithm

Some Experimental Results

Known Minimization Results

deterministic nondeterministic
string tree string tree

unweighted O(lm log n) O(lm log n) PSPACE PSPACE

weighted� O(lm log n) ? P P

I l : maximal rank of symbols

I m: number of transitions

I n: number of states

Table of Contents

Weighted Tree Automata

Minimization

Our Algorithm

Some Experimental Results

Overview

Applicability

I Deterministic wta

I Commutative semi�eld (i.e. multiplicative inverses)

Roadmap

I Myhill-Nerode congruence relation [Borchardt '03]

I Determine signs of life

I Scale maps

I Re�nement

Myhill-Nerode congruence

De�nition
p � q: there exists nonzero a such that for every context C

wt(C [p]) = a � wt(C [q])

Notes

I Semi�elds are zero-divisor free

I Element a is unique if p is not dead

Myhill-Nerode congruence

De�nition
p � q: there exists nonzero a such that for every context C

wt(C [p]) = a � wt(C [q])

Notes

I Semi�elds are zero-divisor free

I Element a is unique if p is not dead

Signs of Life

De�nition
Sign of life of q 2 Q: context C such that wt(C [q]) 6= 0

Example

6 3

1 2

f=0:5f=0:3

a=1 b=1

State Sign of life State Sign of life

1 f (�; b) 2 f (1;�)
3 � 6 �

Compute Signs of Life

How?

I start with �nal states

I apply transition as in a grammar

I record reached states and their signs of life

I rinse and repeat with those states

Theorem
We can determine signs of life in O(lm).

Compute Signs of Life

How?

I start with �nal states

I apply transition as in a grammar

I record reached states and their signs of life

I rinse and repeat with those states

Theorem
We can determine signs of life in O(lm).

Scaling Map

De�nition
f : Q ! A is scaling map for partition � of Q if

(i) f (q) = 1 for every dead state q

(ii) for every block B 2 � there exists context C such that

wt(C [q]) = f (q) � wt(C [r(B)])

and C is a sign of life for every live q 2 B

Note
Scaling maps are nonzero everywhere.

Theorem
A scaling map for � can be computed in time O(n2).

Scaling Map

De�nition
f : Q ! A is scaling map for partition � of Q if

(i) f (q) = 1 for every dead state q

(ii) for every block B 2 � there exists context C such that

wt(C [q]) = f (q) � wt(C [r(B)])

and C is a sign of life for every live q 2 B

Note
Scaling maps are nonzero everywhere.

Theorem
A scaling map for � can be computed in time O(n2).

Re�nement

De�nition
Re�nement of �: Split each block B 2 � into two blocks, where
one block contains all q such that

(ii) �(C [q])
a
! q0 �� p0

b
 �(C [r(B)])

(iii) if q0 is live, then

f (q)�1 � a � f (q0) = b � f (p0)

for all symbols � and contexts C .

Theorem
Each re�nement can be implemented to run in time O(lm).

Re�nement

De�nition
Re�nement of �: Split each block B 2 � into two blocks, where
one block contains all q such that

(ii) �(C [q])
a
! q0 �� p0

b
 �(C [r(B)])

(iii) if q0 is live, then

f (q)�1 � a � f (q0) = b � f (p0)

for all symbols � and contexts C .

Theorem
Each re�nement can be implemented to run in time O(lm).

Complete Algorithm

Algorithm

(�; sol;D) ComputeSoL(M) // in O(lm)

2: � RefineCong(�) // classical minimization in O(lm log n)

f ComputeSM(�) // in O(n2)

4: repeat

�0 � // store old partition

6: � Refine(�; f) // in O(lm)

f UpdateSM(�; f) // in O(n)

8: until �0 = �
return minimized wta // in O(lm)

Notes

I Algorithm runs in O(lmn)

I Returns equivalent minimal deterministic wta

Complete Algorithm

Algorithm

(�; sol;D) ComputeSoL(M) // in O(lm)

2: � RefineCong(�) // classical minimization in O(lm log n)

f ComputeSM(�) // in O(n2)

4: repeat

�0 � // store old partition

6: � Refine(�; f) // in O(lm)

f UpdateSM(�; f) // in O(n)

8: until �0 = �
return minimized wta // in O(lm)

Notes

I Algorithm runs in O(lmn)

I Returns equivalent minimal deterministic wta

Table of Contents

Weighted Tree Automata

Minimization

Our Algorithm

Some Experimental Results

Experiments

State Count

Original Minimal Reduction to

98 68 69%
394 308 78%
497 381 77%
727 515 71%
2701 1993 74%
3686 1766 48%

State & Transition Count

Error Original Minimal Reduction to

10�4 (727; 6485) (629; 6131) (87%; 95%)
10�2 (727; 6485) (525; 3425) (72%; 53%)

Experiments

State Count

Original Minimal Reduction to

98 68 69%
394 308 78%
497 381 77%
727 515 71%
2701 1993 74%
3686 1766 48%

State & Transition Count

Error Original Minimal Reduction to

10�4 (727; 6485) (629; 6131) (87%; 95%)
10�2 (727; 6485) (525; 3425) (72%; 53%)

References

I B. Borchardt and H. Vogler
Determinization of Finite State Weighted Tree Automata.
J. Autom. Lang. Combin. 8(3), 2003

I B. Borchardt

The Myhill-Nerode Theorem for Recognizable Tree Series.
Proc. DLT, LNCS 2710, Springer, 2003

I J. May and K. Knight
A Better N-Best List: Practical Determinization of Weighted
Finite Tree Automata.
Proc. HLT-NAACL, ACL, 2006

I M. Droste, W. Kuich and H. Vogler (eds.)
Handbook of Weighted Automata.
Springer, 2009

	Weighted Tree Automata
	Minimization
	Our Algorithm
	Some Experimental Results

