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Generalization hierarchy'

weighted tree tree series
automata transducer
L: Ty — A T: Ts — A{(TA))
weighted automata ? finite tree automata tree transducer
L:Y* v A T X — A(A*) L CTs T: Ty — Ta
finite (string) generalized sequential
automata machines
LCX” T X — A*
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Semirings and Orders'

o semiring A = (A, ®,®,0,1) comprises of a commutative monoid (A, ®,0) and
monoid (A, ®,1); ® distributes over @ and 0 is absorbing

e partial order < C A x A is reflexive, antisymmetric and transitive
e partial order < is consistent, iff every finite subset S C A has an upper bound

e semiring % is partially ordered by the partial order =<, iff a1 < ay implies
1. a1 ®a=<as P a,
2. a10a=axy®aanda®a; =a®as

e semiring % is naturally ordered, iff C C A x A is a partial order, where
alb iff (Jce A): b=adc

e naturally ordered semirings are partially ordered by the consistent partial order C
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Examples'

1. the natural numbers Ny, = (NU {0}, +,+,0, 1) are naturally ordered by C = <
2. the Boolean semiring B = ({1, T},V,A, L, T) is naturally ordered by | < T

3. the arctical semiring A = (INU {—o00}, max, +, —00, 0) is naturally ordered by
C=<

4. the tropical semiring T = (IN U {oc}, min, 4, 00, 0) is naturally ordered by C = >
and (consistently) partially ordered by <

A semiring is additively idempotent, iff a ® a = a. The latter three presented semirings
are additively idempotent.

A semiring preserves =< under continuation, iff a < a @ a. All additively idempotent as

well as naturally ordered semirings preserve the order under continuation.
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Tree Series.

e a tree series  is a mapping of type Ta(V) — A; (p,1) is used to denote ¢(t)

e the class of all tree series is denoted A{TA(V))

e the support of a tree series @ is defined to be supp(¢) = {t € Ta(V) | (p,t) #0 }
e  is polynomial iff its support is finite; the corresponding class is A{(Ta(V))

o Let o € A(TA(XR)Y, (¥1,...,0r) € ALTA(V))E. Substitution of (1, ...,

Into @ Is
0 — (1, ) = > (. O (W1, 11) O - O, tr) ) H[t1, - - - ],
tEsupp(y)
(Vi€[k]): t; Esupp(;)
e whereas o-substitution of (11,...,1y) into ¢ is
¥ HO (¢17---7¢k’) - Z ((¢7t)®(¢17t1)|t|m1®@(Zbk;,tk)mmk)t[tl,,tk]

tEsupp(yp)
(Vi€[k]): t;€supp (i)
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Tree Series Transducers.

M= (Q,2, A, Qg, 1), where

e () and (Q; C (@ are finite sets of states and final states, resp.

e X and A are the input and output ranked alphabets, resp.

o A= (AP, ,0,1) is a semiring

e 4 is a family of mappings (ux)ren of type

pe s B — A(TA (X))

M is

1. polynomial, if every (1 (0)g (g1.....q0) € A(TAa(Xk))

2. deterministic, if for every k-ary o and (q1,...,q.) € QF and ¢

#(SupP (e (0) g, (g1 nqr))) < 1

and for at most one ¢ equality holds.
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Semantics of tree series transducers.

Let mod € {¢, 0}

(@) s (AYTA PN — AqTay@
/Lk(ojrn0d<}%17.'.7]%k)q - ZE: /Lk(OJQa@h, ----- qK) 4E29d ((lzl)Q17"'7(}%k)Qk>'

(qla"'acIk)er

Initial homomorphism: h/Ide Ty — A(TA )@

mod

hlrf‘)d(a(sl, ooy Sg)) = pg(o)

mod-semantics of M is 72°4 1 Ty, — A{(TA))

Tl (s) = ) hpei(s),

q€Qa

(hlrde(sl), e hlrjmd(sk))
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Example'

