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Generalization Hierarchy'

finite tree automata
with cost (function)

L:Ts—A

finite (string) automata :
finite tree automata

LCTs

with cost (function)

L:Y—A

finite (string) automata
L C>*
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Semirings'

Definition: A semiring is an algebraic structure A = (A4, $,®,0,1), where
e A is the carrier set,
e © and ® are associative, i.e. a ® (b®c¢) = (a®b) ® c with ® € {®, ®},
e @ is commutative, i.e.a®b=bD a,

e 0 and 1 are the unit elements of addition and multiplication, respectively,
le.0a=a®0=aand1Ga=a61=a,

® distributes over @, i.e. a® (b®c) =(a®b) @ (a® ¢) and
bdc)®a=0boa)®(c®a)and

e 0 is absorbing, i.e. 0 ®a=a®0=0.
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Semiring Examples'

the semiring of natural numbers N = (N, +,-,0, 1),
e the arctic semiring A = (N U {—o0}, max, +, —00,0),

e the tropical semiring T = (IN U {400}, min, 4+, 400, 0),

the subset semiring ' = (Py(IN), U, 4,0, {0}) with

A+B={a+blac Ajbe B},

the boolean semiring B = ({ L. T}, V, A, L, T).
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Series-Parallel Graphs'

Let ¥ = {||®,-) a0 b0 0 gOY The term a| (((b - ¢)||a) - d) corresponds to
the graphical representations

u
/\

/a\ /< \d

N2 b/\ca

The leftmost node is called source, whereas the rightmost one is called sink. Assume

we apply costs as follows:

C(Gl || Gg) = C(Gl) D C(Gg) and C(Gl . GQ) = C(Gl) ® C(Gg)
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Series-Parallel Graphs (cont'd)

e in the Boolean semiring B with ¢(b) = ¢(¢) = ¢(d) = T and ¢(a) = L:

= T <= there is a path from source to sink without edges labelled a in G

/\ elall (b - )| a) - d)
Ud” = c(a) v (((c(b) A c(e)) V <>> (d))

— LV((TAT)VL)AT)
) =c(c) =c(d) =1

= the number of different paths from source to sink in G

/\ Aall (06~ ) a) - )
\/

e in the semiring of natural numbers IN with c(a) = c(b
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Series-Parallel Graphs (cont'd)

e in the arctic semiring A with c(a) = ¢(b) = ¢(c) = ¢(d) = 1:

= the number of edges in a longest path from source to sink (critical path) in G

/\ all (6 ) o) - )
\/

= max(c(a), max(c(b) + ¢(c), c(a)) + c(d))
= max(l,max(14+1,1)+1) =3
e in the trop/ca/ semiring T with c(a) =7, ¢(b) = 3, ¢(c) =2 and ¢(d) = 1:

= the length of a shortest path from source to sink in G

/\ Aall (06~ &) o) - )
\/

= min(c(a), min(c(b) + ¢(c), c(a)) + ¢(d))
= min(7,min(3+2,7)+1) =6
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Series-Parallel Graphs (cont'd)

e in the subset-semiring I with c(a) = {7}, ¢(b) = {3}, c(c) = {2} and ¢(d) = {1}:

¢(G) = the set of all path lengths from source to sink in G

m
| | | | el (((b - ¢) | a) - d))
@ /A1) — () U (((c(b) + () U c(a)) + e(d))
— {TYU({3Y+ {2) u{Th) + {1}) = {7,6,8}

a/{T}

Those computations can be incorporated into finite tree automata.
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Tree Automata I

Definition: A tree automaton is a quadruple M = (Q, X, 9, F'), where
e () is a finite, non-empty set of states,
e Y is a ranked alphabet of input symbols,
® 6 C Uren QF x ¥ x Q is a set of transitions and

e F C () is the set of final states.

