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Tree Automata — Syntax'

Definition: A tree automaton is a quadruple M = (Q, %, J, F') where

(i) @ is a finite set of states,

(ii) X is a ranked alphabet of input symbols,
(i) 6 = Upen 0™ with 6 C Q% x ©%) x @ is a ranked alphabet of transitions, and
(iv) F C Q is a set of final states.

Example: Mg = ({qo,q1,q,7},{0®,aO}, 65, {q1,7}) with the following set 65 of
transitions.

5E — {SE’ «, QO27 Ega Q, QZ7 EQqu g, QOL EQO(L g, qu’ EQO(L g, QZ7 SQQD o, TZ) Srra g, T)}

7

~"~ ~~ ~N~
T1 T2 T3 T4 75 76 T7
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Tree Automata — Semantics'

Definition: Let n € IN, q1,...,¢n,q € Q, and s € Tx(X,,). The set

Wi .. (8) CT5(Xy) of (q1-..qn,q)-computations of s is inductively defined by:

(i) Let s = x; for some j € [n], then

X ,ifj:
T (s) = {z;} a4 =4q

qi...q T ] :
" 1] otherwise

(i) Let s = o(s1,...,5%) forsome k € N, 0 € ©F) | 51,... 5, € Tx(X,).

T:(rl...rk,a,q)€5(k), }
(VielkD): v el , (s;) )

di...dn

qjgl-'-Qn (s) = { (Y1, ..., Yk)

Definition: The language accepted by M is
LM)= | {seTs |Vi(s)#0}.

qgeF
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Tree Automata — Semantics (cont.)

4 (qq,0,7)

/ \ (6]06]0707 QO) (5704761)

\ (e,a,q0) 1

/’\ 7N /\
o= /N b = N = /\

An input tree sg € T{U@),Q(O)}(Xl) and a (qo, r)-computation
Vg € Ts,, (Xl) N \IJEO(SE) of s

The language accepted by Mg is L(Mg) = {o(s1,5s2) | 1,82 € T }.
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Tree Automata — Trace Graph'

Definition: The trace graph of M is the labeled, directed graph G(M) = (Q, E) where
ECQQx(0xIN)xQis

Ez{(q’,<7,j>,q) )keﬂ\h,j clkl, 7= (q1---qr,0,q9) €5®, ¢ =g }

Example: The trace graph of Mg

( <7'4,].> <T6,1> \
qo > { > {1 > T
U (15, 1) Q (T4,2) (16, 2) Q
<7'3,1> <7‘5,2> <’7'7,1>
\(73,2) (77, 2)
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Tree Automata — Trace Graph (cont.)

Definition: We define the equivalence relation =,; C Q) x @ as follows:

/

q=yv ¢ <= if gand ¢ are strongly connected in G(M).

Definition: We define the partial order <;; C Q/=,, x Q/=,, as follows:

lqd=., <m [d]=z,, <= ¢ isreachable from ¢ in G(M).

Definition: Finally we define the partial order <;; C Q x @ as follows:

¢<mq = ld=y Smld]=y and g ¢ [¢]=y \{d'}-

Example: [QO]EME = {qo}, [Q]EME =1{q}, [ql]EME ={q1}, and [T]EME = {r}.

[QO]EME <Mg [q]EME <Mg [Q1]EME <Mg [T]EME and o <Mg 9 <Mg 91 <Mg T-
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Decomposition of a Computation'

Definition:
Vorgn = U Y. (8)
sET(Xn)
Vorgn = U Y. (8)
sGTE(Xn)
Oq) = {(Ql---qk,U,Q) e 5¥) ke, q1,...,qr €Q }
Definition: For every n € IN, q,q1,...,q, € QQ we define the set

U = {0 ew | (vw e pos(u))(Gr € lgl=,,) ¢ laby(w) € 5y UX, }.
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Decomposition of a Computation (cont.)

4 )
(qu o, 7") (QQh g, T)
T\ /N
L1 L2 (57047Q) (QO(LO-? 91)
/ )/\ / | N
(€,Oé,Q) 0. q (QOQO7U7 QO) <€7a7Q>
<QO77 7\q ) / \
T SL’Q\ — (57 Q, qo) L1
e\ Lot ) [
(6, «, QO) \ —
qj(]o Eq
- 1 J
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Cost Functions I

Definition: Let M = (Q, 3,9, F') be a tree automaton and A = (A,®,®,0,1) be a
semiring. A mapping ¢: § — A(X) satisfying for every k € N and 7 € 6(¥) the
condition that ¢(7) € A(X}) is called a (polynomial) cost function for M.