Let ¥ = {o® @} and A = {a(®}. The (bottom-up) tree series transducer
M — ({*}7 E7 A) Ql? {*}7 M)’

where fig(t)«.e = p2(0)4 (+,+) = ca for some ¢ € A, is deterministic and gives rise to

the following translations:

o Tar(s) = 7°(9) o since

(

(C@\(hu(81)*,Oé)/@\(hu<82)*,@)1)oé ,if s =0(s1, 82)
h,u(8>* = 4 031;0?81) CSi;?SQ)
C o if s =«
\
o 70/(s) =cua since
hi(s). =ca
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Requirements and constants I

e partially ordered semiring A = (A, ®,®,0,1) via a consistent partial order <
e = preserves order under continuation

or
e 2 is naturally ordered and <X =LC

M= (Q,%, A, Q4, 1) is a polynomial bottom-up tree series transducer

1. the maximal rank r = max { keIN | X% £ } of a symbol of X

(

1 if M is deterministic
#(Q)) , otherwise

3. the maximal support cardinality e of any tree series of

2. the number of follow-up states d = <

\

e = max { #(supp(pr(o)qw)) |k €N, o € »®) geQ,we QF } .
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Cardinality approximations'

Lemma:

(a) #(supp(h7°%(s)y)) < #(Ta) and
(b) #(supp(hm°d(s),)) < dEZ T ) (EE" T hold.

Proof: (a) trivial, (b) straightforward induction over s
Observation: Both approximations are monotonic in s (or height(s)).

Observation: For deterministic transducers:

#(supp(hj;©(s)q)) < 1
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Constants again I

1. the maximal rank r = max{ k € N | £(*) £ () } of a symbol of &

)
1 if M is deterministic

#(Q) , otherwise

3. the maximal support cardinality e of any tree series of

e = max { #(supp(un (7)) [k € W0 €M, g€ Queh |,

2. the number of follow-up states d = <

\

4. an upper bound c of all coefficients appearing in the tree representation p
u
c e ({1} U { (ke (0) gy, ) ) keN,oeX® geQ uwe Q" tesupp(ur(o)gw) }) :
5. the maximal number of variables u in the support of any tree series of

r Cif mod = ¢

U = _ B
MaxX reN,oex® qeq, Z:ceXk ’t’x , if mod = o
weQ" tesupp(pr(0)g,w)
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Approximations'

e order-preserving cardinality approximation mapping [ : IN, — IN,

approximation mapping fj\nj?ld N, — A

c ifn=1
]\r?(’)ld(n) =< del(n—1)"

> c@f]\”j?ld(n—l)“ cifn>1
i=1

In case M is deterministic or 2l is additively idempotent

C ifn=1

mod
Mo (n) =
cO fuedip — 1) | ifn>1
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Approximations (cont'd)

Lemma: For every s € Ty, and t € supp(hﬁl‘)d(s)q) with ¢ € ()5 we have

(h(s)q, t) = fAr (height(s)).

Example: £ = {c®, o}, A ={a@} and po(a). = p2(0). ) =ca

e regular substitution: r = u = 2

(TM(S)’ a) S CQheight(s)_l

e o-substitution: u =0
(Tar(s), ) < ¢

Cost approximations 13

May 14, 2003



Sharpness of the approximation'

If A is additively idempotent or M is deterministic, then the given approximation is

sharp, i.e. given suitable ¢, u, there exists a M such that
(Vn € N)(3s € Tx) height(s) =n (3t € Ta) :  (753°Y(s),t) = f°d(n)

Proof: by Construction of a suitable M

Let p-BOT(A) = { 7ps | M is a polynomial bottom-up transducer over 2 } and
similarly also p-BOT?(2), d-BOT (), d-BOT?(2).
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Incomparability results'

Lemma:
e partially ordered semiring 2l ordered via a consistent order =<
e semiring 2l additively idempotent
e exists ¢ € A such that (V7,5 € IN) with 4 < j the condition ¢! < ¢’ holds
p-BOT(2A) X p-BOT?(A)
Proof: by contradiction using M and N = ({x}, %, A 2, {x},v), where
> = {41 o} A ={c® o)

vo(a)se =caand v1(7v). . = co(xy,z1).
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Incomparability results (cont'd)

Lemma:

e exists ¢ € A such that (Vi,j € IN) with i # j the condition ¢' # ¢/ holds

d-BOT(21) M d-BOT(A)

Lemma:
o A finite or 2 commutative
e x € {n,l} (non-deleting or linear)
o (Va € A)(Fi,j € N) with i < j such that a* = o’

either dz-BOT(A) C da-BOT’(A) or da-BOT(A) D dz-BOT(A)
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