
Compositions of
Extended Top-down Tree Transducers

Andreas Maletti

March 30, 2007



Short Introduction

Motivation

I Extended tree transducers are used in machine translation
[Knight & Graehl 05, Shieber 04]

I Compositions occur naturally
1. transducers for specific (small) tasks are easier to train
2. small transducers are simpler to understand
3. “component” tree transducers can be reused

I Extended tree transducers are (essentially) as powerful as tree
substitution grammars [Knight & Graehl & Hopkins 07]

I Closure under composition of synchronous tree substitution
grammar transformations open (since introduction in 80’s)



Short Introduction

Motivation

I Extended tree transducers are used in machine translation
[Knight & Graehl 05, Shieber 04]

I Compositions occur naturally
1. transducers for specific (small) tasks are easier to train
2. small transducers are simpler to understand
3. “component” tree transducers can be reused

I Extended tree transducers are (essentially) as powerful as tree
substitution grammars [Knight & Graehl & Hopkins 07]

I Closure under composition of synchronous tree substitution
grammar transformations open (since introduction in 80’s)



Outline

Extended Top-down Tree Transducer

Bimorphism

Multi Bottom-up Tree Transducer

Composition



Principal Problem of Top-down Tree Transducers

S

PRO

There

VP

VB

are

NP

CD

two

NN

men

=⇒∗

S

PR

Hay

NP

CD

dos

NN

hombres

Notes:
I difficult to implement without regular look-ahead
I solution: use copying

— No! — closure under composition



Principal Problem of Top-down Tree Transducers

S

PRO

There

VP

VB

are

NP

CD

two

NN

men

=⇒∗

S

PR

Hay

NP

CD

dos

NN

hombres

Notes:
I difficult to implement without regular look-ahead
I solution: use copying

— No! — closure under composition



Principal Problem of Top-down Tree Transducers

S

PRO

There

VP

VB

are

NP

CD

two

NN

men

=⇒∗

S

PR

Hay

NP

CD

dos

NN

hombres

Notes:
I difficult to implement without regular look-ahead
I solution: use copying — No! — closure under composition



The new device

Why do we not have multi-level rules?
[Knight, Graehl: Training Tree Transducers. HLT-NAACL 2004]



The new device

Why do we not have multi-level rules?
[Knight, Graehl: Training Tree Transducers. HLT-NAACL 2004]

Then we could have rules like

trans

S

PRO

There

VP

VB

are

x

=⇒

S

PR

Hay

trans

x



Formal Syntax

Definition (cf. Knight & Graehl 04)
An extended top-down tree transducer is a tuple

M = (Q,Σ,∆, S ,R)

I Q a finite set of states
I Σ and ∆ input and output ranked alphabet, respectively;
I S ⊆ Q a set of initial states

I R ⊆ Q(TΣ(X ))× T∆(Q(X )) a finite set of rules such that

var(r) ⊆ var(l)

and l is linear for every rule (l , r) ∈ R .



Formal Syntax

Definition (cf. Knight & Graehl 04)
An extended top-down tree transducer is a tuple

M = (Q,Σ,∆, S ,R)

I Q a finite set of states
I Σ and ∆ input and output ranked alphabet, respectively;
I S ⊆ Q a set of initial states
I R ⊆ Q(TΣ(X ))× T∆(Q(X )) a finite set of rules such that

var(r) ⊆ var(l)

and l is linear for every rule (l , r) ∈ R .



An extended top-down tree transducer

Example

I Q = S = {?};
I Σ = ∆ = {σ(2), α(0)};
I R contains the rules

?(σ(σ(x1, x2), x3)) → σ(?(x1), σ(?(x2), ?(x3)))

?(α) → α

?

σ

σ

x1 x2

x3
→

σ

?

x1

σ

?

x2

?

x3

?

α
→ α



... in action

Example
Rules:

?(σ(σ(x1, x2), x3)) → σ(?(x1), σ(?(x2), ?(x3)))

?(α) → α

Derivation:
σ

σ

α σ

σ

α α

α

σ

σ

α α

α



... in action

Example
Rules:

?(σ(σ(x1, x2), x3)) → σ(?(x1), σ(?(x2), ?(x3)))

?(α) → α

Derivation:
?

σ

σ

α σ

σ

α α

α

σ

σ

α α

α



... in action

Example
Rules:

?(σ(σ(x1, x2), x3)) → σ(?(x1), σ(?(x2), ?(x3)))

?(α) → α

Derivation:
?

