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ABSTRACT

The fundamental properties of the class QUASI of quasi-relabeling relations are
investigated. A quasi-relabeling relation is a tree relation that is defined by a tree bi-
morphism (¢, L,1)), where ¢ and v are quasi-relabeling tree homomorphisms and L is a
regular tree language. Such relations admit a canonical representation, which immedi-
ately also yields that QUASI is closed under finite union. However, QUASI is not closed
under intersection and complement. In addition, many standard relations on trees (e.g.,
branches, subtrees, v-product, v-quotient, and f-top-catenation) are not quasi-relabeling
relations. If quasi-relabeling relations are considered as string relations (by taking the
yields of the trees), then every Cartesian product of two context-free string languages is
a quasi-relabeling relation. Finally, the connections between quasi-relabeling relations,
alphabetic relations, and classes of tree relations defined by several types of top-down
tree transducers are presented. These connections yield that quasi-relabeling relations
preserve the regular and algebraic tree languages.
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1. Introduction

Tree relations were extensively study in the past four decades from the algebraic
point of view offered by tree bimorphisms [3, 6, 25, 27, 28] or from the dynamic
point of view provided by tree transducers [4, 9, 11, 19, 21]. Recently, new types
of tree transducers were used with considerable success in modeling translations
between natural languages especially because of their ability to capture syntax-
sensitive transformations and complex reorderings of the syntax trees of sentences.
Those tree transducers are now an essential device in the new field of syntax-based
machine translation (see [12, 14, 15, 17] and the references therein). Unfortunately,
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properties that are essential for the translation process (e.g., closure under com-
position and preservation of recognizable and algebraic tree languages [14, 15]) do
not hold in general for most of the main tree transducer types [5, 9, 11, 17], which
shows that the added power comes with severe drawbacks.

Synchronous grammars [1, 22, 23, 24], which were first proposed as models of
compilers [13], describe translations between natural languages in a very natural
way. Such devices consist of two formal grammars, of which the productions are
linked by some criteria. This link extends to the derivations and in this way related
sentences are generated simultaneously. They can thus easily model syntax-sensitive
transformations because their one-sided (say input) derivation can essentially be
seen as a syntax tree of the sentence it generates. The links can communicate
information about the shape of the input parse tree to the output side. However, this
mechanism also limits their power because the shapes of both derivations should be
similar. However, they can describe local rotations commonly used in phrase-based
machine translation (a phrase is any part of the input sentence). Unfortunately,
the mathematical framework offered by such formalisms is quite poor since, for
example, no results for closure under composition were known until [23].

Tree bimorphisms offer an elegant algebraic way to define tree relations. A tree
bimorphism is formed by two tree homomorphisms defined on the same common
tree language. Tree bimorphisms were used with considerable success in proving
properties like closure under composition and preservation of recognizability by
imposing suitable restrictions on its constituents [3, 6, 25, 27, 28]. Moreover, by
taking the yields of the input and output trees, they can be seen as devices that
generate string relations. A survey on the main classes of tree bimorphisms and
their characteristics is [20].

Using the tree bimorphism formalism, STUART SHIEBER was the first one who
linked tree transducers and synchronous grammars in an attempt to improve the
mathematical framework of the latter devices [23, p.95: “...the bimorphism char-
acterization of tree transducers has led to a series of composition closure results.
Similar techniques may now be applicable to synchronous formalisms, where no
composition results are known...”]. Following this lead, the class of quasi-alphabetic
tree bimorphisms (we call them quasi-relabeling in this paper) that define the same
translations as syntax-directed translation schemata of [1] was introduced in [26].

It was already shown in [26] that the tree relations defined by quasi-relabeling
(or quasi-alphabetic in [26]) tree bimorphisms, which are called quasi-relabeling
relations, are closed under composition and inverses and preserve the recognizability
of tree languages. In the present work we further investigate the properties of
this class from a theoretical point of view. We are interested in its other closure
properties, common operations that are preserved, canonical representations, and
their place in the tree transducer hierarchy. In addition, we outline some properties
of the string relations computed by them.

