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Learning by Machines

Learning
Rote Learning Reinforcement
memorization feedback at end
(Hash tables) (Q [Watkins 89])
Induction Clustering
generalizing examples grouping data
(ID3 [Quinlan 79]) (CMLIB [Hartigan 75])
Analogy Discovery Genetic Alg.
representation similarity unsupervised, no goal simulated evolution

(JUPA [Yvon 94]) (GABIL [DeJong 93])




Supervised Learning

Definition
Supervised Learning: given nontrivial training data (labels known)
predict test data (labels unknown)

Implementations

Clustering Rote Learning
Nearest Nelghbor .
[Cover, Hart 67] Induction Hash tables

Neural Networks Decision Trees SVMs
[McCulloch, Pitts 43| [Hunt 66] [Vapnik et al 92]




Problem Description—General

Problem
Classify a given input
e binary classification: two classes
e multi-class classification: several, but finitely many classes

e regression: infinitely many classes

Major Applications

e Handwriting recognition

Cheminformatics (Quantitative Structure-Activity Relationship)

Pattern recognition
Spam detection (HP Labs, Palo Alto)



Problem Description—Specific

Electricity Load Prediction Challenge 2001

e Power plant that supports energy demand of a region
e Excess production expensive

e Load varies substantially

e Challenge won by [ibSVM [Chang, Lin 06]

Problem

e given: load and temperature for 730 days (~ 70kB data)
e predict: load for the next 365 days
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Problem Description—Formal

Definition (cf. [Lin 01])
Given a training set S C R" x {—1,1} of correctly classified input
data vectors X € R", where:
e every input data vector appears at most once in S
e there exist input data vectors p and 7 such that (p,1) € S as
well as (i, —1) € S (non-trivial)
successfully classify unseen input data vectors.



Linear Classification [Vapnik 63]

e Given: A training set S C R" x {-1,1}
e Goal: Find a hyperplane that separates R" into halves that
contain only elements of one class




Representation of Hyperplane

Definition
Hyperplane - (X — Xp) =0
e i€ R" weight vector
e X € R" input vector
e Xp € R" offset
Alternatively: w-X+b=0

Decision Function

e training set S = {(Xi,yi) | 1 < i< k}

e separating hyperplane w - X+ b =0 for S
>0 ify;=1

f(X) = sgn(W - X + b
<0 iy 1 (X) = sgn(w - X + b)

Decision:  w-X;+b {



Learn Hyperplane

Problem

e Given: training set S
e Goal: coefficients w and b of a separating hyperplane

e Difficulty: several or no candidates for w and b

Solution [cf. Vapnik's statistical learning theory]

Select admissible w and b with maximal margin (minimal distance
to any input data vector)

Observation
We can scale w and b such that



Maximizing the Margin

e Closest points X, and X_ (with w - X, + b= £1)

e Distance between w - X+ b = +1:

(W-X,+b)—(w-X_+b) 2 2
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Basic (Primal) Support Vector Machine Form

target: ming p 3(W - W)
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subject to:  yi(w - X; + b)




Non-separable Data
Problem
Maybe a linear separating hyperplane does not exist!

Solution
Allow training errors &; penalized by large penalty parameter C

Standard (Primal) Support Vector Machine Form

target: min ,b,E%("T" W)+ C(Xh &)

=
w

subject to:

If & > 1, then misclassification of X;



Higher Dimensional Feature Spaces

Problem
Data not separable because target function is essentially nonlinear!

Approach
Potentially separable in higher
dimensional space
e Map input vectors nonlinearly into
high dimensional space
(feature space)

e Perform separation there



Higher Dimensional Feature Spaces

Literature

e Classic approach [Cover 65]
e “Kernel trick” [Boser, Guyon, Vapnik 92]
e Extension to soft margin [Cortes, Vapnik 95]

Example (cf. [Lin 01])
Mapping ¢ from R3 into feature space R*°

(z)()_(’) = (17 \/EX]-? \/§X2? \/§X37 Xfa X227 X§7 \/§X1X27 \/§X1X37 \/§X2X3)



Adapted Standard Form

Definition

Standard (Primal) Support Vector Machine Form

target: minwybf%(v?/- w) + C(Zf-;l )

subject to: A (i=1,...,k)

w is a vector in a high dimensional space



How to Solve?