Example: The following mapping cg : g — IN(X) is a cost function for Mg.
cp(t) =0 cp(me) =2 cp(m3) =3x1 +4x9  cp(14) = 31129

ce(15) =2x1 + 22 cp(1) = bxy ce(17) = x1 + T2,

Definition: We extend ¢ to a mapping ¢ : Ts(X) — A(X) as follows.

(i) If ¢p = x for some x € X, then ¢(v)) = x.
(i) f ¢ =7(¢1,...,90;) for some k € IN, 7 € §F) 4y, ... 9, € T5(X), then

c(th) = c(7)le(¥r), - -, e(dhw)].
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Cost Functions (cont.)

Definition: The set of accepting costs is

(M) =] e(M)g=J {ec@) |4 e v}

a ;(76 < - )
/ \ 6(7_2) 0(7_4) 2/ 3\331$2

b = /\ we)= /N = /N =10

/ \ / /\
L c(r1) c(x1) y

Example: cg(Mg)/= = {[0]=, [10]=z, [20]=, ...}

ata and Cost Functions 10 February 20, 2004



E—states.

Observation: Let q,q¢' € Q, v € W9, 1)y € U7 and Y € \I!g, such that ¢ = 1 [1)2].
Then c(v)) = c(v1)[c(v2)].

Definition: For every E C A we define the set Qg C Q) of E-states of M to be

Qe ={qeQ|(WeV¥)EBecE): c(y)=e}.

Clearly, Q4 = @ and Qg = (), because M is assumed to have no useless states.

Lemma: Provided that A is positive, one-summand free, and one-product free, we can
effectively compute the sets Q oy, @1}, and Q0,13

Example: Using Mg with cost function cg we observe that Qo = {q0,q1}.
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Algorithm Computing the {O}—States'

For every set S let eg: (X UA) x S x P(S) — X U A be specified for every
z€ XUA,se€S, and 8" C S by

z ifsel

es(z,8,9") = ,
0 , otherwise

Require: M has no useless states, A is positive

n:=0 Qp:=10
repeat
kelN,7=(q1..-qx,0,q) 65(k),
Qnt1:=QrnUq qEQ
C(T)[eQ($17Q17Qn)7 .. '7€Q(xk7ri7Qn)] ;_—'L 0
n:=n-+1
until Qn — Qn—l

Ensure: Qo) = Q\ Qy
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Reduced Tree Automata with Cost Functions'

Definition: M is called reduced, it
(i) L € @ is the designated zero-state, i.e., Qqoy = {1},
(ii) M possesses no useless states except potentially 1,

(iii) forevery k€ N, 7 = (q1 ... qi,0,q) € 8% with ¢ € Q0,11 we have q; = L for
every j € [k] and ¢(7) = eq(1,¢,Q \ {L}),

(iv) for every k € IN, 7 = (q1 ... qx, 0, q) € 6) we demand for every j € [k] that
(a) if ¢(7) =0, then q1,...,qr € Q0,1 and

(b) else ¢(7) is a zero-free polynomial and

zj € var(c(7)) = ¢ Qo)

Example: Clearly, Mg is not reduced because Q¢0y = {qo,q1}-
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Reduced Tree Automata with Cost Functions (cont.)

Lemma: For every tree automaton M with cost function ¢ over a positive,
one-summand free, and one-product free semiring, a reduced tree automaton M’ with
cost function ¢’ can effectively be constructed such that ¢(M) = ¢/(M’).

Corollary: Let M be a reduced tree automaton with cost function c. For every
7,4 € Q\ Qo1}, if \I!g, + (), then there exists 1) € \I!g, such that c(v)) is zero-free and

x1 € var(c(y)).
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Boundedness and Cost-Finiteness I

Definition: Let < C A x A be a partial order. M is said to be bounded (with respect
to <), if there exists a € A such that for every o’ € A with o’ = p for some p € ¢(M)

we have a’ < a.
Definition: M is said to be cost-finite, if ¢c(M)/= is finite.
Lemma: Let A be a naturally ordered and finitely factorizing semiring and A’ C A.

A’is finite <<= A’ is bounded with respect to the natural order C .

Proof sketch: (i) = (ii) Take ), . 4, a as an upper bound.

(i) = (i) Let a € A be such that a’ C a for every a’ € A’. Then
A"C By ={by € A|by Ca}. Assume that Bj is infinite, then
By ={(0,0") |a=0V ®b" } is also infinite, because

b1 C a <~ (HbQEA)Ia:bl@bg.

Then A is not finitely factorizing. Contradiction, hence B; and A’ are finite.
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Cost-Finiteness — Step II

Lemma: Let M be a reduced tree automaton with cost function ¢ over a finitely

factorizing semiring.
M is cost-finite <= (Vg€ Q)(Ya € c(M),): c(¥?)[a]/= is finite

Proof sketch:

= indirect using finitely factorizing and reducedness

«: firstly prove that (Vg € Q)(Vri,7r2 € [¢]=,,)(Va € ¢c(M),,) : c(\ffg)[a]/E is finite,
then perform well-founded induction along <j; using the outlined decomposition
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Cost-Finiteness

Cost-Finiteness — Step | (cont.)

