Minimization of Weighted Automata

Andreas Maletti

International Computer Science Institute Berkeley, CA, USA

Dresden — May 14, 2008

Table of Contents

- Weighted Automata
- Minimization of Weighted Automata
- Weighted Tree Automaton
- Minimization of WTA
- Some Experimental Results

Syntax

Definition (Weighted automaton)

 (Q, Σ, μ, I, F)

- Q finite set of states
- Σ alphabet
- μ : $\mathbf{Q} \times \mathbf{\Sigma} \times \mathbf{Q} \rightarrow \mathbf{A}$
- I: Q → A initial weights
- F: Q → A final weights

References

- Berstel, Reutenauer: Rational series and their languages.
 Springer, 1988
- Kuich, Salomaa: Semirings, automata, languages. Springer, 1986

Syntax

Example

Definition (Weighted automaton)

 (Q, Σ, μ, I, F)

- Q finite set of states
- Σ alphabet
- μ : $\mathbf{Q} \times \mathbf{\Sigma} \times \mathbf{Q} \rightarrow \mathbf{A}$
- I: Q → A initial weights
- F: Q → A final weights

References

- Berstel, Reutenauer: Rational series and their languages.
 Springer, 1988
- Kuich, Salomaa: Semirings, automata, languages. Springer, 1986

Weight structure: Semiring $A = (A, +, \cdot, 0, 1)$

Definition (Semantics)

$$egin{aligned} h_{\mu}\colon \Sigma^* & o \mathsf{A}^{\mathsf{Q}} \ h_{\mu}(arepsilon)_q &= \mathit{l}(q) \ h_{\mu}(\mathit{wa})_q &= \sum_{p\in \, \mathsf{Q}} h_{\mu}(\mathit{w})_p \cdot \mu(p, \mathit{a}, q) \end{aligned}$$

$$h_{\mu}(a) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $h_{\mu}(aa) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $h_{\mu}(aaa) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Weight structure: Semiring $A = (A, +, \cdot, 0, 1)$

Definition (Semantics)

$$egin{aligned} h_{\mu}\colon \Sigma^* & o \mathsf{A}^{\mathsf{Q}} \ h_{\mu}(arepsilon)_q &= \mathit{l}(q) \ h_{\mu}(\mathit{wa})_q &= \sum_{p\in \, \mathsf{Q}} h_{\mu}(\mathit{w})_p \cdot \mu(p, \mathit{a}, q) \end{aligned}$$

$$h_{\mu}(a) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $h_{\mu}(aa) = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $h_{\mu}(aaa) = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$

Weight structure: Semiring $A = (A, +, \cdot, 0, 1)$

Definition (Semantics)

$$egin{aligned} h_{\mu} \colon \Sigma^* & o \mathsf{A}^\mathsf{Q} \ h_{\mu}(arepsilon)_q &= \mathit{I}(q) \ h_{\mu}(\mathit{wa})_q &= \sum_{oldsymbol{p} \in \, \mathsf{Q}} h_{\mu}(\mathit{w})_{oldsymbol{p}} \cdot \mu(oldsymbol{p}, oldsymbol{a}, oldsymbol{q}) \end{aligned}$$

$$h_{\mu}(a)=egin{pmatrix}1\\1\end{pmatrix}$$
 $h_{\mu}(aa)=egin{pmatrix}2\\1\end{pmatrix}$ $h_{\mu}(aaa)=egin{pmatrix}3\\2\end{pmatrix}$

Weight structure: Semiring $A = (A, +, \cdot, 0, 1)$

Definition (Semantics)

$$egin{aligned} h_{\mu} \colon \Sigma^* & o \mathsf{A}^{\mathsf{Q}} \ h_{\mu}(arepsilon)_q &= \mathit{I}(q) \ h_{\mu}(\mathit{wa})_q &= \sum_{oldsymbol{p} \in \, \mathsf{Q}} h_{\mu}(\mathit{w})_{oldsymbol{p}} \cdot \mu(oldsymbol{p}, oldsymbol{a}, oldsymbol{q}) \end{aligned}$$

$$h_{\mu}(a)=egin{pmatrix}1\\1\end{pmatrix}$$
 $h_{\mu}(aa)=egin{pmatrix}2\\1\end{pmatrix}$ $h_{\mu}(aaa)=egin{pmatrix}3\\2\end{pmatrix}$

