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Motivation '

The generic problem: Classify a given input
1. two classes (binary classification)
2. several, but finitely many classes (multi-class classification)
3. infinitely many classes (regression)
Applications:
e Handwritten digits recognition
e Speech recognition

e Text classification

e Face recognition

o
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The proposed solution: supervised learning, so given (non-trivial)

training data in different classes (labels known) predict test data (labels
unknown).

More formally: Given a training set S C R™ x {—1,1} of correctly
classified input data vectors ¥ € R"™, where every input data vector
appears at most once in S and there exist input data vectors p and n

such that (p,1) € S as well as (17,—1) € S (non-trivial S), successfully
classify unseen input data vectors.

o /
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Contestants: Different approaches:
e Nearest Neighbor e unsupervised learning
e Neural Networks e query learning
e Decision Trees e reinforcement learning

Goal: Performing better than the competitors in relevant applications

o /
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History I

e Support Vector Machines are a rather new field of study
e Early development in Bell Labs from 1990 to 1995

e Proposed by Vapnik and co-workers in 1992

e Since then it is becoming more and more popular

e Is still a field of active research

o /
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Linear Learning Machines'

Given: A training set S

Wanted: A hyperplane separating the input space into
halves containing only elements of one class

11,0, -1

o /
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Variables:

—

T; &; input data vector (£ € R™); specific input data vector
y; y;  classifier (y € {1, —1}); classifier for Z;, so (¥;,y;) € S

W weight vector (normal vector) of a hyperplane (w € R"™)

b bias of a hyperplane (b € R)

Representation of a separating hyperplane: w-x+ b =0

o > () ,lfyzzl
w-T; +b
<0 ,lfyz:—l

Decision function: f(7) = sgn(w - Z + b)

o /
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Goal: learn the coefficients w and b of the hyperplane

Problem: Many possible choices of w and b

Solution: Select @ and b with the maximal margin (maximal

distance to any input data vector)

Observations reveal (cf. Vapnik’s statistical learning theory )

1V

~ 1 Cify, =1
w-x; +b (1)
< —1 , if Y; = —1
Scaling does not change the hyperplane, but it does change the margin,
so adjust the scaling such that the closest points have functional margin
1 (f(%) =1)
CMaXimize distance between w - + b = +1 /
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Distance between w - Z + b =1 and —1 (closest points £ and Z™):

W-TT+b—w-T —b 2 2

1ol Vi@

w

Since max —= 5
|0 ||

o dea
target function: ming 5

conditions: yi (W - &; +b) > 1, from (1)

forte=1,...,1L.

= This optimization problem is the basic (primal) Support Vector

Machine form.

o

2 = min %% we finally gain the optimization problem:

~

/
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Higher Dimensional Feature Spaces'

Problem: We tried to find a linear separating hyperplane, but data

may not be linear separable
Non-separable case: allow training errors &;

W - W
target function: min e g +C Z&;

Y

conditions: Y (W-Z; +0) > 1 =&,
& >0; fori=1,...,1

If & > 1 then of the separating plane

Parameter C: large penalty parameter, so most &; are zero

Sep 12, 2001
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/N onlinear case: linear separable in other spaces 7

Higher dimensional ( maybe infinite ) feature space
O(T) = (91(7), 2(7), . . ).
Example: 7 € R?, ¢(%) € R

¢(f) — (1,\/§$1,\/§ZC2,\/§ZC3,ZC%,
T3, T3, V2129,V 2x1 13,V 2T013)

o

/
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Why higher dimensional spaces: a classic result by Cover [1965]
A standard problem [Cortes and Vapnik, 1995]:

. . W - W
target function: min;, # 5 + C(Z &)

conditions: Y (W ;) +0) > 1 =&,
& >0; fori=1,...,1

Other variants (though similar); Example:

target function: min;, # % + C(Z &)

yi(W - (%) +0) > 1 =&,
£&>0; fori=1,...,1

conditions:

o

~

/
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/ Finding the Decision Function'

Next problem: Finding w and b from the standard Support Vector

Machine form

w is a vector in a high dimensional space = perhaps infinite

Therefore we consider the dual problem:

. . _’TQoz
target function: ming Z o

conditions: 0<a; < C, fore=1,...,1

\_ @ =3 oy o(F)

~

/
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Remarks:
e Primal and dual: cf. optimization theory
e = Infinite dimensional programming
o Qi =v:y; (%) - ¢(T;) needs a closed form
e = Efficient calculation of high dimensional inner products
Example: 7; € R?, ¢(%;) € R
O(Z) = (1, V2T, V2(Ti)2, V2(Ti)s, ()7, ()3, ()3,
V2(Z)1(T5)2, V2(8:)1(Fi)3, V2(Ti)2(Z:)3),
O

