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Short Introduction

Motivation

I Extended tree transducers are used in machine translation
[Knight & Graehl 05, Shieber 04]

I Compositions occur naturally
1. transducers for specific (small) tasks are easier to train
2. small transducers are simpler to understand
3. “component” tree transducers can be reused

I Extended tree transducers are (essentially) as powerful as tree
substitution grammars [Knight & Graehl & Hopkins 07]

I Closure under composition of synchronous tree substitution
grammar transformations open (since introduction in 80’s)



Short Introduction

Motivation

I Extended tree transducers are used in machine translation
[Knight & Graehl 05, Shieber 04]

I Compositions occur naturally
1. transducers for specific (small) tasks are easier to train
2. small transducers are simpler to understand
3. “component” tree transducers can be reused

I Extended tree transducers are (essentially) as powerful as tree
substitution grammars [Knight & Graehl & Hopkins 07]

I Closure under composition of synchronous tree substitution
grammar transformations open (since introduction in 80’s)



Outline

Extended Top-down Tree Transducer

Bimorphism

Multi Bottom-up Tree Transducer

Composition



Principal Problem of Top-down Tree Transducers
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The new device

Why do we not have multi-level rules?
[Knight, Graehl: Training Tree Transducers. HLT-NAACL 2004]
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Formal Syntax

Definition (cf. Knight & Graehl 04)
An extended top-down tree transducer is a tuple

M = (Q,Σ,∆, S ,R)

I Q a finite set of states
I Σ and ∆ input and output ranked alphabet, respectively;
I S ⊆ Q a set of initial states

I R ⊆ Q(TΣ(X ))× T∆(Q(X )) a finite set of rules such that

var(r) ⊆ var(l)

and l is linear for every rule (l , r) ∈ R .
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An extended top-down tree transducer

Example

I Q = S = {?};
I Σ = ∆ = {σ(2), α(0)};
I R contains the rules

?(σ(σ(x1, x2), x3)) → σ(?(x1), σ(?(x2), ?(x3)))

?(α) → α

?

σ

σ

x1 x2

x3
→

σ

?

x1

σ

?

x2

?

x3

?

α
→ α



... in action
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Semantics

Definition
The tree transformation computed by M is τM ⊆ TΣ × T∆

τM = {(t, u) | q(t) ⇒∗ u for some initial state q}

Notation
XTOP = class of transf. computed by extended tree transducers



Syntactic Restrictions
Let M = (Q,Σ,∆, S ,R) be an extended tree transducer.

Definition
M is called linear and nondeleting if for every rule l → r

var(l) = var(r)

and no variable appears more than once in r .

Example
Our example transducer with rules

?(σ(σ(x1, x2), x3)) → σ(?(x1), σ(?(x2), ?(x3)))

?(α) → α

is linear and nondeleting.



Quest Log

Question
Is the class of transformations computed by linear and nondeleting
extended tree transducers closed under composition?

Answer [Knight & Graehl & Hopkins 07]



Quest Log

Question
Is the class of transformations computed by linear and nondeleting
extended tree transducers closed under composition?

Answer [Knight & Graehl & Hopkins 07]
No!
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Two linear and nondeleting extended tree transducers can do that;
but a single one cannot.



Quest Log

Open Problems

I Understand linear and nondeleting extended tree transducers
better!

I Find subclasses that are closed under composition!
I Identify a suitable superclass that is closed under composition!



Quest Log

Open Problems

I Understand linear and nondeleting extended tree transducers
better! (bimorphism)

I Find subclasses that are closed under composition! (unsolved)
I Identify a suitable superclass that is closed under composition!

(transformations induced by certain bottom-up devices)



Extended Top-down Tree Transducer

Bimorphism

Multi Bottom-up Tree Transducer

Composition



Bimorphism
Let Σ,∆, Γ be ranked alphabets.

Definition
A bimorphism is a triple (ϕ, L, ψ) with

I ϕ : TΓ → TΣ the input homomorphism;
I L ⊆ TΓ the recognizable center;
I ψ : TΓ → T∆ the output homomorphism.

Definition
Let B = (ϕ, L, ψ) be a bimorphism. The tree transformation
computed by B is

τB ⊆ TΣ × T∆

τB = {(ϕ(s), ψ(s)) | s ∈ L}

Equivalently: τB = ϕ−1 ◦ idL ◦ ψ (composition of relations)



Illustration

Example
(ϕ, L, ψ) bimorphism with

I Σ = ∆ = {σ(2), α(0)} and Γ = {γ(3), α(0)};
I L = TΓ;
I ϕ and ψ be the homomorphisms such that

ϕ(γ) = σ(σ(x1, x2), x3)

ψ(γ) = σ(x1, σ(x2, x3))

ϕ(α) = α

ψ(α) = α
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A Relation

Definition
Homomorphism h : TΓ → TΣ is linear and complete if h(γ) is linear
and nondeleting in Xk for every k ≥ 0 and γ ∈ Γ(k).

