
Introduction to Support Vector Machines

Andreas Maletti

Technische Universität Dresden
Fakultät Informatik

June 15, 2006

1 The Problem

2 The Basics

3 The Proposed Solution

Learning by Machines

Learning

Rote Learning
memorization
(Hash tables)

Reinforcement
feedback at end
(Q [Watkins 89])

Induction
generalizing examples
(ID3 [Quinlan 79])

Clustering
grouping data

(CMLIB [Hartigan 75])

Analogy
representation similarity

(JUPA [Yvon 94])

Discovery
unsupervised, no goal

Genetic Alg.
simulated evolution

(GABIL [DeJong 93])

Supervised Learning

Definition
Supervised Learning: given nontrivial training data (labels known)
predict test data (labels unknown)

Implementations

Clustering Rote Learning

Nearest Neighbor
[Cover, Hart 67] Induction Hash tables

Neural Networks
[McCulloch, Pitts 43]

Decision Trees
[Hunt 66]

SVMs
[Vapnik et al 92]

Problem Description—General

Problem
Classify a given input
• binary classification: two classes
• multi-class classification: several, but finitely many classes
• regression: infinitely many classes

Major Applications

• Handwriting recognition
• Cheminformatics (Quantitative Structure-Activity Relationship)
• Pattern recognition
• Spam detection (HP Labs, Palo Alto)

Problem Description—Specific

Electricity Load Prediction Challenge 2001

• Power plant that supports energy demand of a region
• Excess production expensive
• Load varies substantially
• Challenge won by libSVM [Chang, Lin 06]

Problem

• given: load and temperature for 730 days (≈ 70kB data)
• predict: load for the next 365 days

Example Data

400

450

500

550

600

650

700

750

800

850

50 100 150 200 250 300 350

L
oa

d

Day of Year

Load 1997

12:00
24:00

Problem Description—Formal

Definition (cf. [Lin 01])
Given a training set S ⊆ Rn × {−1, 1} of correctly classified input
data vectors ~x ∈ Rn, where:
• every input data vector appears at most once in S
• there exist input data vectors ~p and ~n such that (~p, 1) ∈ S as

well as (~n,−1) ∈ S (non-trivial)
successfully classify unseen input data vectors.

Linear Classification [Vapnik 63]

• Given: A training set S ⊆ Rn × {−1, 1}
• Goal: Find a hyperplane that separates Rn into halves that

contain only elements of one class

Representation of Hyperplane

Definition
Hyperplane ~n · (~x − ~x0) = 0

• ~n ∈ Rn weight vector
• ~x ∈ Rn input vector
• ~x0 ∈ Rn offset

Alternatively: ~w · ~x + b = 0

Decision Function

• training set S = {(~xi , yi) | 1 ≤ i ≤ k}
• separating hyperplane ~w · ~x + b = 0 for S

Decision: ~w ·~xi+b

{
> 0 if yi = 1
< 0 if yi = −1

⇒ f (~x) = sgn(~w · ~x + b)

Learn Hyperplane

Problem

• Given: training set S
• Goal: coefficients ~w and b of a separating hyperplane
• Difficulty: several or no candidates for ~w and b

Solution [cf. Vapnik’s statistical learning theory]
Select admissible ~w and b with maximal margin (minimal distance
to any input data vector)

Observation
We can scale ~w and b such that

~w · ~xi + b

{
≥ 1 if yi = 1
≤ −1 if yi = −1

Maximizing the Margin

• Closest points ~x+ and ~x− (with ~w · ~x± + b = ±1)
• Distance between ~w · ~x + b = ±1:

(~w · ~x+ + b)− (~w · ~x− + b)

‖~w‖
=

2
‖~w‖

=
2√

~w · ~w

• max~w ,b
2√
~w ·~w

≡ min~w ,b
~w ·~w
2

Basic (Primal) Support Vector Machine Form

target: min~w ,b
1
2(~w · ~w)

subject to: yi (~w · ~xi + b) ≥ 1 (i = 1, . . . , k)

Non-separable Data

Problem
Maybe a linear separating hyperplane does not exist!

Solution
Allow training errors ξi penalized by large penalty parameter C

Standard (Primal) Support Vector Machine Form

target: min~w ,b,~ξ
1
2(~w · ~w) + C

(∑k
i=1 ξi

)
subject to:

yi (~w · ~xi + b) ≥ 1− ξi

ξi ≥ 0
(i = 1, . . . , k)

If ξi > 1, then misclassification of ~xi

Higher Dimensional Feature Spaces

Problem
Data not separable because target function is essentially nonlinear!