Then K(f@,fj) ( ) ) ( 3?1 . fj)Q.

o

/
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product of two feature space vectors.
Popular methods (kernels) ¢(%;) - ¢(Z;) =
o ¢ IZi~%|* (Radial Basis Function),
o (i’—j}j)d (Polynomial kernel),
e tanh(a; - T; + b)

Decision function:

= No need to have w

Only ¢(Z;) of a; > 0 used

k a; > 0 = support vectors

éuch a K-tfunction is called kernel function, representing the inner \

sgn (’LU - 9(T) + b) = sgn (Z a; Yi P(Z;) - ¢(T) + b)

/
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Support Vectors: More Important Data I
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Issues '

Why is this good 7 Statistical learning theory

e Solving large quadratic problems: dual variable «

e Multiple-class classifications

— Several two-class problems or combined together

e Automatic model selection

— select the best parameters (kernel type, C, etc)
e Comparisons with other methods

e Applications

/
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Performance considerations '

Training errors not important; only test errors count

If Q is positive definite, training can be fully separated

[ observations, ©; € R™, i =1,...,[, a learning machine:

r— f(Z,d), f(Z,a)=1or —1.
= Different a: different machines

The expected test error (generalized error)

R@) = [ 3l £@.@)aP(E.y)

y: class of ¥ (i.e. 1 or -1)

~

/
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/ e P(Z,y) unknown, empirical risk (training error):

emp O_Z 2[ Z‘yz iy X ‘

o 2lyi— f(Z;,d)| : loss, choose 0 <7 <1
With probability at least 1 — n:

R(G) < Rump(a) + | PA0BUM) £ 1) = log(u/4)

e h is the Vapnik Chervonenkis (VC) dimension
e A bound to judge the performance of a learning machine
e Independent of data distributions

e A good pattern recognition method: minimize both terms at the

K same time

/

20
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/ e Support Vector Machine bound: \

Given fl,...,fl
F=Z@—w-7|[ld| <L|[7] < R;

With probability at least 1 — n, if sgn(f) € sgn(F) has margin at

least v on all z;:

R(A) < Remp(d) + \/%(5—22 log” [ + log %)

e 72: as large as possible

e Support Vector Machine:

target function: ming, » 2y C’(Z '3

2
1=1
conditions: Y (W - p(Z;) +b) > 1 =&,
k & >0, fore=1,...,1 /
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equivalent to

min

+Z yz :Ez)—i—b) ]+

22:15 training errors; SVM: search for a balance

e Continuous loss function ? Loss of sparsity: all a; # 0

S
g

5 usually called regularization term

e This kind of bounds are still very loose

o

/
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e Simplified primal:

e Simplified dual:

target function:

conditions:

k where Qq;j = Y; yj CI?Z . fj

target function:

conditions:

Primal and Dual Relation'

. w - W
ming, ——
’ 2
aT
ming Q& Z Q

0 < ay; forz:l,...

y_)&zoa

~

/
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Karush-Kuhn-Tucker (KKT) condition'

e Given the optimization problem

target function: ming f(%),

T e
conditions: g;(¥) >0; fori=1,...,m

e Corresponding Lagrangian function

L(fax Z)\zgz +Z:u]hj(f)

where \;, u;: Lagrange multiplier

o

/
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/ e KKT-conditions: \

OL(T*, N*, ii*)

= 0
ox
OL(T*, \*, i*) ;
oji =
Nigi(Z*) = 0;fori=1,...,m
gi(Z*) > 0;fori=1,...,m
Al > 0;fori=1,....,m

1

e Convex programming: convex objective function and convex
feasible region

e Linear constraints

e = If there exist \* and [*

for some £* and the conditions above are met, then £* is an optimum.

k necessary and sufficient condition /
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e The KK'T condition of the dual;

o

/
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strong duality theorem)

o

(Q@ — E + by));

D wiyjoy - @ — 14 by
J

yi(W - T; +b) — 1

e The KKT of the primal is the same as the KKT of the dual (cf.