Table of Contents

- Weighted Automata
- Minimization of Weighted Automata
- Weighted Tree Automator
- Minimization of WTA
- Some Experimental Results

Overview

Results				
Method	Nondet.	Det.	Complexity	Reference
Pushing & HOPCROFT	_	Х	$O(m \log n)$	Mohri
Forward Bisimulation	x	х	$O(m \log n)$	Buchholz
Backward Bisimulation	x	_	$O(m \log n)$	Buchholz
Backward Simulation	x	-	O(mn)	Ranzato,
Full minimization	x	Х	P	Berstel,

Notation

- m: number of transitions
- n: number of states

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

1. Push

Move weights toward the front

2. Minimize

Minimize as unweighted automaton; treat weight as part of label

Prerequisites (ala Eisner)

- Automaton deterministic
- Semiring multiplicatively cancellative
- Semiring allows greedy factorization

Definition (Greedy factorization)

There exists a mapping $f: A^2 \to A$ such that for all $a, b, c \in A$ with $c \neq 0$:

If
$$a|c$$
 and $b|c$, then $\frac{c}{a \cdot f(a,b)} = \frac{c}{b \cdot f(b,a)}$

Prerequisites (ala Eisner)

- Automaton deterministic
- Semiring multiplicatively cancellative
- Semiring allows greedy factorization

Definition (Greedy factorization)

There exists a mapping $f: A^2 \to A$ such that for all $a, b, c \in A$ with $c \neq 0$:

If
$$a|c$$
 and $b|c$, then $\frac{c}{a \cdot f(a,b)} = \frac{c}{b \cdot f(b,a)}$

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r \in [q]} \mu(\boldsymbol{p}, \boldsymbol{a}, r) = \sum_{r \in [q]} \mu(\boldsymbol{p}', \boldsymbol{a}, r)$$

for every $p \equiv p'$, state q, and symbol a.

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r \in [q]} \mu(\boldsymbol{p}, \boldsymbol{a}, r) = \sum_{r \in [q]} \mu(\boldsymbol{p}', \boldsymbol{a}, r)$$

for every $p \equiv p'$, state q, and symbol a.

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r \in [q]} \mu(\boldsymbol{p}, \boldsymbol{a}, r) = \sum_{r \in [q]} \mu(\boldsymbol{p}', \boldsymbol{a}, r)$$

for every $p \equiv p'$, state q, and symbol a.

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r\in[q]}\mu(\boldsymbol{p},\boldsymbol{a},r)=\sum_{r\in[q]}\mu(\boldsymbol{p}',\boldsymbol{a},r)$$

for every $p \equiv p'$, state q, and symbol a.

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r\in[q]}\mu(\boldsymbol{p},\boldsymbol{a},r)=\sum_{r\in[q]}\mu(\boldsymbol{p}',\boldsymbol{a},r)$$

for every $p \equiv p'$, state q, and symbol a.

Definition (Forward bisimulation unweighted)

Reflexive, symmetric, and transitive relation \equiv on states such that F(p) = F(p') and

$$\exists q' \equiv q \colon \mu(p,a,q) \leq \mu(p',a,q')$$

for every $p \equiv p'$, state q, and symbol a.

Definition (Forward bisimulation unweighted)

Reflexive, symmetric, and transitive relation \equiv on states such that F(p) = F(p') and

$$\exists q' \equiv q \colon \mu(p, a, q) \leq \mu(p', a, q')$$

for every $p \equiv p'$, state q, and symbol a.