Our results can be summarized as follows. We show in Section 3 that there is
a canonical representation of quasi-relabeling relations that allows us to prove that
quasi-relabeling relations are closed under union. Unfortunately, but not surpris-



ingly, we can also show that they are not closed under intersection and complement.
We end this section with a result on string relations: every Cartesian product of two
context-free languages is a quasi-relabeling string relation. This strengthens a result
of [6], where it was shown for a more general class of bimorphisms. In Section 4
we investigate the connection of quasi-relabeling relations with other well-known
classes of tree relations such as alphabetic relations [6], finite-state relabelings [9],
tree relations defined by several types of top-down tree transducers [21, 29, 9] and
top-down tree transducers with look-ahead [10]. All the results are depicted in the
HASSE diagram in Figure 5, which also shows the relation between the correspond-
ing classes of string relations. Moreover, as an immediate consequence of the fact
that the class of quasi-relabeling relations is contained in the class of alphabetic
relations, we obtain that quasi-relabeling relations preserves regular and algebraic
tree languages.

2. Preliminaries

Let R, S, and T be sets, and consider a relation 7 C S x T. The fact (s,t) € 7
can also be expressed by writing s 7 ¢t. For every s € S, let st = {t | s 7 t}. More
generally, for every A C S, we let A7 = (J,.4 a7. The inverse of 7 is the relation
771 ={(t,s) | s T t}. The composition of two relations p C R x S and 7 C S x T
is the relation po7 = {(r,t) | Is € S:r p s 7 t}. The identity relation idg is
{(s,s) | s € S}. For (total) mappings ¢: S — T we generally identify sp and ¢(s)
for every s € S.

The nonnegative integers are denoted by N. For every k € N, we write [k] for
the set {i € N| 1 <4 <k}. For aset V, V*is the set of strings over V with ¢ € V*
denoting the empty string. By an alphabet we mean a finite set of symbols. A
ranked alphabet (X,1k) consists of an alphabet ¥ and a mapping rk: ¥ — N. Often
we leave the mapping rk implicit. For every k > 0, let ¥, = {f € X | tk(f) = k}.
We will write ¥ = {f1/k1,..., fn/kn} to indicate that ¥ consists of the symbols
fi,..., fn with the respective ranks kq,..., k,.

Let ¥ be a ranked alphabet and T a set. Then

S(T) = {f(tr,...,te) | f € Sp and ty, ...ty € T} .

For every (leaf) alphabet V', the set Tx;(V') of all ¥-trees indezed by V is the smallest
set T such that V' C T and X(T') C T. Subsets of Tx (V) are called (tree) languages.
Generally, for all considered trees we assume that the ranked alphabet is disjoint
with the leaf alphabet. For every tree t € Tx(V), the set pos(t) C N* of positions
of ¢ is inductively given by pos(v) = {¢} for every v € V, and

pos(f(t1,...,tx)) ={e}U{iw | i € [k] and w € pos(t;)}

for every f € ¥f and t1,...,t, € Tx(V). The label of t at position w € pos(t)
is denoted by t(w), the subtree of t at w is denoted by t|,, and the replace-
ment of that subtree in ¢ by the tree u € Tx(V) is denoted by t[u],,. For every
Q C XUV, let posg(t) = {w € pos(t) | t(w) € Q} and posy(t) = posgsy(t) for



every f € ¥ UV. For example, consider the tree u € Tx (V) of Figure 1 with
¥ ={f/2,9/1,a/0} and V = {v}. Then pos(u) = {e,1,2, 11,21, 22}, the label at
position 22 is u(22) = v, the subtree at 1 is u|; = g(v), and ula]s = f(g(v),a).
Finally, pos;(u) = {¢,2}. The set of branches of t is br(t) = posy, (t), and the
set of subtrees of ¢ is sub(t) = {t|,, | w € pos(t)}. Finally, |t|; = card(pos;(t)), and
the height of ¢ is hg(t) = max{|w| | w € br(¢)}. In other words, |t|; is the number
of f-symbols in ¢, and hg(t) is the length of a branch of maximal length (among all
branches). For the tree u of Figure 1 we have

br(u) = {11,21,22}, sub(u) = {v,q,g(v), f(a,v),u}, |ul; =2, hg(u)=2 .

f
/\
g f
AN
v oa v
Figure 1: Example tree.

