
Compositions of Tree Series Transformations

Andreas Maletti a

Technische Universität Dresden

Fakultät Informatik

D–01062 Dresden, Germany

maletti@tcs.inf.tu-dresden.de

December 03, 2004

1. Motivation

2. Semirings, Tree Series, and Tree Series Substitution

3. Distributivity, Associativity, and Linearity

4. Tree Series Transducers and Composition Results

aFinancially supported by the German Research Foundation (DFG, GK 334)

1 December 03, 2004

Motivation

Tree series transducers are a straightforward generalization of

(i) tree transducers, which are applied in

• syntax-directed semantics,

• functional programming, and

• XML querying,

(ii) weighted automata, which are applied in

• (tree) pattern matching,

• image compression and speech-to-text processing.

Applications:

• can be used for code selection [Borchardt 04]

• potential uses in connection with tree banks

Motivation 2 December 03, 2004

Generalization Hierarchy

tree series
transducer

τ : TΣ −→ A〈〈T∆〉〉

weighted tree
automaton

L ∈ A〈〈TΣ〉〉

weighted transducer

τ : Σ∗ −→ A〈〈∆∗〉〉

tree transducer

τ : TΣ −→ B〈〈T∆〉〉

weighted automaton

L ∈ A〈〈Σ∗〉〉

tree automaton

L ∈ B〈〈TΣ〉〉

generalized

sequential machine

τ : Σ∗ −→ B〈〈∆∗〉〉

string automaton

L ∈ B〈〈Σ∗〉〉

Motivation 3 December 03, 2004

Trees

Σ ranked alphabet, Σk ⊆ Σ symbols of rank k, X = { xi | i ∈ N+ }

• TΣ(X) set of Σ-trees indexed by X,

• TΣ = TΣ(∅),

• t ∈ TΣ(X) is linear (resp., nondeleting) in Y ⊆ X, if every y ∈ Y occurs at most

(resp., at least) once in t,

• t[t1, . . . , tk] denotes the tree substitution of ti for xi in t

Semirings, Tree Series, and Tree Series Substitution 4 December 03, 2004

Semirings

A semiring is an algebraic structure A = (A,⊕,�)

• (A,⊕) is a commutative monoid with neutral element 0,

• (A,�) is a monoid with neutral element 1,

• 0 is absorbing wrt. �, and

• � distributes over ⊕.

Examples:

• semiring of non-negative integers N∞ = (N ∪ {∞},+, ·)

• Boolean semiring B = ({0, 1},∨,∧)

• tropical semiring T = (N ∪ {∞},min,+)

• any ring, field, etc.

Semirings, Tree Series, and Tree Series Substitution 5 December 03, 2004

Properties of Semirings

We say that A is

• commutative, if � is commutative,

• idempotent, if a⊕ a = a,

• complete, if there is an operation
⊕
I : A

I −→ A such that

1.
⊕
i∈I ai = ai1 ⊕ · · · ⊕ ain , if I = {i1, . . . , in}, and

2.
⊕
i∈I ai =

⊕
j∈J
⊕
i∈Ij ai, if I =

⋃
j∈J Ij is a partition of I, and

3.
⊕
i∈I(a� ai) = a�

⊕
i∈I ai and

⊕
i∈I(ai � a) =

(⊕
i∈I ai

)
� a,

• completely idempotent, if it is complete with
⊕
i∈I a = a for every non-empty I.

Semiring Commutative Idempotent Complete Completely Idempotent

N∞ YES no YES no

B YES YES YES YES

T YES YES YES YES

Semirings, Tree Series, and Tree Series Substitution 6 December 03, 2004

Tree Series

A = (A,⊕,�) semiring, Σ ranked alphabet

Mappings ϕ : TΣ(X) −→ A are also called tree series

• the set of all tree series is A〈〈TΣ(X)〉〉,

• the coefficient of t ∈ TΣ(X) in ϕ, i.e., ϕ(t), is denoted by (ϕ, t),

• the sum is defined pointwise (ϕ1 ⊕ϕ2, t) = (ϕ1, t)⊕ (ϕ2, t),

• the support of ϕ is supp(ϕ) = { t ∈ TΣ(X) | (ϕ, t) 6= 0 },

• ϕ is linear (resp., nondeleting in Y ⊆ X), if supp(ϕ) is a set of trees, which are

linear (resp., nondeleting in Y),

• the series ϕ with supp(ϕ) = ∅ is denoted by 0̃.

