Master Thesis 1

4 N

Direct Construction and Efficiency
Analysis for the Accumulation Technique
for 2-modular Tree Transducers

Andreas Maletti

Department of Computer Science
Dresden University of Technology

TECHNISCHE
@ UNIVERSITAT
DRESDEN

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis 2

Itinerary I

e Motivation and Introduction

e Modular Tree Transducers

e Basic Accumulation Technique

e Efficiency Considerations

e Extended Accumulation Technique

e Conclusions

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis

-

e Inefficient Reverse:

[Bool]

: XS)

irev ::

irev (False

\_

Motivating Example I

-> [Bool]

irev (True : xs8) = irev xs ++ [True]
irev [] = []
e Efficient Reverse:
rev :: [Bool] -> [Bool]
rev x =r x []
where r :: [Bool] -> [Bool] -> [Bool]

r (False : xs) ys = r xs (False : ys)
r (True : xs) ys = r xs (True : ys)
r [] ys = ys

irev xs ++ [False]

/

Dept. of CS, TUD

December 13, 2002



Master Thesis 4

4 N
Remarks

Inefficient Reverse Efficient Reverse

easy to comprehend somewhat more complex
automatic verification possible | verification requires user
quadratic time complexity linear time complexity
(Ek 4 k4 1) (k+1)
if k£ is the length of the input list.

—— write and prove the inefficient version, but run the efficient one.

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis 5

/ Another Example I \

data Nat = S Nat | Z

e Non-accumulating Fibonacci:

nf, nf’ :: Nat -> Nat
nf (S x) =nf’ x + nf x | nf’ (S x) = nf x
nf Z =S Z | nf’ Z = Z

e Accumulating Fibonacci:
fib :: Nat -> Nat
fibx =f x Z

where £, £’ :: Nat -> Nat -> Nat
f Sx)y=1%f x ({ xy)
f Z y =95y
2 8 x)y==fxy

NI _

Dept. of CS, TUD December 13, 2002




Master Thesis 6

4 N
Remarks

Efficiency consideration for input (S"Z2); n € IN:

e Non-accumulating Fibonacci:

n—2
Fib(n + 1) + Fib(n + 3) + ) (Fib(i) * Fib(n — 2 — i)) — 3
i=0
e Accumulating Fibonacci:
Fib(n + 3) — 2

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis 7

Modular tree transducer' \

A modular tree transducer is a quintuple M = (F,m, /A e, R)

-

where:
e [ is a ranked alphabet of function symbols (F(©) =),
e m: F'— IN is the module mapping,
e /\ is a ranked alphabet of constructors disjoint to F',

ec=(fxt; ... t) for some f € FUTY and ¢q,...,t, € T
r € IN and

e R — the set of rewrite rules — contains for every k,r € IN,
fe FUrt) and 6 € A% an equation

fOxy ... xk)y1 ... yr =thsp (f,0)

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis 8

Modular tree transducer (Example) I

The 2-modular tree transducer M,., is defined as

Moy = ({rev?) app®@}, m, {AW O NOL (vev ), R)

with m(rev) = 1, m(app) = 2 and rule-set R :

rev  (Ax) = app (revzx) (A N)
rev (B x) = app (rev x) ( )
app y =Y

app (Azx) y = (app x y)

app (Bz) y = DB(appzy).

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis 9

Properties of modules'

e Top-down tree transducer module: a module consisting solely of

unary function symbols

e Substitution module:

— there exists [I = {I1,..., } € A mx € IN such that
for every 1 <4 < mx : rhsys(sub, I1,) = y; where
sub € F(™x+1) ig the only function symbol of the module

— “endomorphic extension” to constructors of A \

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis 10

4 N
Term graphs I

A term graph is a quadruple (N, E,[,r) where

e /N is a set of nodes,

e F is a partial mapping F: N x N, — N (successor mapping),
e [ is a partial mapping [ : N — X (labelling mapping),

e r € N is the designated root node

and certain restrictions (non-circularity, connectedness, etc.) apply.

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis

11

Term graph examples'

\_

/

Dept. of CS, TUD

December 13, 2002



Master Thesis 12

4 N
Call-by-need I

=17| => 7 31 Za, if and only if

1. Locate redex: there exists a least element p € Rj;(Z1) with
respect to the lexicographic ordering on paths, which requires a
term graph homomorphism ¢ from G, ns to Z1|, for some
p € R,

2. Build: let G,O,lhs = (Nlhs, Eins, lins, Tlhs) and
Gp,rhs — (NI‘h87 Erhsa lrhs: rrhs) with ths a NEl — (Z)a then

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis

-

G' = (N',E'l',rg,) is defined as

N = NEl U(ths\Nlhs)
(E=, (n,1) ,if n € Nz,
E’(n, Z) — 9 Erhs(”a Z) ) if n, Erhs (n, 7/) = ths \ Nlhs

| Y (Ems(n,i)) , otherwise

/

l=,(n) ,ifn € Nz,

lins(n) , otherwise
\

for every n € N’ and 7 € IN; and

3. Redirect: =5 = G'[¢(T1hs) ~ 7hs], where we ensure the
connectedness property, i.e. trigger garbage collection, if

necessary.

