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Motivation I

e straightforward generalization of tree transducers and weighted tree automata
e can be used for code selection [Borchardt 04]

e potential uses in connection with tree banks
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Generalization Hierarchy'

tree series
transducer
T: TZ — A TA

weighted transducej tree transducer

weighted tree
automaton

Le A<<T}:>> T: 2% — A{(A* T: Ty — IB<<TA>>

X

. generalized
weighted automaton tree automaton
sequential machine
* L e B(Ts)

string automaton

L € B{(Z*)
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X ranked alphabet, X C X symbols of rank k, X ={x; |1 € N, }

e Ty (X) set of Z-trees indexed by X,
® Tz — Tz(@),

o t € Tx(X) is linear (resp., non-deleting) in Y C X, if every y € Y occurs at most
(resp., at least) once in t,

e t[ty,...,tx] denotes the tree substitution of t; for x; in t

O'\ . § 5/\y
Y = \G |

)
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Semirings'

A semiring is an algebraic structure A = (A, ®, ®)
e (A,®d) is a commutative monoid with neutral element 0,
e (A,®) is a monoid with neutral element 1,
e (O is absorbing wrt. ®, and

e (© distributes over @.

Examples:
e semiring of non-negative integers INo, = (IN U {0}, +, -
e Boolean semiring B = ({0, 1}, V, \)
e tropical semiring T = (IN U {co}, min, +)

e any ring, field, etc.
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Properties of Semirings I

e commutative, if ® is commutative,

We say that A is

e idempotent, if a d a = q,
e complete, if there is a operation @, : A' — A such that
. Dicrai=ai, ©---Day,, ifI={i,...,in}, and
2. Dicrai =D @ielj ai, if I ={J;¢;1j is a partition of I, and
3. Pila®ai) =a0 @iy ai and P ;(ai © a) = (B;; ai) ©a,

o completely idempotent, if it is complete with ;| a = a for every non-empty I.

Semiring | Commutative Idempotent Complete Completely Idempotent
IN YES no YES no
B YES YES YES YES
T YES YES YES YES
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Tree Series.

A = (A, P, ®) semiring, & ranked alphabet

Mappings @ : Ts(X) — A are also called tree series
e the set of all tree series is A{(T= (X)),
e the coefficient of t € Tx(X) in @, i.e., @(t), is denoted by (¢, t),
e the sum is defined pointwise (@1 P @2,t) = (@1,t) D (P2, t),
e the support of ¢ is supp(@) ={t € Ts(X) | (@,t) #0},

e @ is linear (resp., non-deleting in Y C X), if supp(@) is a set of trees, which are
linear (resp., non-deleting in Y),

e the series @ with supp(¢) = 0 is denoted by 0.

Example: ¢ =1Tax+1p+30(ex,x) +...+30(p,B)+50(x,0(cx,x)) +...
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Tree Series Substitution.

A = (A, ®,®) complete semiring, @, P1,...,Px € A{Ts(X)))

Pure substitution of (\1,...,k) into @:

(PH(II)h---)ll)k): @ ((p)t)®(¢1>t1)®'"@(ll)k)tk)t[th-“)tk]

tesupp(@),
(Vielk]): tiEsupp (i)

o-substitution of (Pq,...,Px) into @:

P—(W1,...,Px) = ED (@, )O(WP1,t1) 1 @ - O (W, tr) Tt [ty ..., by

tesupp(@),
(Vie[k]): tyesupp(Pi)

Example: 5 0(x1,%x1) ¢— (2 &) =10 o(a, &) and 5 (x7,%71) +— (2 &) = 20 o, &)
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Distributivity'

(@%)Hm(@ 1|)1i1>--->@11’kik>: P e W,

iel 11el, 1 ely iel,

Substitution

(Vielk]): ijEIj

Sufficient condition for distributivity

pure substitution
o-substitution

OI-substitution

Distributivity, Associativity, and Linearity

always
@i linear, A completely idempotent

@i linear and non-deleting [Kuich 99]

"')wkik)
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Associativity'