Theorem (Knight & Graehl & Hopkins 07, M. 07)
Bimorphisms with linear and complete homomorphisms are as
powerful as linear and nondeleting extended tree transducers.

BM(LC,LC) = ln-XTOP

Theorem (Arnold & Dauchet 82)
Bimorphisms with linear and complete ε-free homomorphisms are
not closed under composition.

BM(LCE,LCE) ⊂ BM(LCE,LCE)2 = BM(LCE,LCE)3
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Quest Log

Achievement
We showed that extended tree transducers consist of three (simple)
phases:

I an inverse homomorphism (pattern matcher)
I a recognizable restriction (finite control)
I an output homomorphism (interpretation)

Question

I Which device can implement all phases?
I Is the class of transformations computed by the device closed

under composition?



Extended Top-down Tree Transducer
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Multi Bottom-up Tree Transducer

Composition



Example Multi Bottom-Up Rules

Rules
Binary state qσ and unary final state qα

α→ qα(α)

σ(qα(x1), qα(x2)) → qσ(x1, x2)

σ(qσ(x1, x2), qα(x3)) → qα(σ(x1, σ(x2, x3)))

Illustration
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Syntax

Definition (Fülöp & Kühnemann & Vogler 04)
A multi bottom-up tree transducer (mbutt) is a tuple

M = (Q,Σ,∆,F ,R)

I Q is a ranked alphabet of states
I Σ and ∆ are input and output ranked alphabet, respectively
I F ⊆ Q(1) is a set of final states
I R is a finite set of rules of the form

σ(q1(x1,1, . . . , x1,n1), . . . , qk(xk,1, . . . , xk,nk )) → q(t1, . . . , tn)

with σ ∈ Σ(k), q1, . . . , qk ∈ Q, and t1, . . . , tn ∈ T∆(X ).



Semantics

Definition
The tree transformation computed by M is

τM ⊆ TΣ × T∆

τM = {(t, u) | t ⇒∗ q(u) for some q ∈ F}

Definition
MBOT = class of transformations computed by mbutt



Pattern Matching (Phase 1 of 3)

Definition
Let h : TΓ → TΣ be a homomorphism.
h is called ε-free, if h(γ) /∈ X for every γ ∈ Γ(k).

Theorem (M. 07)
The inverse of every ε-free linear and complete homomorphism can
be implemented by a linear and nondeleting mbutt

lce-HOM−1 ⊆ ln-MBOT

Proof sketch.

I recognize pattern occurrences by states
I save processed subtrees in parameters



Finite Control (Phase 2 of 3)

Short Recall
The class of recognizable tree languages is the class of languages
that are recognized by top-down tree automata (FTA).

Theorem
Every recognizable partial identity can be implemented by a linear
and nondeleting mbutt

FTA ⊆ ln-BOT ⊆ ln-MBOT



Interpretation (Phase 3 of 3)

Theorem
Every linear and complete homomorphism can be implemented by a
linear and nondeleting mbutt

lc-HOM ⊆ ln-BOT ⊆ ln-MBOT



Quest Log

Corollary
All phases (with one small restriction) can be implemented by linear
and nondeleting mbutt

lce-HOM−1 ∪ FTA ∪ lc-HOM ⊆ ln-MBOT

Question
Is

lce-HOM−1 ◦ FTA ◦ lc-HOM ⊆ ln-MBOT ?



Extended Top-down Tree Transducer

Bimorphism

Multi Bottom-up Tree Transducer

Composition



Compositions

Theorem (cf. Kühnemann 06 for deterministic mbutt)
The class of transformations computed by linear and nondeleting
mbutt is closed under composition

ln-MBOT2 = ln-MBOT

Corollary
Linear and nondeleting mbutt are at least as powerful as
bimorphisms with linear and complete homomorphisms and an
ε-free input homomorphism.

BM(LCE,LC) ⊆ ln-MBOT



Are We Too Powerful?

Question
Are linear and nondeleting mbutt too powerful?

Answer
No! (see Theorem)

Theorem
Every linear and nondeleting mbutt can be simulated by a
composition of a stateful relabeling and a deterministic top-down
tree transducer

ln-MBOT ⊆ QREL ◦ d-TOP
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