σ

σ

α σ

σ

α α

α

σ

σ

α α

α
⇒

σ

?

α

σ

?

σ

σ

α α

α

?

σ

σ

α α

α



... in action

Example
Rules:

?(σ(σ(x1, x2), x3)) → σ(?(x1), σ(?(x2), ?(x3)))

?(α) → α

Derivation:
σ

?

α

σ

?

σ

σ

α α

α

?

σ

σ

α α

α

⇒2

σ

?

α

σ

σ

?

α

σ

?

α

?

α

σ

?

α

σ

?

α

?

α



... in action

Example
Rules:

?(σ(σ(x1, x2), x3)) → σ(?(x1), σ(?(x2), ?(x3)))

?(α) → α

Derivation:
σ

?

α

σ

σ

?

α

σ

?

α

?

α

σ

?

α

σ

?

α

?

α

⇒7

σ

α σ

σ

α σ

α α

σ

α σ

α α



... in action

Example
Rules:

?(σ(σ(x1, x2), x3)) → σ(?(x1), σ(?(x2), ?(x3)))

?(α) → α

Derivation:
σ

σ

α σ

σ

α α

α

σ

σ

α α

α ⇒∗

σ

α σ

σ

α σ

α α

σ

α σ

α α



Semantics

Definition
The tree transformation computed by M is τM ⊆ TΣ × T∆

τM = {(t, u) | q(t) ⇒∗ u for some initial state q}

Notation
XTOP = class of transf. computed by extended tree transducers



Syntactic Restrictions
Let M = (Q,Σ,∆, S ,R) be an extended tree transducer.

Definition
M is called linear and nondeleting if for every rule l → r

var(l) = var(r)

and no variable appears more than once in r .

Example
Our example transducer with rules

?(σ(σ(x1, x2), x3)) → σ(?(x1), σ(?(x2), ?(x3)))

?(α) → α

is linear and nondeleting.



Quest Log

Question
Is the class of transformations computed by linear and nondeleting
extended tree transducers closed under composition?

Answer [Knight & Graehl & Hopkins 07]



Quest Log

Question
Is the class of transformations computed by linear and nondeleting
extended tree transducers closed under composition?

Answer [Knight & Graehl & Hopkins 07]
No!

Transform

σ

γi

σ

γj

α

γk

α

γm

α into

δ

γj

α

γk

α

γm

α

Two linear and nondeleting extended tree transducers can do that;
but a single one cannot.



Quest Log

Open Problems

I Understand linear and nondeleting extended tree transducers
better!

I Find subclasses that are closed under composition!
I Identify a suitable superclass that is closed under composition!



Quest Log

Open Problems

I Understand linear and nondeleting extended tree transducers
better! (bimorphism)

I Find subclasses that are closed under composition! (unsolved)
I Identify a suitable superclass that is closed under composition!

(transformations induced by certain bottom-up devices)



Extended Top-down Tree Transducer

Bimorphism

Multi Bottom-up Tree Transducer

Composition



Bimorphism
Let Σ,∆, Γ be ranked alphabets.

Definition
A bimorphism is a triple (ϕ, L, ψ) with

I ϕ : TΓ → TΣ the input homomorphism;
I L ⊆ TΓ the recognizable center;
I ψ : TΓ → T∆ the output homomorphism.

Definition
Let B = (ϕ, L, ψ) be a bimorphism. The tree transformation
computed by B is

τB ⊆ TΣ × T∆

τB = {(ϕ(s), ψ(s)) | s ∈ L}

Equivalently: τB = ϕ−1 ◦ idL ◦ ψ (composition of relations)



Illustration

Example
(ϕ, L, ψ) bimorphism with

I Σ = ∆ = {σ(2), α(0)} and Γ = {γ(3), α(0)};
I L = TΓ;
I ϕ and ψ be the homomorphisms such that

ϕ(γ) = σ(σ(x1, x2), x3)

ψ(γ) = σ(x1, σ(x2, x3))