Approach
Potentially separable in higher
dimensional space
• Map input vectors nonlinearly into

high dimensional space
(feature space)

• Perform separation there

Higher Dimensional Feature Spaces

Literature

• Classic approach [Cover 65]
• “Kernel trick” [Boser, Guyon, Vapnik 92]
• Extension to soft margin [Cortes, Vapnik 95]

Example (cf. [Lin 01])
Mapping φ from R3 into feature space R10

φ(~x) = (1,
√

2x1,
√

2x2,
√

2x3, x2
1 , x2

2 , x2
3 ,
√

2x1x2,
√

2x1x3,
√

2x2x3)

Adapted Standard Form

Definition

Standard (Primal) Support Vector Machine Form

target: min~w ,b,~ξ
1
2(~w · ~w) + C

(∑k
i=1 ξi

)
subject to:

yi (~w · φ(~xi) + b) ≥ 1− ξi

ξi ≥ 0
(i = 1, . . . , k)

~w is a vector in a high dimensional space

How to Solve?

Problem
Find ~w and b from the standard SVM form

Solution
Solve via Lagrangian dual [Bazaraa et al 93]:

max~α≥0,~π≥0
(
min~w ,b,~ξ

L(~w , b, ~ξ, ~α)
)

where

L(~w , b, ~ξ, ~α)

=
~w · ~w

2
+ C

(k∑
i=1

ξi
)

+
k∑

i=1

αi (1− ξi − yi (~w · φ(~xi) + b))−
k∑

i=1

πiξi

Simplifying the Dual [Chen et al 03]

Standard (Dual) Support Vector Machine Form

target: min~α
1
2(~αTQ~α)−

∑k
i=1 αi

subject to:
~y · ~α = 0

0 ≤ αi ≤ C
(i = 1, . . . , k)

where: Qij = yiyj
(
φ(~xi) · φ(~xj)

)

Solution
We obtain ~w as

~w =
k∑

i=1

αiyiφ(~xi)

Where is the Benefit?

• ~α ∈ Rk (dimension independent from feature space)
• Only inner products in feature space

Kernel Trick

• Inner products efficiently calculated on input vectors via
kernel K

K (~xi ,~xj) = φ(~xi) · φ(~xj)

• Select appropriate feature space

• Avoid nonlinear transformation into feature space

• Benefit from better separation properties in feature space

Kernels

Example
Mapping into feature space φ : R3 → R10

φ(~x) = (1,
√

2x1,
√

2x2, . . . ,
√

2x2x3)

Kernel K (~xi ,~xj) = φ(~xi) · φ(~xj) = (1 + ~xi · ~xj)
2.

Popular Kernels

• Gaussian Radial Basis Function:
(feature space is an infinite dimensional Hilbert space)

g(~xi ,~xj) = exp(−γ‖~xi − ~xj‖2)

• Polynomial: g(~xi ,~xj) = (~xi · ~xj + 1)d

The Decision Function

Observation

• No need for ~w because

f (~x) = sgn
(
~w · φ(~x) + b

)
= sgn

(k∑
i=1

αiyi
(
φ(~xi) · φ(~x)

)
+ b

)
• Uses only ~xi (support vectors) where αi > 0

Few points determine the separation; borderline points

Support Vectors

Support Vector Machines

Definition

• Given: Kernel K and training set S
• Goal: decision function f

target: min~α

(~αTQ~α

2
−

k∑
i=1

αi

)
Qij = yiyjK (~xi ,~xj)

subject to:
~y · ~α = 0

0 ≤ αi ≤ C
(i = 1, . . . , k)

decide: f (~x) = sgn
(k∑

i=1

αiyiK (~xi ,~x) + b
)

Quadratic Programming

• Suppose Q (k by k) fully dense matrix

• 70,000 training points 70,000 variables

• 70, 0002 · 4B ≈ 19GB: huge problem

• Traditional methods: Newton, Quasi Newton cannot be
directly applied

• Current methods:
• Decomposition [Osuna et al 97], [Joachims 98], [Platt 98]

• Nearest point of two convex hulls [Keerthi et al 99]

Sample Implementation

www.kernel-machines.org

• Main forum on kernel machines
• Lists over 250 active researchers
• 43 competing implementations

libSVM [Chang, Lin 06]