Example: ϕ = 1 α+ 1 β+ 3 σ(α,α) + . . .+ 3 σ(β,β) + 5 σ(α, σ(α,α)) + . . .

Semirings, Tree Series, and Tree Series Substitution 7 December 03, 2004

Tree Series Substitution

A = (A,⊕,�) complete semiring, ϕ,ψ1, . . . , ψk ∈ A〈〈TΣ(X)〉〉

Pure substitution of (ψ1, . . . , ψk) into ϕ:

ϕ←− (ψ1, . . . , ψk) =
⊕

t∈supp(ϕ),
(∀i∈[k]): ti∈supp(ψi)

(ϕ, t)� (ψ1, t1)� · · · � (ψk, tk) t[t1, . . . , tk]

o-substitution of (ψ1, . . . , ψk) into ϕ:

ϕ
o←−(ψ1, . . . , ψk) = ⊕

t∈supp(ϕ),
(∀i∈[k]): ti∈supp(ψi)

(ϕ, t)�(ψ1, t1)|t|x1�· · ·�(ψk, tk)|t|xk t[t1, . . . , tk]

Example: 5 σ(x1, x1)←− (2 α) = 10 σ(α,α) and 5 σ(x1, x1)
o←− (2 α) = 20 σ(α,α)

Semirings, Tree Series, and Tree Series Substitution 8 December 03, 2004

Distributivity

(⊕
i∈I

ϕi

)
m←− (⊕

i1∈I1

ψ1i1 , . . . ,
⊕
ik∈Ik

ψkik

)
=

⊕
i∈I,

(∀j∈[k]): ij∈Ij

ϕi
m←− (ψ1i1 , . . . , ψkik)

Substitution Sufficient condition for distributivity

pure substitution always

o-substitution ϕi linear, A completely idempotent

OI-substitution ϕi linear and nondeleting [Kuich 99]

Distributivity, Associativity, and Linearity 9 December 03, 2004

Associativity

(
ϕ

m←−(ψ1, . . . , ψk)) m←−(τ1, . . . , τn) = ϕ m←−(ψ1 m←−(τ1, . . . , τn), . . . , ψk m←−(τ1, . . . , τn))
Substitution Sufficient condition for associativity

pure substitution A completely idempotent, conforming partition (Ij)j∈[k] of [n], τi boolean

τi singletons with idempotent coefficients

special associativity law

o-substitution ϕ,ψ1, . . . , ψk linear, A zero-divisor free and completely idempotent

ϕ linear, A zero-divisor free, τi singletons

OI-substitution ϕi linear and nondeleting [Kuich 99]

Special associativity law: partition (Ij)j∈J of I with var(ψj) ⊆ XIj for every j ∈ J(
ϕ←− (ψj)j∈J

)←− (τi)i∈I = ϕ←− (ψj←− (τi)i∈Ij
)
j∈J

Distributivity, Associativity, and Linearity 10 December 03, 2004

Linearity

(a�ϕ) m←− (a1 �ψ1, . . . , ak �ψk) = a� a1 � · · · � ak �ϕ
m←− (ψ1, . . . , ψk)

Substitution Sufficient condition for distributivity

pure substitution always

o-substitution ai ∈ {0, 1} or special linearity law

OI-substitution ϕi linear and nondeleting [Kuich 99]

Special linearity law: tree t ∈ TΣ(Xk)

(a t)
o←− (a1 �ψ1, . . . , ak �ψk) = a� a|t|11 � · · · � a|t|kk �

(
t

o←− (ψ1, . . . , ψk)
)

Distributivity, Associativity, and Linearity 11 December 03, 2004

Tree Series Transducers

Definition: A (bottom-up) tree series transducer (tst) is a system

M = (Q,Σ,∆,A, F, µ)

• Q is a non-empty set of states,

• Σ and ∆ are input and output ranked alphabets,

• A = (A,⊕,�) is a complete semiring,

• F ∈ A〈〈T∆(X1)〉〉Q is a vector of final outputs,

• µ = (µk)k∈N with µk : Σk −→ A〈〈T∆(Xk)〉〉Q×Q
k

.

If Q is finite and µk(σ)q,~q is polynomial, then M is called finite.