N

/

S1 € \T!g;, S9 € \T!gg, and s3 € U9, Note that ¢3 < ¢2 <wm ¢1.

17
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Cost-Finiteness — Step III

Definition: Condition (finite) holds, if for every ¢ € Q \ Q0,13 and ¢ € \f/g there exists
a € A such that either

(i) c(v) =21 + a and (A is additively idempotent or a = 0), or
(i) c(v) = a.

Lemma: Let M be a reduced tree automaton with cost function ¢ over a monotonic
and finitely factorizing semiring. If c(\ffg)[a]/E is finite for every ¢ € Q and a € ¢(M),,
then Condition (finite) holds.

Proof sketch: Assume that for some g € Q) and ¢ € \T!g Condition (finite) does not
hold. Next show that for every b € A\ {0,1} we have b < ¢(¢)(b) < ¢()?)(b) < - --
due to strictness with respect to multiplication. Contradiction.
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Cost-Finiteness — Step IIII

Lemma: Let M be a tree automaton fulfilling Condition (finite) with cost function ¢
over a non-idempotent semiring A. Then for every k € IN, ¢ € (), and ¢ € W7 there
exists ¢’ € W? such that ¢(v)) = ¢(¢’) and height(y)’') < 2 - card(Q).

Proof sketch: Let 1y € W4 be a minimal counterexample with respect to the cardinality
of
Wy = {w € pos(y) |2 card(Q) < |w] }

Clearly there is a path of length at least 2 - card(Q) in 1. Consider the prefix of length
card(Q). Now we distinguish two cases.
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Cost-Finiteness — Step Il (cont.)

Case 1: ¢(p) = z1 with ¢ € \Tlﬁ. The following trees have equivalent costs, but the
latter is smaller. Contradiction.
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Cost-Finiteness — Step Il (cont.)

Case 2: ¢(p) = a with ¢ € \T!Zj. The following trees have equivalent costs, but the
latter is smaller. The black subtree has height at least card(Q) + 1 and is replaced by
the green tree of height at most card(@). Contradiction.

4 (...,q)
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Decidability of Cost—FinitenessI

Definition: Let M be a reduced tree automaton with cost function c over a finitely
factorizing and monotonic semiring A. Condition (finite-trans) holds, if for every
kelN,, g€ Q\ Qo). 7€ k] withg; =rr g, and 7= (q1...qx,0,9) € 6F) we have
either

(i) ¢(1) = x; + p for some p € A(Xy \ {z;}) and (A is additively idempotent or
p=0) or

(i) x; & var(c(7)).
Observation: Condition (finite-trans) is decidable.

Lemma: Condition (finite) and Condition (finite-trans) are equivalent.
Proof sketch:

(finite-trans) = (finite): trivial

(finite-trans) < (finite): apply the closed under decomposition property
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Decidability of Cost-Finiteness (cont.)

Theorem: Let M be a tree automaton with cost function ¢ over a monotonic and
finitely factorizing semiring A. The following statements are equivalent and decidable.

(i

(ii

) M is cost-finite.
)

(iii) Condition (finite) holds.
)
)

For every ¢ € Q and a € ¢(M), the set c(\ffg)[a]/E is finite.

(iv) Condition (finite-trans) holds.

If A is naturally ordered, then M is bounded with respect to the natural order C.

(v
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Boundedness results I

Example: Let M be a tree automaton with cost function ¢ over the naturally ordered
semiring A. It is decidable whether M is bounded with respect to the natural order C,

(i

)
(ii)
i)
)

if A = Nat is the semiring of the non-negative integers,

if A = Arct is the arctic semiring,
(iii

(iv) if A =N is the finite-subset (of the non-negative integers) semiring.

if A = Langsy, is the finite-language semiring, or

Remarks:
(a) The results (i) and (ii) were also obtained in [Sei94].

(b) For results (iii) and (iv) one shows cost-finiteness with the help of a partial order
different from C (both semirings are non-monotonic with respect to C).

(c) The semiring N was also considered in [Sei94], but with respect to a slightly
different problem (cardinality of the elements bounded?).
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Remaining Questions'

(i) Which properties of monotonic semirings are obsolete when restricting ourselves to
tree automata with linear cost functions (or cost functions of a particular type like
a-x1-... Tk)?

(ii) Can we characterize boundedness of tree automata with cost functions over certain
semirings which are not finitely factorizing?

(iii) Can we establish sufficient or necessary criteria for boundedness/unboundedness
with less restrictions on the semiring?
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