Definition (Forward simulation)

Pre-order \leq on states such that $F(p) \leq F(p')$ and

$$\exists q' \geq q \colon \mu(p, a, q) \leq \mu(p', a, q')$$

for every $p \le p'$, state q, and symbol a.

Definition (Forward simulation)

Pre-order \leq on states such that $F(p) \leq F(p')$ and

$$\exists q' \geq q \colon \mu(p, a, q) \leq \mu(p', a, q')$$

for every $p \le p'$, state q, and symbol a.

Definition (Forward simulation)

Pre-order \leq on states such that $F(p) \leq F(p')$ and

$$\exists q' \geq q \colon \mu(p,a,q) \leq \mu(p',a,q')$$

for every $p \le p'$, state q, and symbol a.

Note

Does in general not preserve the language!

Backward Simulation [Abdulla et. al.]

Definition (Backward (bi)simulation)

A forward (bi)simulation on the reversed automaton.

Example $\begin{array}{c} a/1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \end{array}$ $1 \leq 2 \leq 1$

Theorem

Reducing automaton by $\leq \cap \geq$ with \leq a backward simulation preserves the language.

Note

Slightly more general than backward bisimulation.

Backward Simulation [Abdulla et. al.]

Definition (Backward (bi)simulation)

A forward (bi)simulation on the reversed automaton.

Example $\begin{array}{c} a/1 \\ 1 \\ 1 \\ 1 \end{array}$ $\begin{array}{c} a/1 \\ 1 \\ 2 \end{array}$ $1 \le 2 \le 1$

Theorem

Reducing automaton by $\leq \cap \geq$ with \leq a backward simulation preserves the language.

Note

Slightly more general than backward bisimulation.

Table of Contents

- Weighted Automata
- Minimization of Weighted Automata
- Weighted Tree Automaton
- Minimization of WTA
- Some Experimental Results

Syntax

Example (Transition)

Definition (Weighted tree automaton)

$$(Q, \Sigma, (\mu_k)_{k \in \mathbb{N}}, F)$$

- Q finite set of states
- Σ ranked alphabet
- $\mu_k : \mathbf{Q}^k \times \Sigma_k \times \mathbf{Q} \to \mathbf{A}$
- F: Q → A final weights

References

- Berstel, Reutenauer: Recognizable formal power series on trees. TCS 18, 1982
- Borchardt: The theory of recognizable tree series. Dissertation, 2004

Syntax — Illustration

Definition

Let $t \in T_{\Sigma}(Q)$ and W = pos(t).

- Run on t: map $r: W \to Q$ with r(w) = t(w) if $t(w) \in Q$
- Weight of r

$$wt(r) = \prod_{\substack{w \in W \\ t(w) \in \Sigma}} \mu_k(r(w1), \dots, r(wk), t(w), r(w))$$

Recognized tree series

$$(\|M\|, t) = \sum_{r \text{ run on } t} F(r(\varepsilon)) \cdot \text{wt}(r)$$

Semantics

Definition

Let $t \in T_{\Sigma}(Q)$ and W = pos(t).

- Run on t: map $r: W \to Q$ with r(w) = t(w) if $t(w) \in Q$
- Weight of r

$$\operatorname{wt}(r) = \prod_{\substack{w \in W \\ t(w) \in \Sigma}} \mu_k(r(w1), \dots, r(wk), t(w), r(w))$$

Recognized tree series

$$(\|M\|, t) = \sum_{r \text{ run on } t} F(r(\varepsilon)) \cdot \text{wt}(r)$$

Semantics

Definition

Let $t \in T_{\Sigma}(Q)$ and W = pos(t).