Example: Let & = {||®,.() ¢ O O qO be as before, Q@ = {qo, 1}, F = {q1}
and the transitions are specified in the following tables.

symbol | (¢0,90) (90,q1) (q1,9) (q1,¢1) symbol | ¢
[ —T q0 qo 7l a| q
q0 7 7t 7t b,c,d | qo
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Computation of a Tree Automaton'

H (Q1CI0, ||7(J0)

AN VRN
' (87 a, Q1) (qoq07 K QO)
RN VRN
d (QOQb ||7q0) (€7d7 QO)
AN

/ /N
’ a (QOQOJ '7QO) (8,&, Q1)
VRN /N
b c (Eaba QO) (8767 QO)

Since this is the only possible computation tree for the given input tree and ¢o ¢ F, the

input tree is rejected, i.e. does not belong to the (tree) language accepted by the tree
automaton.

Generally speaking: This tree automaton accepts series-parallel graphs, in which every
path from the source to the sink contains at least one a.
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Cost Function I

Definition: Given a tree automaton M = (Q, X,9, F'), a cost function for M over
semiring A = (A, ®,®,0,1) is a mapping c: § — A[X].

Example: using the arctic semiring A (Q1QO> H7 C]O)

1/ \3

b= deaa)= debao) (e,a,q1)  (q040, > q0)
= c(e, ¢, q0) = c(e, d, qo) RN
max(z1,72) = ¢(qoqo, ||,q0) = ¢(qoq1, | 90) (CIOQla ||7 QO) (57 d, QO)
= clq.la0) = claa. o) AN
1+ 22 = c(qoqo;,q) = ¢c(qoq1,q1) (16_20/6_20, '<01) (¢, a,q1)
= c(q190,q1) = (@191, 1)

(87 b7 QO) (8767 QO)
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Monotonic Semirings'

Definition: A semiring A = (A, ®,®,0,1) is called monotonic, iff
e there is a partial order (A, <) such that
e a=a®band b <a®bforevery a,b € A\ {0},
e ¢ <a®dband

e a <a®a forevery a ¢ {0,1}.

Examples:
e Semiring of natural numbers IN,
e Arctic semiring A,

e (Finite language) semiring I = (P;(X*),U, 0,0, {e}) with the common operations
of union and concatenation.
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Naturally Ordered and Additively ldempotent Semirings'

Observation: Let A = (A,®,®,0,1) be an additively idempotent semiring, i.e. the

equality 1 & 1 = 1 holds. Then A is monotonic, if a < a ® a for every a ¢ {0,1},
where < C A x A is defined by

a=b <= adb=0b.

Observation: Let A = (A,®,®,0,1) be a naturally ordered semiring, i.e. the relation
C C A x A with

aCb <= (dce€eA):adc=0b

is a partial order over A. Then A is monotonic, if for every a ¢ {0,1} the condition
a < a® a holds.
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Star Search I

Definition: The star of a semiring element a € A is defined as:

n

n
a® = lim g a’ (compare ¥* = lim U Y* and reflexive, transitive closure).
n—r00 4 0 n—r00 5
1= 1=

Example: The star of 0 exists in any semiring and is always 1.
e in the semiring of natural numbers IN: no more stars exist
e in the arctic semiring A: 0* exists
e in the tropical semiring T: 0* exists
e in the subset semiring I: {0}* exists
e in the boolean semiring IB: T* exists

e in the (finite language) semiring IL: {e}* exists
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Some More Properties of Semirings'

Definition: A monoid A = (A, ®,1) is periodic, if for every element a € A there exist
i,7 € N with i < j and a* = a’.

Example: Every additively idempotent semiring is additively periodic with 7 =1 and

j=2

Definition: A monoid A = (A, ®,1) is locally finite, if for every finite B C A also (B)
is finite.

Example: Every additively idempotent semiring is additively locally finite.

Observation: Given a semiring A = (A, ®,®,0,1), A is additively locally finite, iff A is
additively periodic.

