

Myhill-Nerode Theorem for Recognizable Tree Series — Revisited

Andreas Maletti

Mondello - Palermo, 22 June 2007

00 Motivation

Goal

- Given $\psi \colon T_{\Sigma} \to A$ with $(A, +, \cdot, 0, 1)$ commutative semiring
- Is ψ (deterministically) recognizable?

Answers

• If A field, then ψ recognizable iff dim V_{ψ} finite [Bozapalidis et.al. '83]

00 Motivation

Goal

- Given $\psi \colon T_{\Sigma} \to A$ with $(A, +, \cdot, 0, 1)$ commutative semiring
- Is ψ (deterministically) recognizable?

Answers

- If A field, then ψ recognizable iff dim V_{ψ} finite [Bozapalidis et.al. '83]
- If A semifield, then ψ deterministically recognizable iff \equiv_{ψ} finite index [Borchardt '03]

00 Motivation

Goal

- Given $\psi \colon T_{\Sigma} \to A$ with $(A, +, \cdot, 0, 1)$ commutative semiring
- Is ψ (deterministically) recognizable?

Answers

- If A field, then ψ recognizable iff dim V_{ψ} finite [Bozapalidis et.al. '83]
- If A semifield, then ψ deterministically recognizable iff \equiv_ψ finite index [Borchardt '03]
- If A semifield, then ψ deterministically all-accepting recognizable iff \equiv_{ψ} finite index and ψ subtree-closed (basically [Drewes, Vogler '07])

00 Table of Contents

Notation

Weighted tree automaton

Myhill-Nerode characterizations

TU Dresden, 22 June 2007

Myhill-Nerode Theorem

Trees

- C_{Σ} : contexts (trees with exactly one occurrence of \Box) over Σ
- size(t): number of nodes of a tree t

Trees

- T_{Σ} : trees over ranked alphabet Σ
- C_{Σ} : contexts (trees with exactly one occurrence of \Box) over Σ

• size(t): number of nodes of a tree t

Trees

- T_{Σ} : trees over ranked alphabet Σ
- C_{Σ} : contexts (trees with exactly one occurrence of \Box) over Σ
- size(t): number of nodes of a tree t

$$\operatorname{size}\left(\begin{array}{c} \sigma \\ \gamma \\ \beta \\ \alpha \end{array}\right) = 4 \quad \operatorname{size}\left(\begin{array}{c} \operatorname{SUBJ} & \operatorname{VP} \\ | & & \\ She & \operatorname{VB} & \operatorname{PRP} \\ | & & \\ likes & you \end{array}\right) = 8$$

Tree series

- tree series: mapping of type T_Σ → A
 (e.g., size: T_Σ → N, height: T_Σ → N, yield: T_Σ → Σ*, etc.)
- we write (ψ, t) for $\psi(t)$ with $\psi: T_{\Sigma} \to A$
- $A\langle\!\langle T_{\Sigma} \rangle\!\rangle$: set of all mappings of type $T_{\Sigma} \to A$

02 Table of Contents

Notation

Weighted tree automaton

Myhill-Nerode characterizations

TU Dresden, 22 June 2007

Myhill-Nerode Theorem

02 Syntax

Definition (Borchardt and Vogler '03)

 (Q,Σ,A,μ,F) weighted tree automaton (wta)

- Q finite nonempty set (states)
- Σ ranked alphabet (of input symbols)
- $A = (A, +, \cdot, 0, 1)$ commutative semiring (of weights)
- $\mu = (\mu_k)_{k \ge 0}$ with $\mu_k \colon \Sigma^{(k)} \to A^{Q^k \times Q}$ (called tree representation)
- $F: Q \rightarrow A$ (final distribution)

02 Syntax

Definition (Borchardt and Vogler '03)

 (Q,Σ,A,μ,F) weighted tree automaton (wta)

- Q finite nonempty set (states)
- Σ ranked alphabet (of input symbols)
- $A = (A, +, \cdot, 0, 1)$ commutative semiring (of weights)
- $\mu = (\mu_k)_{k>0}$ with $\mu_k \colon \Sigma^{(k)} \to A^{Q^k \times Q}$ (called tree representation)
- $F \colon Q \to A$ (final distribution)

Definition

wta (Q, Σ, A, μ, F) deterministic if for every $\sigma \in \Sigma^{(k)}$ and $w \in Q^k$ there exists at most one $q \in Q$ such that $\mu_k(\sigma)_{w,q} \neq 0$.