/
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Large Dense Quadratic Programming'

_ T~ —
minCVQQO‘—Zézlozi; fory-a=0,0<q; <C

Q:; #0, Q : an [ by [ fully dense matrix

30,000 training points: 30,000 variables: (30,0007 x 8/2) bytes =

3GB RAM: still difficult

Traditional methods: Newton, Quasi Newton cannot be directly

applied

Current methods:

— Decomposition methods (Osuna et al. [1997], Joachims [1998],

Platt [1998])
— Nearest point of two convex hulls (Keerthi et al. [1999a])

/
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Decomposition Methods: Avoid Memory Problem'

e Working on a few variable each time

e It is like that for minimizing a function with 10 variables, you

sequentially work on one variable in each iteration
e Working set B, N = {1,...,l}\B fixed ; Size of B usually <= 100

e Sub-problem in each iteration:

. . a5 QBB - k-
target function: ming, 5 + (Ep + QBNAYN) - OB
conditions: Up - ap = —YN * Qpyy
0<ag<C

o /

29
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Decomposition Algorithm: a Framework' \

1. Given ¢ < I, &': initial solution. k < 1.
2. If @ an optimum, stop. Find a working set B C {1,...,1},
|B| = q. Define N = {1,...,I}\B, @5 and a%

3. Solve a sub-problem:

. . a5 QBBAB = kN
target function: ming, 5 — (EFp — QBNQAY) - B
conditions: 0< (ap); <C;fori=1,...,q,
Yp - dp = —Yn - Ay

4. Set &%H and &If\,ﬂ, k < k 4+ 1 and goto Step 2.

e Submatrices Qg and QN needed; calculated when needed: avoid

30

k the memory problem

/
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The objective function is decreasing ; Convergence was not fully

understood

Studies on convergence proofs: (Chang et al. [1999], Keerthi and
Gilbert [2000], Lin [2000])

Implementation: need knowledge of optimization

Early implementation: Working set by heuristics; Stopping
conditions not validated

Starting from zero vector ; Efficient when the percentage of support

vectors 1s small

Still slow in some difficult cases

/
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e Someone asked: the dual form is simple; why not solve it
analytically ? Solve
T AT
2

—b-z

min
by
Ai=b=>F=A"1
is not the end but just the beginning
= Numerical analysis techniques are important

/

Dept. of CS, NTU

Sep 12, 2001



Support Vector Machines 33

A Simple Implementation'

e Consider |B| = 2, Sequential Minimal Optimization (SMO) by
Platt [1998]

e Sub-problem analytically solved; no need to use optimization

software

e Contained flaws; modified by Keerthi et al. [1999]
e KKT of the dual:

Qi—E = -bj+r—|[
o N; = 0; wi(C'—a;) =0
X > 0; i>0

o /
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K This is how b is calculated

. — _ Z 0 ) if ar < C
(Qa — E + by): .
S 0 ) if op > 0
That is
)
+b>0 ifyy=1;04<C
=2 )00 ity =—-1;04>0
(Qd — E)q .
—b>0 ,ifyy=—-1;04<C
| t0<0 ,ifyr=1;040>0
e That is
max( max —Vf(a);, max Vf(a))
a;<C,y;=1 a¢ >0,y =—1
o< : . : B S
<bh< mln(at<g}?1;?:—l Vf(a)y, L, min Vf(a))

/
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e o not an optimal solution yet
max(at <Hé?§i:1 —V (@), o >I(§}33<=—1 VF(@):)
> mm(at<gﬁ1:_l Vf(d)y, o, om =V f(d):)
e Working set {i,j}
i = argmax({—Vf(@) |y =1, < C}H AV (@) |y = —1, ¢ > 0}),
j=argmin({Vf(@): | ye = —1,0: <C}H{=Vf(@): |yt =1,a; > 0})
Dept. of CS, NTU Sep 12, 2001
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/ e The sub-problem

min l[a- Oz} Qi Qy
e 200 Qy Qyy
—|—(Qj,N62N — 1)04]'

Yioy + yjo = —Yn - ay,

OSO&L',O&]'SO

one-variable optimization problem
e If without considering 0 < a; < C"

—G,—G,

+ (Qi.nvan — 1)@,

e Substitute a; = y;(—yn - dn — y;;) into the objective function ; A

oo = a; + QM-EQTC_;QQW , 1ty # 5, (2)
aj+ Q¢¢+C§jj —32627:3' iy =y,
where
k G; =V f(a); and G; = Vf(a),.

/
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e If outside |0, C], clipped into the feasible region ; If y; = y,; and
C S 87 + Oéj S 20,

LECVi—FOéj—CSCV?ewSCEH

Oéj‘ \

\Ozi—l—&j_A

L

07)

Hence if

a; + —Gi =Gy <L,
Qi + Qj; + 2Qi;

/
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o = [, and

a; V' =a;, +a; —ai =C. (3)

¢ J

e The stopping criteria

max( max —Vf(a);, max 1Vf(04>z')

a; <C,y;=1 a;>0,y;=—
< min(aﬂgfiy?:_l V f(a), aii%,igﬂ:l ~Vf(a);) —e¢

e Computational Complexity: O(l) in each iteration for finding two
indices of the working set

e Implementation tricks: cache for recently used ();; and others

o /
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