(@£(¢1>-“>¢k)) Hm(Th-'-)Tn) — @£(¢1 <—n1(T1>---aTn)a--->1l)k£(T1>--'>Tn))

Substitution

Sufficient condition for associativity

pure substitution
o-substitution

OI-substitution

special associativity law

©,P1,...,Px linear, A zero-divisor free and completely idempotent

@1 linear and non-deleting [Kuich 99]

Special associativity law: var(¢) C ], partition (Ij )jey of I with var(;) C Xy, for

every j € ]

(@ — (W5)jer) ¢ (Tidier = @ — (P — (Ti)ieli)jej
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(a®@ @) (a1 OP1,..., ek OP) =a0 a1 OO ax© @ « (P, ..

Substitution

Linearity'

Sufficient condition for distributivity

pure substitution
o-substitution

OI-substitution

always
ai € {0, 1} or special linearity law

@i linear and non-deleting [Kuich 99]

Special linearity law: tree t € Tx (Xy)

(at)%o(m @1])1,...,ak®1|)k):a®a1

Distributivity, Associativity, and Linearity

[t]4

@~~®at|k®(t<—o(1l)1>

11

'>1l)k)

--->1|)k))
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Tree Series Transducers'

Definition: A (bottom-up) tree series transducer (tst) is a system
M = (Q) X, A, A) F, M)

e Q is a non-empty set of states,

e 2 and A are input and output ranked alphabets,

o A=(A,d,®) is a complete semiring,

o Fc A{TA(X7))Q is a vector of final outputs,

o 1= )ken With e I — A(Ta (X)) Q7 R".

If Q is finite and wk(0)q,5 is polynomial, then M is called finite.
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Semantics of Tree Series Transducers.

me{e,0},qeQ,teTs, o € A(Tx)
Definition: The mapping hji" : Ts — A{TANQ is defined as

(ot tid)lg= B m(0)q,qr,an) — (ATt gqry - A (tk) g, )
qi1,--qk€Q

and hﬂl(@)q = @thz((P>t) 'hﬂl(t)q-

e the m-tree-to-tree-series transformation ||[M||™ : Tx — A{(Ta) computed by M
is ([IMII™,t) = @4eq Fq — (hHt)q) and

e the m-tree-series-to-tree-series transformation |M|™ : A((Tx)) — A{(Ta))
computed by M is (IMI™, @) = @, o1, (0, t) ® ([|M|™, 1),
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Extension I

(Q,Z,A, A, F, 1) be a bottom-up tree series transducer, m € {¢,0}, § € Q%, q € Q,
¢ € ATz (X))

Definition: We define hﬁ)m : Te (X)) — A(TA(X) )R

o 1 X1 if q—=4di
hq (X) — N
Hom T 0 , otherwise
hﬁ)m(o-(t1)"')tk))q — @ Hk(g)q,m...pk HT]’L(]’LEI’L,Tn(-l-J )p1)"‘)hﬁ,m(tk)Pk)
P1,--,Pr€Q

We define hd 1 0 AT (X)) — AYTa(Xi) )R by

hieg= P (o,)@h, (1)
teTs (X1)
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Composition Construction'

M =(Q1,5,A)A,F1, 1) and My = (I,A, A, Fa, 1) tree series transducer

Definition: The m-product of M; and M, denoted by M -, My, is the tree series
transducer
M = (11 X IZ>Z>F>‘A>F> !»L)

® qu = @iEQz (F2)1 Hmhﬁtz,m((ﬂ)p)i

o uk(o-)pq,(]m di,--sPxqx) — hﬂ;,mqk ((PH )k(c)p,p1 ...pk)q-
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Main Theorem'

A commutative semiring, M and M, tree series transducer

Theorem: |[Mj -y M2|™ = [M{|™ o [M2|™, if
e m = ¢ and M is non-deleting and linear, or

e m = o and M; is linear, M, is non-deleting and linear, and A is
completely idempotent.

Corollary:
® nl-BOTists(A) 0 BOTists(A) = BOT st (A).

e I-BOT,, ,((A) onl-BOTL, . (A) = I-BOTy, ,(A), provided that A is
completely idempotent.
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