02 Semantics

Let $M = (Q, \Sigma, A, \mu, F)$ wta.

Definition Define $h_{\mu}: T_{\Sigma} \to A^Q$ by

$$h_{\mu}(\sigma(t_1,\ldots,t_k))_q = \sum_{q_1\cdots q_k \in Q^k} \mu_k(\sigma)_{q_1\cdots q_k,q} \cdot \prod_{i=1}^k h_{\mu}(t_i)_{q_i}$$

02 Semantics

Let $M = (Q, \Sigma, A, \mu, F)$ wta.

Definition Define $h_{\mu}: T_{\Sigma} \to A^Q$ by

$$h_{\mu}(\sigma(t_1,\ldots,t_k))_q = \sum_{q_1\cdots q_k \in Q^k} \mu_k(\sigma)_{q_1\cdots q_k,q} \cdot \prod_{i=1}^k h_{\mu}(t_i)_{q_i}$$

Semantics of M given by

$$(||M||,t) = \sum_{q \in Q} F(q) \cdot h_{\mu}(t)_{q}$$

TU Dresden, 22 June 2007

Myhill-Nerode Theorem

03 Table of Contents

Notation

Weighted tree automaton

Myhill-Nerode characterizations

TU Dresden, 22 June 2007

Myhill-Nerode Theorem

Let $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle.$

Definition ψ recognizable if there exists wta M such that $||M|| = \psi$.

Definition For every $t \in T_{\Sigma}$ let $t^{-1}\psi \in A\langle\!\langle C_{\Sigma} \rangle\!\rangle$ with

 $(t^{-1}\psi, c) = (\psi, c[t])$.

 V_{ψ} sub-(vector)-space of $A\langle\!\langle C_{\Sigma}\rangle\!\rangle$ generated by $t^{-1}\psi$ for all $t \in T_{\Sigma}$.

Example

Consider $\psi = \text{size}$ over the reals $(\mathbb{R}, +, \cdot, 0, 1)$

$$(t_1^{-1} \text{ size, } c) = (\text{size, } c[t_1]) = \text{size}(c[t_1]) = \text{size}(c) - 1 + \text{size}(t_1) (t_2^{-1} \text{ size, } c) = (\text{size, } c[t_2]) = \text{size}(c[t_2]) = \text{size}(c) - 1 + \text{size}(t_2)$$

Example

Consider $\psi = \text{size}$ over the reals $(\mathbb{R}, +, \cdot, 0, 1)$

$$(t_1^{-1} \text{ size}, c) = (\text{size}, c[t_1]) = \text{size}(c[t_1]) = \text{size}(c) - 1 + \text{size}(t_1) (t_2^{-1} \text{ size}, c) = (\text{size}, c[t_2]) = \text{size}(c[t_2]) = \text{size}(c) - 1 + \text{size}(t_2)$$

Hence $(t_1^{-1} \operatorname{size}) = (t_2^{-1} \operatorname{size}) + \tilde{a}$ where $a = \operatorname{size}(t_1) - \operatorname{size}(t_2)$

Example

Consider $\psi = \text{size}$ over the reals $(\mathbb{R}, +, \cdot, 0, 1)$

$$(t_1^{-1} \text{ size}, c) = (\text{size}, c[t_1]) = \text{size}(c[t_1]) = \text{size}(c) - 1 + \text{size}(t_1) (t_2^{-1} \text{ size}, c) = (\text{size}, c[t_2]) = \text{size}(c[t_2]) = \text{size}(c) - 1 + \text{size}(t_2)$$

Hence
$$(t_1^{-1} \operatorname{size}) = (t_2^{-1} \operatorname{size}) + \tilde{a}$$
 where $a = \operatorname{size}(t_1) - \operatorname{size}(t_2)$

 $\Longrightarrow (t_1^{-1} \operatorname{size})$ and $\widetilde{1}$ are basis of V_{size} and $\dim V_{\mathrm{size}} = 2$

TU Dresden, 22 June 2007

Theorem (Bozapalidis, Louscou-Bozapalidou '83) Let A field and $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$. Then

 ψ recognizable $\iff \dim V_{\psi}$ finite.

Notes

- Exact requirements for either direction?
- Might lead to nice necessary and/or sufficient conditions of recognizability
- not considered here, but most likely: If ψ recognizable, then V_{ψ} finite basis.