Problem
Find w and b from the standard SVM form

Solution
Solve via Lagrangian dual [Bazaraa et al 93]:

Maxg>0,7>0 (minmb{ L(w, b, {, d’))
where
L(w, b, )

o k
:%"FC ; +Zal(1 & — YI(W ¢X, +b) Zﬂ',{,

i=1



Simplifying the Dual [Chen et al 03]

Standard (Dual) Support Vector Machine Form
target: ming 3(aA7Qa) — lele o
subject to:

where:  Qjj = yiyj ((Xi) - #(X;))

Solution

We obtain w as




Where is the Benefit?

e @ € RK (dimension independent from feature space)
e Only inner products in feature space

Kernel Trick

e Inner products efficiently calculated on input vectors via
kernel K

K(%i, %j) = ¢(%;) - 6(%))
e Select appropriate feature space

e Avoid nonlinear transformation into feature space

e Benefit from better separation properties in feature space



Kernels
Example
Mapping into feature space ¢: R3 — R0
B(X) = (1, V2x1, V2%, . . ., V2x2%3)
Kemel K(%1,%) = 6(%) - (%) = (1 + % - %)°.
Popular Kernels

e Gaussian Radial Basis Function:
(feature space is an infinite dimensional Hilbert space)

g(%i, %) = exp(—[I%: — %[1%)

e Polynomial: g(xi,X;) = (X - Xj + 1)



The Decision Function

Observation

e No need for w because

k
(%) = sgn (- 6(%) + b) = sen (Y i (4(%) - () + b)

i=1

e Uses only X; (support vectors) where a; > 0

Few points determine the separation; borderline points



Support Vectors




Support Vector Machines
Definition

e Given: Kernel K and training set S

e Goal: decision function f

etk
a™Qa S
target: &( Za,) Q= y,'yjK(Xi,Xj)
i=1
y-a=>0
subject to: Y (i=1,...,k)
0<a;<C

k
decide: f(X) = sgn (Z aiyiK (X, X) + b)
i=1



Quadratic Programming

Suppose Q (k by k) fully dense matrix
70,000 training points ~» 70,000 variables
70,0002 - 4B ~ 19GB: huge problem

Traditional methods: Newton, Quasi Newton cannot be
directly applied

Current methods:
e Decomposition [Osuna et al 97], [Joachims 98], [Platt 98]

e Nearest point of two convex hulls [Keerthi et al 99]



Sample Implementation

www.kernel-machines.org

e Main forum on kernel machines
e Lists over 250 active researchers

e 43 competing implementations

libSVM [Chang, Lin 06]

e Supports binary and multi-class classification and regression
e Beginners Guide for SVM classification

e "“Out of the box"-system (automatic data scaling, parameter
selection)

e Won EUNITE and IJCNN challenge



Application Accuracy

Automatic Training using libSVM

Application Training Data  Features Classes Accuracy
Astroparticle 3,089 4 2 96.9%
Bioinformatics 391 20 3 85.2%

Vehicle 1,243 21 2 87.8%
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Sequential Minimal Optimization [Platt 98]

Commonly used to solve standard SVM form
Decomposition method with smallest working set, |B| = 2

Subproblem analytically solved; no need for optimization
software

Contained flaws; modified version [Keerthi et al 99]
Karush-Kuhn-Tucker (KKT) of the dual (E = (1,...,1)):

Qi—E+by—X+i=0
pi(C—aj)=0
ajAi=0

> Ry
(A2

Y
o o



Computing b

o KKT yield

o >0 ifaj<C
Y — E+by)iq
(QCV y) {SO ifOz,'>0

L] Let Fl(&) — Zjl‘(:]_ a_/y_jK()—(‘la)_(_'j) — Vi and

lh={i10<a;<C}
h={ilyi=1a;=0} hbh={ilyi=~-
B={ilyi=1a;=C} la={ilyi=~-

e Case analysis on y; yields bounds on b

l,a;j = C}
1,0[,‘ :0}

max{F,-(d') | i€ U /3U/4} <b< min{F,-(c_i) | i€ U /1U/2}



Working Set Selection

Observation (see [Keerthi et al 99])
& not optimal solution iff

max{F,-(o?) | i€lhUlu /4} > min{F,-(d) | ielhUhu /2}

Approach
Select working set B = {i,j} with

i =argmax,{Fm(d) | me Ul UL}
Jj=argmin {Fn(d) | me lhUhUb}



The Subproblem
Definition
Let B={i,j}and N={1,... .k} \ B.

- a; - - . :
e dpg = (a"> and dy = d@|y (similar for matrices)
J

B-Subproblem

T N
a a
target: ming, M + ( E abe,N&N) — ( g ab)

beB beB

N

subject to:




Final Solution

Note that —yja; = yn - dn + yjoy
Substitute a; = —yi(yn - dn + yjaj) into target
~> One-variable optimization problem

Can be solved analytically (cf., e.g., [Lin 01])

Iterate (yielding new &) until

max{F; (@) | i € hUB U} <min{F(a@)|i€ hUhUhk}—¢
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