- Run on t: map $r: W \to Q$ with r(w) = t(w) if $t(w) \in Q$
- Weight of r

$$\operatorname{wt}(r) = \prod_{\substack{w \in W \\ t(w) \in \Sigma}} \mu_k(r(w1), \dots, r(wk), t(w), r(w))$$

Recognized tree series

$$(\|M\|, t) = \sum_{r \text{ run on } t} F(r(\varepsilon)) \cdot \text{wt}(r)$$

Example (Automaton)

Example (Runs)

Input tree:

f

Runs:

with weight 0

á Ì

Example (Automaton)

Example (Runs)

Input tree:

Runs:

with weight

Example (Automaton)

Example (Runs)

Input tree:

f

Runs:

with weight 1

á Ì

Example (Automaton)

Example (Runs)

Input tree:

f

Runs:

with weight 1

á Ì

Example (Automaton)

Example (Runs)

Input tree:

F

Runs:

with weight 0.3

á

Table of Contents

- Weighted Automata
- Minimization of Weighted Automata
- Weighted Tree Automator
- Minimization of WTA
- Some Experimental Results

Overview

Results				
Method	Nondet.	Det.	Complexity	Reference
Det. Minimization	_	Х	O(rmn ⁴)	
Forw. Bisimulation	x	Х	$O(rm \log n)$	Högberg,
Backw. Bisimulation	x	_	$O(r^2 m \log n)$	Högberg,
Backw. Simulation	x	_	$O(r^2mn)$	Abdulla,
Full minimization	x	Х	P	Bozapalidis

Notation

- m: number of transitions
- n: number of states
- r: maximal rank of the input symbols

Forward Bisimulation [Högberg, et. al.]

Definition (Forward bisimulation)

Equivalence relation \equiv on states such that F(p) = F(p') and

$$\sum_{r\in[q]}\mu(\ldots,\boldsymbol{p},\ldots,\boldsymbol{a},r)=\sum_{r\in[q]}\mu(\ldots,\boldsymbol{p}',\ldots,\boldsymbol{a},r)$$

for every $p \equiv p'$, symbol a, and states q and

Backward Bisimulation [Högberg, et. al.]

Definition (Backward bisimulation)

Equivalence relation \equiv on states such that

$$\sum_{q_1\cdots q_k\in B_1\cdots B_k}\mu(q_1,\ldots,q_k,\textbf{a},\textbf{p})=\sum_{q_1\cdots q_k\in B_1\cdots B_k}\mu(q_1,\ldots,q_k,\textbf{a},\textbf{p}')$$

for every $p \equiv p'$, symbol a, and blocks B_1, \ldots, B_k .

Det. Minimization — Overview

Applicability

- Deterministic wta
- Commutative semifield (i.e. multiplicative inverses)

Roadmap

- MYHILL-NERODE congruence relation [Borchardt]
- Determine signs of life
- Refinement

MYHILL-NERODE congruence

Definition

 $p \equiv q$: there exists nonzero a such that for every context C

$$(\|M\|, C[p]) = a \cdot (\|M\|, C[q])$$

Notes

- Semifields are zero-divisor free
- Element a is unique if p is not dead

MYHILL-NERODE congruence

Definition

 $p \equiv q$: there exists nonzero a such that for every context C

$$(\|M\|, C[p]) = a \cdot (\|M\|, C[q])$$

Notes

- Semifields are zero-divisor free
- Element a is unique if p is not dead

Signs of Life

Definition

Sign of life of $q \in Q$: context C such that $(\|M\|, C[q]) \neq 0$

Example

State	Sign of life	State	Sign of life
1	$f(\Box,b)$	2	<i>f</i> (1, □)
3		6	

Stages

Definition

Stage (Π, sol, f, r) :

- (i) \equiv refinement of \equiv_{Π}
- (ii) $sol(F) = \{\Box\}$
- (iii) for live q with p = r([q])

$$(||M||, sol(p)[q]) = f(q) \cdot (||M||, sol(p)[p])$$

- (iv) \equiv_{Π} congruence
- (v) for symbol σ and context C with live $\delta_{\sigma}(C[q])$

$$f(q)^{-1} \cdot c_{\sigma}(C[q]) \cdot f(\delta_{\sigma}(C[q])) = c_{\sigma}(C[p]) \cdot f(\delta_{\sigma}(C[p]))$$

where $\delta_{\sigma}: \mathbb{Q}^k \to \mathbb{Q}$ and $c_{\sigma}: \mathbb{Q}^k \to A$