Let $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$.

Definition

 ψ deterministically recognizable if there is deterministic wta M such that $||M|| = \psi$.

 $\begin{array}{l} \text{Definition} \\ \text{Define} \equiv_{\psi} \subseteq T_{\Sigma} \times T_{\Sigma} \text{ by } t \equiv_{\psi} u \text{ iff there is } a \in A \setminus \{0\} \text{ such that} \end{array}$

$$t^{-1}\psi = a \cdot (u^{-1}\psi) \ .$$

TU Dresden, 22 June 2007

Example

Again consider $\psi = \text{size}$ over the reals $(\mathbb{R}, +, \cdot, 0, 1)$

$$(t_1^{-1} \text{ size}, c) = (\text{size}, c[t_1]) = \text{size}(c[t_1]) = \text{size}(c) - 1 + \text{size}(t_1)$$

 $(t_2^{-1} \text{ size}, c) = (\text{size}, c[t_2]) = \text{size}(c[t_2]) = \text{size}(c) - 1 + \text{size}(t_2)$

Example

Again consider $\psi = \text{size}$ over the reals $(\mathbb{R}, +, \cdot, 0, 1)$

$$(t_1^{-1} \text{ size}, c) = (\text{size}, c[t_1]) = \text{size}(c[t_1]) = \text{size}(c) - 1 + \text{size}(t_1) (t_2^{-1} \text{ size}, c) = (\text{size}, c[t_2]) = \text{size}(c[t_2]) = \text{size}(c) - 1 + \text{size}(t_2)$$

Hence $t_1 \equiv_{size} t_2$ iff $size(t_1) = size(t_2)$

Example

Again consider $\psi = \text{size}$ over the reals $(\mathbb{R}, +, \cdot, 0, 1)$

$$(t_1^{-1} \text{ size}, c) = (\text{size}, c[t_1]) = \text{size}(c[t_1]) = \text{size}(c) - 1 + \text{size}(t_1) (t_2^{-1} \text{ size}, c) = (\text{size}, c[t_2]) = \text{size}(c[t_2]) = \text{size}(c) - 1 + \text{size}(t_2)$$

Hence $t_1 \equiv_{size} t_2$ iff $size(t_1) = size(t_2)$

 \Longrightarrow index of \equiv_{size} infinite

Theorem (Borchardt '03)

Let A semifield and $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$. Then

 ψ deterministically recognizable $\iff \equiv_{\psi}$ finite index .

Notes

- \equiv_{ψ} finite index iff scalar-multiplication closed subset generated by $t^{-1}\psi$ has finite generator
- The latter yields finite basis for V_{ψ}
- So conceptionally both share the same idea

Example Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$. Define zigzag: $T_{\Sigma} \to \mathbb{N}$ over $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$

$$zigzag(\alpha) = 1$$

 $zigzag(\sigma(\alpha, t)) = 2$
 $zigzag(\sigma(\sigma(t, u), v)) = 2 + zigzag(u)$

Example Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$. Define zigzag: $T_{\Sigma} \to \mathbb{N}$ over $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$

$$\begin{split} \operatorname{zigzag}(\alpha) &= 1\\ \operatorname{zigzag}(\sigma(\alpha,t)) &= 2\\ \operatorname{zigzag}(\sigma(\sigma(t,u),v)) &= 2 + \operatorname{zigzag}(u) \end{split}$$

By theorem, zigzag not det. recognizable over $(\mathbb{Z}\cup\{\infty\},\min,+,\infty,0)$

Example Let $\Sigma = \{\sigma^{(2)}, \alpha^{(0)}\}$. Define zigzag: $T_{\Sigma} \to \mathbb{N}$ over $(\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$

$$\begin{split} \operatorname{zigzag}(\alpha) &= 1\\ \operatorname{zigzag}(\sigma(\alpha,t)) &= 2\\ \operatorname{zigzag}(\sigma(\sigma(t,u),v)) &= 2 + \operatorname{zigzag}(u) \end{split}$$

By theorem, zigzag not det. recognizable over $(\mathbb{Z}\cup\{\infty\},\min,+,\infty,0)$

 \implies zigzag not det. recognizable over (\mathbb{N}, \dots) because it embeds into (\mathbb{Z}, \dots)

Let $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$.