ϕ(α) = α

ψ(α) = α



Semantics

γ

α γ

α α α

γ

α α α



Semantics

γ

α γ

α α α

γ

α α α

ϕ

γ

α γ

α α α

γ

α α α

ψ

γ

α γ

α α α

γ

α α α

ϕ ψ



Semantics

γ

α γ

α α α

γ

α α α

σ

σ

ϕ

α

ϕ

γ

α α α

ϕ

γ

α α α

σ

ψ

α

σ

ψ

γ

α α α

ψ

γ

α α α

ϕ ψ



Semantics

γ

α γ

α α α

γ

α α α

σ

σ

α σ

σ

ϕ

α

ϕ

α

ϕ

α

σ

σ

ϕ

α

ϕ

α

ϕ

α

σ

α σ

σ

ψ

α

σ

ψ

α

ψ

α

σ

ψ

α

σ

ψ

α

ψ

α

ϕ ψ



Semantics

γ

α γ

α α α

γ

α α α

σ

σ

α σ

σ

α α

α

σ

σ

α α

α

σ

α σ

σ

α σ

α α

σ

α σ

α α

ϕ ψ



A Relation

Definition
Homomorphism h : TΓ → TΣ is linear and complete if h(γ) is linear
and nondeleting in Xk for every k ≥ 0 and γ ∈ Γ(k).

Theorem (Knight & Graehl & Hopkins 07, M. 07)
Bimorphisms with linear and complete homomorphisms are as
powerful as linear and nondeleting extended tree transducers.

BM(LC,LC) = ln-XTOP

Theorem (Arnold & Dauchet 82)
Bimorphisms with linear and complete ε-free homomorphisms are
not closed under composition.

BM(LCE,LCE) ⊂ BM(LCE,LCE)2 = BM(LCE,LCE)3



A Relation

Definition
Homomorphism h : TΓ → TΣ is linear and complete if h(γ) is linear
and nondeleting in Xk for every k ≥ 0 and γ ∈ Γ(k).

Theorem (Knight & Graehl & Hopkins 07, M. 07)
Bimorphisms with linear and complete homomorphisms are as
powerful as linear and nondeleting extended tree transducers.

BM(LC,LC) = ln-XTOP

Theorem (Arnold & Dauchet 82)
Bimorphisms with linear and complete ε-free homomorphisms are
not closed under composition.

BM(LCE,LCE) ⊂ BM(LCE,LCE)2 = BM(LCE,LCE)3



Quest Log

Achievement
We showed that extended tree transducers consist of three (simple)
phases:

I an inverse homomorphism (pattern matcher)
I a recognizable restriction (finite control)
I an output homomorphism (interpretation)

Question

I Which device can implement all phases?
I Is the class of transformations computed by the device closed

under composition?



Extended Top-down Tree Transducer

Bimorphism

Multi Bottom-up Tree Transducer

Composition



Example Multi Bottom-Up Rules

Rules
Binary state qσ and unary final state qα

α→ qα(α)

σ(qα(x1), qα(x2)) → qσ(x1, x2)

σ(qσ(x1, x2), qα(x3)) → qα(σ(x1, σ(x2, x3)))

Illustration

σ

σ

α α

α



Example Multi Bottom-Up Rules

Rules
Binary state qσ and unary final state qα

α→ qα(α)

σ(qα(x1), qα(x2)) → qσ(x1, x2)

σ(qσ(x1, x2), qα(x3)) → qα(σ(x1, σ(x2, x3)))

Illustration

σ

σ

α α

α =⇒3

σ

σ

qα

α

qα

α

qα

α



Example Multi Bottom-Up Rules

Rules
Binary state qσ and unary final state qα

α→ qα(α)

σ(qα(x1), qα(x2)) → qσ(x1, x2)

σ(qσ(x1, x2), qα(x3)) → qα(σ(x1, σ(x2, x3)))

Illustration

σ

σ

qα

α

qα

α

qα

α
=⇒

σ

qσ

α α

qα

α



Example Multi Bottom-Up Rules

Rules
Binary state qσ and unary final state qα

α→ qα(α)

σ(qα(x1), qα(x2)) → qσ(x1, x2)

σ(qσ(x1, x2), qα(x3)) → qα(σ(x1, σ(x2, x3)))

Illustration

σ

qσ

α α

qα

α

=⇒

qα

σ

α σ

α α



Example Multi Bottom-Up Rules

Rules
Binary state qσ and unary final state qα

α→ qα(α)

σ(qα(x1), qα(x2)) → qσ(x1, x2)

σ(qσ(x1, x2), qα(x3)) → qα(σ(x1, σ(x2, x3)))