• Supports binary and multi-class classification and regression
• Beginners Guide for SVM classification
• “Out of the box”-system (automatic data scaling, parameter

selection)
• Won EUNITE and IJCNN challenge

Application Accuracy

Automatic Training using libSVM

Application Training Data Features Classes Accuracy
Astroparticle 3,089 4 2 96.9%
Bioinformatics 391 20 3 85.2%
Vehicle 1,243 21 2 87.8%

References

Books

• Statistical Learning Theory (Vapnik). Wiley, 1998
• Advances in Kernel Methods—Support Vector Learning

(Schölkopf, Burges, Smola). MIT Press, 1999
• An Introduction to Support Vector Machines (Cristianini,

Shawe-Taylor). Cambridge Univ., 2000
• Support Vector Machines—Theory and Applications (Wang).

Springer, 2005

References

Seminal Papers

• A training algorithm for optimal margin classifiers (Boser,
Guyon, Vapnik). COLT’92, ACM Press.

• Support vector networks (Cortes, Vapnik). Machine
Learning 20, 1995

• Fast training of support vector machines using sequential
minimal optimization (Platt). In Advances in Kernel Methods,
MIT Press, 1999

• Improvements to Platt’s SMO algorithm for SVM classifier
design (Keerthi, Shevade, Bhattacharyya, Murthy). Technical
Report, 1999

References

Recent Papers

• A tutorial on ν-Support Vector Machines (Chen, Lin,
Schölkopf). 2003

• Support Vector and Kernel Machines (Nello Christianini).
ICML, 2001

• libSVM: A library for Support Vector Machines (Chang, Lin).
System Documentation, 2006

Sequential Minimal Optimization [Platt 98]

• Commonly used to solve standard SVM form
• Decomposition method with smallest working set, |B| = 2

• Subproblem analytically solved; no need for optimization
software

• Contained flaws; modified version [Keerthi et al 99]

• Karush-Kuhn-Tucker (KKT) of the dual (~E = (1, . . . , 1)):

Q~α− ~E + b~y − ~λ + ~µ = 0
µi (C − αi) = 0 ~µ ≥ 0

αiλi = 0 ~λ ≥ 0

Computing b

• KKT yield

(Q~α− ~E + b~y)i

{
≥ 0 if αi < C
≤ 0 if αi > 0

• Let Fi (~α) =
∑k

j=1 αjyjK (~xi ,~xj)− yi and

I0 = {i | 0 < αi < C}
I1 = {i | yi = 1, αi = 0} I2 = {i | yi = −1, αi = C}
I3 = {i | yi = 1, αi = C} I4 = {i | yi = −1, αi = 0}

• Case analysis on yi yields bounds on b

max{Fi (~α) | i ∈ I0 ∪ I3 ∪ I4} ≤ b ≤ min{Fi (~α) | i ∈ I0 ∪ I1 ∪ I2}

Working Set Selection

Observation (see [Keerthi et al 99])
~α not optimal solution iff

max{Fi (~α) | i ∈ I0 ∪ I3 ∪ I4} > min{Fi (~α) | i ∈ I0 ∪ I1 ∪ I2}

Approach
Select working set B = {i , j} with

i ≡ arg maxm{Fm(~α) | m ∈ I0 ∪ I3 ∪ I4}
j ≡ arg minm{Fm(~α) | m ∈ I0 ∪ I1 ∪ I2}

The Subproblem

Definition
Let B = {i , j} and N = {1, . . . , k} \ B.

• ~αB =

(
αi
αj

)
and ~αN = ~α|N (similar for matrices)

B-Subproblem

target: min~αB

~αT
B QBB~αB

2
+

(∑
b∈B

αbQb,N~αN

)
−

(∑
b∈B

αb

)
subject to:

~y · ~α = 0
0 ≤ αi , αj ≤ C

Final Solution

• Note that −yiαi = ~yN · ~αN + yjαj

• Substitute αi = −yi (~yN · ~αN + yjαj) into target

• One-variable optimization problem

• Can be solved analytically (cf., e.g., [Lin 01])

• Iterate (yielding new ~α) until

max{Fi (~α) | i ∈ I0 ∪ I3 ∪ I4} ≤ min{Fi (~α) | i ∈ I0 ∪ I1 ∪ I2} − ε

	The Problem
	The Basics
	The Proposed Solution
	Appendix