Definition (Borchardt '05)

Define $\equiv_{\psi} \subseteq T_{\Sigma} \times T_{\Sigma}$ by $t \equiv_{\psi} u$ if there exist $a, b \in A \setminus \{0\}$ such that

$$a\cdot(t^{-1}\psi)=b\cdot(u^{-1}\psi)\ .$$

Let $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$. **Definition (Borchardt '05)** Define $\equiv_{\psi} \subseteq T_{\Sigma} \times T_{\Sigma}$ by $t \equiv_{\psi} u$ if there exist $a, b \in A \setminus \{0\}$ such that

$$a \cdot (t^{-1}\psi) = b \cdot (u^{-1}\psi) \ .$$

Definition A zero-divisor free if $a \cdot b = 0$ implies $0 \in \{a, b\}$.

Let $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$. **Definition (Borchardt '05)** Define $\equiv_{\psi} \subseteq T_{\Sigma} \times T_{\Sigma}$ by $t \equiv_{\psi} u$ if there exist $a, b \in A \setminus \{0\}$ such that

$$a \cdot (t^{-1}\psi) = b \cdot (u^{-1}\psi) \ .$$

Definition A zero-divisor free if $a \cdot b = 0$ implies $0 \in \{a, b\}$.

Lemma If A zero-divisor free, then \equiv_{ψ} congruence of (T_{Σ}, Σ) .

TU Dresden, 22 June 2007

Myhill-Nerode Theorem

Theorem Let A zero-divisor free and $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$. Then

 ψ deterministically recognizable $\implies \equiv_{\psi}$ finite index .

Theorem Let A zero-divisor free and $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$. Then

 ψ deterministically recognizable $\implies \equiv_{\psi}$ finite index .

Lemma

If A zero-divisor free and $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$, then every deterministic (and complete) wta recognizing ψ has at least index(\equiv_{ψ}) states.

Theorem Let A zero-divisor free and $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$. Then

 ψ deterministically recognizable $\implies \equiv_{\psi}$ finite index .

Lemma

If A zero-divisor free and $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$, then every deterministic (and complete) wta recognizing ψ has at least index(\equiv_{ψ}) states.

Corollary

height not deterministically recognizable over $(\mathbb{N} \cup \{-\infty\}, \max, +, -\infty, 0)$

Question What about

 ψ deterministically recognizable $\Leftarrow \equiv \psi$ finite index ?

Question What about

 ψ deterministically recognizable $\Leftarrow \equiv \psi$ finite index ?

Notes

- Solved for strings [Eisner '03]: requires certain cancellative semirings
- Open for trees

Let $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$. **Definition** Deterministic wta (Q, Σ, A, μ, F) all-accepting if F = Q.

Let $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$. Definition Deterministic wta $(Q, \Sigma, \mathcal{A}, \mu, F)$ all-accepting if F = Q.

Definition ψ subtree-closed if $(\psi, t) \neq 0$ implies $(\psi, u) \neq 0$ for all subtrees u of t.


```
Let \psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle.
Definition
Deterministic wta (Q, \Sigma, A, \mu, F) all-accepting if F = Q.
```

Definition

 ψ subtree-closed if $(\psi, t) \neq 0$ implies $(\psi, u) \neq 0$ for all subtrees u of t.

Lemma

- ψ deterministically all-accepting recognizable iff
- ψ deterministically recognizable and subtree-closed.

Let $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle$.

Theorem If A cancellative, then

 ψ all-accepting det. recognizable $\iff \equiv_{\psi}$ finite index and ψ subtree-closed

Let $\psi \in A\langle\!\langle T_{\Sigma} \rangle\!\rangle.$

Theorem If A cancellative, then

 ψ all-accepting det. recognizable $\iff \equiv_{\psi}$ finite index and ψ subtree-closed

Notes

- Other interesting classes?
- Suitable implementability conditions

03 Thank you for your attention!

References

- Bozapalidis, Louscou-Bozapalidou: The rank of a formal tree power series. Theoret. Comput. Sci. 27: 211–215, 1983
- Borchardt, Vogler: Determinization of finite state weighted tree automata. J. Autom. Lang. Combin. 8(3):417–463, 2003
- Borchardt: The Myhill-Nerode theorem for recognizable tree series. Proc. 7th Int. Conf. Developments in Language Theory, LNCS 2710, p. 146–158, Springer 2003
- Drewes, Vogler: Learning deterministically recognizable tree series. J. Autom. Lang. Combin., to appear, 2007