\_

~

/

13

Dept. of CS, TUD December 13, 2002



Master Thesis

14

/ Steps illustrated I

add (S x) y =S (add x y)

S S S
i "~
add add_ add add_ add
\\\\}nuh; \\\\\ 1 \\\\\
mult mult
o S S
id

’ /

Dept. of CS, TUD

December 13, 2002



Master Thesis 15

4 N
The construction '

Given a 2-modular tree transducer M = (F',m, /A e, R), whose first

module is a top-down tree transducer module and the second
module is a substitution module with substitution variables

= {I1y,..., }. Construct M’ = (F', A,e/, R")
o [V ={fmt|feF, m(f)=1}
e ¢/ =(fall ... ), if e = (f x), and

e the right hand sides at f € F’ are constructed by translating
the original right hand sides at f.

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis 16

Translation '

o trans(ll;,&1,...,&mx) =&
[ trans((f w),fl,---,fmx) — (fxfl me>

o trans((0s1 ... Sg), &1, -, &mx) =

(0 trans(s1,&1, .-+, &mx) .. trans(sg, &1, .., Emx))

o trans((subs sy ... Smx), &1, -, &mx) =

trans(s, trans(sy, &1, .- -5 &mx) - - - trans(Smx, &1, -+ - Emx))

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis

17

-

follows:

\_

Example I

The right hand side of the rev function symbol at

trans(app (rev x1) ( ) Y1)

trans((rev x1), trans(( ),91))

rev x1 (trans(( ), y1))
rev xy (A (trans(ll,y1)))

rev xry ( yl).

~

is computed as

/

Dept. of CS, TUD

December 13, 2002



Master Thesis

18

-

Correctness proof sketch'

e Lift trans to sentential forms,

e prove ¢ 'rans trans(&, 11, ..., )
i\“/ trans i\\“/*
¢ ——trans(¢',11,,..., )

e since trans(&, 11,...,

result.

\_

) =¢&, if € € T\, we gain the desired

/

Dept. of CS, TUD

December 13, 2002



Master Thesis 19

Efficiency deterioration'

e Non-accumulating version M:

doub =
doub (0 z1 x2) = sub( ) (0 (doub z1) (doub z3))
sub o= W
sub (cx122) Y1 = (sub x1 y1) (sub a2 y1).
e Accumulating version M’:
doub i = W
doub (0 xyx2) Y1 = (o (doub x1 y1) (doub x5 y71))

(o (doub z1 y1) (doub a2 y1)).

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis

20

doub

Derivation using M I

U///gub\\\o- L Ci;;;;V
A VA /N P

& doub doub

84 84

Dept. of CS, TUD

December 13, 2002



Master Thesis 21

Derivation using M’ I
o
doub 0/ \U

L a e /
O/ \a doub__ doub_ doub  doub

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis 22

Refined translation'
trans

Ib 01 ' Omx
trans
\\O f
f Ql. me — / \\O
X 01 " Omx
(o]
i

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis 23

Refined translation (cont’d) I

0 01 " Omx = trans trans

/N /

S1 " Sq §1 °°° Sa 01 """ Omx
trans trans
sub 01 ' Omx = S trans trans

\\o /
g S1 " Smx S1 " Smx 01 *** Omx

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis 24

4 Exampic] A

//////// \\\\\\\0
- ()
/ 7
doub //////

) / \y”l doub  doub  doub

\_ I1 X2 yl//

doub A y
doub (S x1 x2) y =S z z

\\\¥ where z = S (doub x1 y) (doub x2 y) 4///

Dept. of CS, TUD December 13, 2002

I
<




Master Thesis 25

Proof sketch of efficiency non-deterioration'

e Lift trans to sentential forms,

® prove g % tranS((f, IR )
“ JO/l
iﬁ’ % trans(f’, y ooy )

e Thereby, whenever M performs one derivation step, M’
performs at most one derivation step. Since the call-by-need
derivation relation is actually a partial mapping

(deterministic), we gain the desired result.

\_ /

Dept. of CS, TUD December 13, 2002




Master Thesis

26

-

\_

coll
coll
coll

coll

app
app
app
app

Extended construction '

e Non-accumulating version:

Y1
Y1
Y1
Y1

Y1
Y1
Y1
Y1

Y1

app y1 (collzq V)
(coll 1 1)

coll z1 (W 1)

Y1
(app 21 Y1)
(app 21 Y1)
(app 1 y1).

/

Dept. of CS, TUD

December 13, 2002



Master Thesis

27

-

\_

e Accumulating version:

coll Y1 21 = U1

coll (| z1) 1 21

coll (R x1) y1 21
coll ( 5131) Y1 21
) Y1 <1

Y1

(coll 1 y1 21)
coll z1 (W y1) 21
<1
coll z1 ((1,1) x4
(1,1) 1 N 2z
(1,1) &1 N 21.

Dept. of CS, TUD

December 13, 2002