Stages

Definition

Stable stage (Π , sol, f, r):

- (i) \equiv refinement of \equiv_{Π}
- (ii) $sol(F) = {\square}$
- (iii) for live q with p = r([q])

$$(\|M\|, \mathsf{sol}(p)[q]) = f(q) \cdot (\|M\|, \mathsf{sol}(p)[p])$$

- (iv) \equiv_{Π} congruence
- (v) for symbol σ and context C with live $\delta_{\sigma}(C[q])$

$$f(q)^{-1} \cdot c_{\sigma}(C[q]) \cdot f(\delta_{\sigma}(C[q])) = c_{\sigma}(C[p]) \cdot f(\delta_{\sigma}(C[p]))$$

where $\delta_{\sigma}: \mathbb{Q}^k \to \mathbb{Q}$ and $c_{\sigma}: \mathbb{Q}^k \to A$

Refining a Stage

Definition

Refinement of (Π, sol, f, r) : Partition Π' with $p \equiv_{\Pi'} q$ if

- (i) $p \equiv_{\Pi} q$
- (ii) $\delta_{\sigma}(C[p]) \equiv_{\Pi} \delta_{\sigma}(C[q])$
- (iii) if $\delta_{\sigma}(C[p])$ is live, then

$$f(p)^{-1} \cdot c_{\sigma}(C[p]) \cdot f(\delta_{\sigma}(C[p])) = f(q)^{-1} \cdot c_{\sigma}(C[q]) \cdot f(\delta_{\sigma}(C[q]))$$

for states p and q, symbol σ , and context C

Complete Algorithm

Algorithm

```
(\Pi', \operatorname{sol}, D) \leftarrow \operatorname{ComputeSol}(M)
```

2: repeat

$$(\Pi, \operatorname{sol}, f, r) \leftarrow \operatorname{Complete}(M, \Pi', \operatorname{sol}, D)$$

- 4: $\Pi' \leftarrow \mathsf{ReFINE}(M, \Pi, \mathsf{sol}, f, r, D)$ **until** $\Pi' = \Pi$
- 6: return minimized wta

Notes

- Algorithm runs in O(rmn⁴)
- Returns equivalent minimal deterministic wta

Complete Algorithm

Algorithm

```
(\Pi', \operatorname{sol}, D) \leftarrow \operatorname{ComputeSol}(M)
```

2: repeat

$$(\Pi, \operatorname{sol}, f, r) \leftarrow \operatorname{Complete}(M, \Pi', \operatorname{sol}, D)$$

- 4: $\Pi' \leftarrow \mathsf{ReFINE}(M, \Pi, \mathsf{sol}, f, r, D)$ **until** $\Pi' = \Pi$
- 6: return minimized wta

Notes

- Algorithm runs in O(rmn⁴)
- Returns equivalent minimal deterministic wta

Table of Contents

- Weighted Automata
- Minimization of Weighted Automata
- Weighted Tree Automator
- Minimization of WTA
- Some Experimental Results

Experiments

State Count

Original	Minimal	Reduction to
98	68	69%
394	308	78%
497	381	77%
727	515	71%
2701	1993	74%
3686	1766	48%

State & Transition Coun

Erro	r O	riginal	M	inimal	R	Reductio	n to
10-	4 (72	7,6485)	(629	9, 6131)		87%, 95	5%)
10-	2 (72	7,6485)	(52	5, 3425)		[72%, 53]	

Experiments

State Count

Original	Minimal	Reduction to
98	68	69%
394	308	78%
497	381	77%
727	515	71%
2701	1993	74%
3686	1766	48%

State & Transition Count

Error	Original	Minimal	Reduction to
10^{-4}	(727, 6485)	(629, 6131)	(87%, 95%)
10^{-2}	(727, 6485)	(525, 3425)	(72%, 53%)

The End

Thank You!