Illustration

σ

σ

α α

α =⇒∗

σ

α σ

α α



Syntax

Definition (Fülöp & Kühnemann & Vogler 04)
A multi bottom-up tree transducer (mbutt) is a tuple

M = (Q,Σ,∆,F ,R)

I Q is a ranked alphabet of states
I Σ and ∆ are input and output ranked alphabet, respectively
I F ⊆ Q(1) is a set of final states
I R is a finite set of rules of the form

σ(q1(x1,1, . . . , x1,n1), . . . , qk(xk,1, . . . , xk,nk )) → q(t1, . . . , tn)

with σ ∈ Σ(k), q1, . . . , qk ∈ Q, and t1, . . . , tn ∈ T∆(X ).



Semantics

Definition
The tree transformation computed by M is

τM ⊆ TΣ × T∆

τM = {(t, u) | t ⇒∗ q(u) for some q ∈ F}

Definition
MBOT = class of transformations computed by mbutt



Pattern Matching (Phase 1 of 3)

Definition
Let h : TΓ → TΣ be a homomorphism.
h is called ε-free, if h(γ) /∈ X for every γ ∈ Γ(k).

Theorem (M. 07)
The inverse of every ε-free linear and complete homomorphism can
be implemented by a linear and nondeleting mbutt

lce-HOM−1 ⊆ ln-MBOT

Proof sketch.

I recognize pattern occurrences by states
I save processed subtrees in parameters



Finite Control (Phase 2 of 3)

Short Recall
The class of recognizable tree languages is the class of languages
that are recognized by top-down tree automata (FTA).

Theorem
Every recognizable partial identity can be implemented by a linear
and nondeleting mbutt

FTA ⊆ ln-BOT ⊆ ln-MBOT



Interpretation (Phase 3 of 3)

Theorem
Every linear and complete homomorphism can be implemented by a
linear and nondeleting mbutt

lc-HOM ⊆ ln-BOT ⊆ ln-MBOT



Quest Log

Corollary
All phases (with one small restriction) can be implemented by linear
and nondeleting mbutt

lce-HOM−1 ∪ FTA ∪ lc-HOM ⊆ ln-MBOT

Question
Is

lce-HOM−1 ◦ FTA ◦ lc-HOM ⊆ ln-MBOT ?



Extended Top-down Tree Transducer

Bimorphism

Multi Bottom-up Tree Transducer

Composition



Compositions

Theorem (cf. Kühnemann 06 for deterministic mbutt)
The class of transformations computed by linear and nondeleting
mbutt is closed under composition

ln-MBOT2 = ln-MBOT

Corollary
Linear and nondeleting mbutt are at least as powerful as
bimorphisms with linear and complete homomorphisms and an
ε-free input homomorphism.

BM(LCE,LC) ⊆ ln-MBOT



Are We Too Powerful?

Question
Are linear and nondeleting mbutt too powerful?

Answer
No! (see Theorem)

Theorem
Every linear and nondeleting mbutt can be simulated by a
composition of a stateful relabeling and a deterministic top-down
tree transducer

ln-MBOT ⊆ QREL ◦ d-TOP



References
André Arnold and Max Dauchet.
Morphismes et bimorphismes d’arbres.
Theor. Comput. Sci., 20:33–93, 1982.

Z. Fülöp, A. Kühnemann, and H. Vogler.
A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead.
Inform. Proc. Letters, 91:57–67, 2004.

Jonathan Graehl and Kevin Knight.
Training tree transducers.
In Proc. HLT/NAACL, pages 105–112. Association for Computational Linguists, 2004.

Kevin Knight and Jonathan Graehl.
An overview of probabilistic tree transducers for natural language processing.
In Proc. 6th Int. Conf. Comput. Linguistics and Intel. Text Proc., volume 3406 of LNCS, pages
1–24. Springer, 2005.

Kevin Knight, Jonathan Graehl, and Mark Hopkins.
Extended top-down tree transducers.
Manuscript, 2007.

Armin Kühnemann.
Composition of deterministic multi bottom-up tree transducers.
Manuscript, 2006.

Stuart M. Shieber.
Synchronous grammars as tree transducers.
In Proc. 7th Int. Workshop Tree Adjoining Grammars and Related Formalisms, pages 88–95, 2004.


	Extended Top-down Tree Transducer
	Bimorphism
	Multi Bottom-up Tree Transducer
	Composition