Tree Series Transducers and Composition Results 12 December 03, 2004

Semantics of Tree Series Transducers

m ∈ {ε, o}, q ∈ Q, t ∈ TΣ, ϕ ∈ A〈〈TΣ〉〉

Definition: The mapping hmµ : TΣ −→ A〈〈T∆〉〉Q is defined as

hmµ (σ(t1, . . . , tk))q =
⊕

q1,...,qk∈Q

µk(σ)q,(q1,...,qk)
m←− (hmµ (t1)q1 , . . . , h

m
µ (tk)qk)

and hmµ (ϕ)q =
⊕
t∈TΣ(ϕ, t)� h

m
µ (t)q.

• the m-tree-to-tree-series transformation ‖M‖m : TΣ −→ A〈〈T∆〉〉 computed by M

is (‖M‖m, t) =
⊕
q∈Q Fq

m←− (hmµ (t)q) and

• the m-tree-series-to-tree-series transformation |M|m : A〈〈TΣ〉〉 −→ A〈〈T∆〉〉
computed by M is (|M|m, ϕ) =

⊕
t∈TΣ(ϕ, t)� (‖M‖m, t).

Tree Series Transducers and Composition Results 13 December 03, 2004

Extension

(Q,Σ,∆,A, F, µ) tree series transducer, m ∈ {ε, o}, ~q ∈ Qk, q ∈ Q, ϕ ∈ A〈〈TΣ(Xk)〉〉

Definition: We define h~qµ,m : TΣ(Xk) −→ A〈〈T∆(Xk)〉〉Q

h~qµ,m(xi)q =

1 xi , if q = qi

0̃ , otherwise

h~qµ,m(σ(t1, . . . , tk))q =
⊕

p1,...,pk∈Q

µk(σ)q,p1...pk
m←− (h~qµ,m(t1)p1 , . . . , h

~q
µ,m(tk)pk)

We define h~qµ,m : A〈〈TΣ(Xk)〉〉 −→ A〈〈T∆(Xk)〉〉Q by

h~qµ,m(ϕ)q =
⊕

t∈TΣ(XI)

(ϕ, t)� h~qµ,m(t)q

Tree Series Transducers and Composition Results 14 December 03, 2004

Composition Construction

M1 = (Q1, Σ, ∆,A, F1, µ1) and M2 = (Q2, ∆, Γ,A, F2, µ2) tree series transducer

Definition: The m-product of M1 and M2, denoted by M1 ·mM2, is the tree series

transducer

M = (Q1 ×Q2, Σ, Γ,A, F, µ)

• Fpq =
⊕
i∈Q2(F2)i

m←− hqµ2,m((F1)p)i

• µk(σ)pq,(p1q1,...,pkqk) = h
q1...qk
µ2,m ((µ1)k(σ)p,p1...pk)q.

Tree Series Transducers and Composition Results 15 December 03, 2004

Main Theorem

A commutative and complete semiring, M1 and M2 tree series transducer

Theorem: |M1 ·mM2|
m = |M1|

m ◦ |M2|
m, if

• m = ε and M1 linear, or

• m = ε and M2 boolean and deterministic, or

• m = ε and M2 is deterministic and A is multiplicatively idempotent, or

• m = o and M1 is linear, M2 is nondeleting and linear, and A is

completely idempotent.

Tree Series Transducers and Composition Results 16 December 03, 2004

Main Corollary

Corollary:

• l-BOTts-ts(A) ◦ BOTts-ts(A) = BOTts-ts(A).

• BOTts-ts(A) ◦ db-BOTts-ts(A) = BOTts-ts(A),

• BOTts-ts(A) ◦ d-BOTts-ts(A) = BOTts-ts(A), provided that A is multiplicatively

idempotent,

• l-BOTots-ts(A) ◦ nl-BOTots-ts(A) = l-BOTots-ts(A), provided that A is

completely idempotent.

Tree Series Transducers and Composition Results 17 December 03, 2004

References

[Borchardt 04] B. Borchardt: Code Selection by Tree Series Transducers.

CIAA’04, Kingston, Canada, 2004. to appear

[Engelfriet et al 02] J. Engelfriet, Z. Fülöp, and H. Vogler: Bottom-up and Top-

down Tree Series Transformations. Journal of Automata, Lan-

guages, and Combinatorics 7:11–70, 2002

[Fülöp et al 03] Z. Fülöp and H. Vogler: Tree Series Transformations that

Respect Copying. Theory of Computing Systems 36:247–293,

2003

[Kuich 99] W. Kuich: Tree Transducers and Formal Tree Series. Acta

Cybernetica 14:135–149, 1999

Tree Series Transducers and Composition Results 18 December 03, 2004

