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Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. � commutative

I A mapping f assigning weights to in�nitely many trees

Question

How to �nitely represent such maps f ?
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Immediate answer

Non-default value ( 6= 0) for only �nitely many trees



Tree Series

Prerequisites

I Semiring structure on weights

I Commutative semiring; i.e. � commutative

I A mapping f assigning weights to in�nitely many trees

Question

How to �nitely represent such maps f ?

Better answer

Finite-state automaton computes map



Recognizable Tree Series

Determinism

I For e�ciency we prefer deterministic devices

I Single run for each input

Questions

I Which mappings can be computed in this way?

I Can a given map f be computed in this way?

I How many states are needed to compute a map f ?

Answer

The Myhill-Nerode congruence relation
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Syntax

De�nition (Borchardt and Vogler '03)

Weighted tree automaton: (Q;�;A; �;F )

I Q �nite set of states

I � ranked alphabet of input symbols

I A = (A;+; �; 0; 1) commutative semiring of weights

I � = (�k)k�0 with �k : Q
k � �(k) � Q ! A transition weights

I F : Q ! A �nal weights

De�nition
deterministic wta: for every (w ; �) 2 Qk � �(k) there exists
exactly one q 2 Q such that �k(w ; �; q) 6= 0



Syntax

De�nition (Borchardt and Vogler '03)

Weighted tree automaton: (Q;�;A; �;F )

I Q �nite set of states

I � ranked alphabet of input symbols

I A = (A;+; �; 0; 1) commutative semiring of weights

I � = (�k)k�0 with �k : Q
k � �(k) � Q ! A transition weights

I F : Q ! A �nal weights

De�nition
deterministic wta: for every (w ; �) 2 Qk � �(k) there exists
exactly one q 2 Q such that �k(w ; �; q) 6= 0



Example | Syntax

Example
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with weight �k(q1 � � � qk ; �; q)
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Semantics
kMk(t) =

X

q2Q

F (q) � h�(t)q
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Recognizability

De�nition
recognizable f : there exists wta M such that kMk = f

Notation

I Context: tree with exactly one occurrence of �
S
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De�nition
For every t 2 Trees(�) let t�1f : Contexts(�)! A with

t�1f (c) = f (c[t])
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Notation

I size: number of nodes in a tree

Example

Given two trees t and u

t�1 size(c) = size(c[t]) = size(c)� 1 + size(t)

u�1 size(c) = size(c[u]) = size(c)� 1 + size(u)

I Suppose that A is a �eld

I Vf sub-vectorspace generated by t�1f for all t

I t�1 size and ~1 are basis of Vsize and dimVsize = 2
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Recognizability (cont'd)

Theorem (Bozapalidis, Louscou-Bozapalidou '83)

Let A �eld and f : Trees(�)! A

f recognizable () dimVf �nite

Notes

I String case by [Reutenauer '80]

I Re�ned by [Arz '83] to identify requirements for direction

I Led to necessary and/or su�cient conditions of recognizability

I Tree case: no re�nement yet
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Deterministic recognizability

De�nition
det. recognizable f : there is det. wta M such that kMk = f

De�nition (Myhill-Nerode congruence)

t �f u: there is nonzero a 2 A such that t�1f = a � u�1f

f (c[t]) = a � f (c[u]) 8 contexts c

Example

t �size u i� size(t) = size(u) because
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Deterministic recognizability

De�nition
det. recognizable f : there is det. wta M such that kMk = f

De�nition (Myhill-Nerode congruence)

t �f u: there is nonzero a 2 A such that t�1f = a � u�1f

f (c[t]) = a � f (c[u]) 8 contexts c

Example

t �size u i� size(t) = size(u) because

t�1 size(c) = size(c)� 1 + size(t)

u�1 size(c) = size(c)� 1 + size(u)

Index of �size in�nite



Deterministic recognizability (cont'd)

Theorem (Borchardt '03)

Let A semi�eld and f : Trees(�)! A

f det. recognizable () �f �nite index

Notes

I So size is not det. recognizable

I Re�nements only for smaller classes (all-accepting wta)
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Re�nement

De�nition (Borchardt '05)

t �f u: there exist nonzero a; b 2 A such that a � t�1f = b � u�1f

a � f (c[t]) = b � f (c[u]) 8 contexts c

De�nition
Zero-divisor free A: a � b = 0 implies 0 2 fa; bg

Lemma
If A zero-divisor free, then �f congruence of term algebra Trees(�)
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Re�nement (cont'd)

Theorem (Necessary condition)

If A zero-divisor free, then

f det. recognizable =) �f �nite index

Theorem
If A zero-divisor free, then every det. wta recognizing f has at

least index(�f ) states

Corollary

height (longest path) not det. recognizable using addition
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Re�nement (cont'd)

Question
What about

f det. recognizable (= �f �nite index

Notes

I Holds for semi�elds [Borchardt '03]

I In the string case:
Re�nement for certain cancellative semirings by [Eisner '03]

I In the tree case: Open
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All-accepting wta

De�nition (Drewes and Vogler '07)

all-accepting wta: F = ~1

De�nition
subtree-closed f : f (t) 6= 0 implies f (u) 6= 0 for all subtrees u of t

Lemma
f det. aa-recognizable i� f det. recognizable and subtree-closed

Theorem
If A cancellative, then

f det. aa-recognizable () �f �nite index and f subtree-closed

Notes

I Improves on a similar statement for semi�eld
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