Observation: Given a semiring A = (A, ®,®,0,1) where 1* exists. Then A is
additively periodic. Moreover, on monotonic semirings: 1* exists, iff A is additively

periodic.
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Finitely Factorizing Semirings I

Definition: A semiring A = (A, ®,®, 0, 1) is finitely factorizing, if both monoids
(A,8,0) and (A \ {0}, ®, 1) are finitely factorizing, i.e. given a monoid (B, ®, 1) for
every b € B the set { (c,d) € B> [b=c®d } is finite.

Example: The semirings IN, A and IL are finitely factorizing, while T and IF' are not.
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E-states I

Definition: Let M = (Q, X, 6, F') be a tree automaton with cost function
c: § — A[X] over a semiring A= (A,H,,0,1) and E C A. The set of E-states of
M, denoted Q g, is

Qe ={q € Q| for every g-computation ¢: c¢(¢)) € E }.

Lemma: For monotonic semirings we can effectively determine Q¢oy and Qo 11

Example: The set of all {0}-states QQy9y C () can be computed as follows:

e Set QOZQ

e For every n € IN set

Qn—}—len\{qGQn

(Fr=(q1..-qx,0,q) € 5)(EIm € Il’lOIl(C(T))) }
(Vj € var(m)) : q¢; € Q\ Qn '

Then Q{O} = Qw.
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Boundedness.

Classical notion of boundedness fails, since there are several semirings (e.g. T) which
possess a maximal element (w.r.t. some partial order). Every tree automaton with cost
function over such a semiring would then be bounded.

Definition: A tree automaton M = (Q, 3,9, F') with cost function ¢: § — A[X] over
a semiring A = (A, ®,®,0,1) is bounded, if

c(M) ={c(v) |9 is an accepting computation of M }

is finite.

Observation: Every tree automaton with cost function over a finite semiring is
bounded.
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Boundedness Result'

Theorem: Let M = (Q, X, 6, F') be a tree automaton with cost function
c: 0 — A[X] over a finitely factorizing and monotonic semiring A = (A,®,®,0,1).
M is bounded, iff for every g-g-computation ¢ with ¢ ¢ Qo 13 either

e ¢(v) = x1 + a for some a € A and (1% exists or a = 0) or

e (7)) is a constant.
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Boundedness Result (cont'd)

Rationale: The cases ¢(¢) = x1 and ¢(v)) = a for some a € A are straightforward. Let
c(y) = x1 + a, thus 1* exists. It follows that A is additively periodic, hence additively
locally finite.

Rationale: Let ¢(v) = bxy with b ¢ {0,1}. By b < b ® b pumping yields
unboundedness.

Rationale: Let ¢(¢) = 23. By ¢ ¢ Q0,13 and b < b ® b pumping again yields
unboundedness.
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Examples'

Example: Let M = (Q, %, 9, F') be a tree automaton with cost function ¢: 6 — IN[X]
over the semiring (N, +,-,0,1). M is bounded if and only if for every g-g-computation

w with q ¢ Q{O,l} either

e ¢(1)) = a for some a € IN or

e c(1)) = x1 holds.

Example: Let M = (@, X%, 9, F') be a tree automaton with cost function
c: 6 — (INU{—o0})[X] over the arctic semiring (N U {—o0}, max, +, —00,0). M is
bounded if and only if for every g-g-computation 1 with g & Q¢ 1} either

e ¢(¢)) = a for some a € (N U {o0}) or

e c(¢) = max(z1,co) for some ¢y € (N U {—o0}) holds.
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Boundedness results

Remaining Questions'

Can we decide the property required for all g-g-computations?

Can we also characterize boundedness by some property which is based on single
transitions rather than ¢-g-computations?

Which properties of monotonic semirings are obsolete when restricting ourselves to

tree automata with linear cost functions?

Can we characterize unboundedness of tree automata with cost function over
certain semirings which are not finitely factorizing?

Can we establish sufficient or necessary criteria for boundedness/unboundedness

with less restrictions on the semiring?
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