A tree t € Tx(V) is linear (respectively, nondeleting) in Y C V if |t|, < 1
(respectively, |t|, > 1) for every y € Y. The Y-yield of a tree t € Tx(V) is defined
inductively by ydy (y) = y for every y € Y, ydy (v) = € for every v € V' \ 'Y, and
ydy (f(t1,...,tg)) = ydy (t1) - - ydy (tg) for every f € Xy and ¢q,...,t € Tx(V).
Let V = {v}. Then the tree u of Figure 1 is not linear in V, but nondeleting in V.
The V-yield of w is ydy, (u) = vv.

We fix a set X = {z; | i > 1} of formal variables (disjoint to all other ranked
alphabets and leaf alphabets). Let n > 0. We let X,, = {z; | i € [n]} and

CR(V)={t e To(VUX,) | Vie[n]:|th, =1} .

In other words, C%(V') contains all those trees of T (V U X,,) in which each vari-
able x1,...,x, occurs exactly once. For every t € Tx(V U X,,) and f € 31, we let
fO(t) =t and fETL(t) = f(fF(t)) for all k > 0.

For all ¢,¢y,...,t, € Tx(V U X,,), we denote by t[t1,...,t,] the result ob-
tained by replacing, for every i € [n], every occurrence of x; in ¢ by ¢;. For all
L,Ly,...,L, CTx(VUX,), L[Ly,..., L] denotes

{t[th...,tn] |t€L,t1 elq,... ty ELn} .

Let n = |t|,. More generally, for every v € V, the result of replacing, for every
i € [n], the i-th (with respect to the usual lexicographic order on the positions)
occurrence of v by ¢; is denoted by t[v «— (t1,...,t,)]. For every f € 3y, the
f-top-catenation of Lq,..., Ly CTx(VUX,) is

f(Ll,...,Lk) = {f(tl,...,tk) | t € Ll,...,tk S Lk} .
Moreover for every v € V, the v-product L e, L' of two languages L, L' C Tx(V) is

Le, L' ={tlv— (t1,...,t,)] |t € Lyn=|t|y, and ty,...,t, € L'} .



Then, the v-quotient of Lby L'is L/, L' = {t € T(V) | ({t} e, L')N L # 0}. For a
more detailed description of these operations on tree languages, we refer the reader
to [6] or [11].

Let us illustrate the previous notions on an example. Let ¥ = {f/3,9/2,¢/0}
and V = {v}, and consider the tree t = f(g(z2),v, f(e,v,21)) € Tx(V U X3) and
two arbitrary trees t1,te € T(V). Then

t[tht?] = f(g(t2)7v7f(eavvt1))
t[’U — (tlﬂtQ)] = f(g(xQ)atla f(e,t2,$1))
f({e7 tl}’ {‘%'2}’ {tQ}) = {f(€,$2, t2)7 f(t17$27 tQ)} .

Now let L = {v, f(v,e, f(e,v,e))} and L' = {#1,t2}. Obviously, L e, L’ equals

L'y {f(t17€7f(e’t1’e))7 f(t17e’f(evt%e))vf(t%evf(eatl)'U))vf(t276af(e7t2ae))} )

and if t; = v and t3 = e, then

L /v L' = {f(v,v,f(v,v,v)),f(v,v,f(v,v,e)),f(v,v,f(e,v,v)),f(v,v,f(e,v,e))}
U {f(v,e,f(v,v,v)),f(v,e, f(v,v,e)),f(v,e,f(ew,v))} UL .

A (tree) homomorphism ¢: Ts(V) — Ta(Y) can be presented by a mapping
pv:V — TA(Y) and mappings ¢ : X — Ta(Y U Xy) for every k > 0 as follows:

(i) vp = @y (v) for every v € V, and
(i) f(t1,..- te)e = r(f)tre, ..., tep] for every f € 3y and tq,...,t; € Tn(V).

We say that it is normalized if yd x (pr(f)) = z1 - - -z, for every f € Xi. Moreover,
such a homomorphism ¢ is

e linear [11, 6, 7] (respectively, complete [7]) if @i (f) is linear (respectively,
nondeleting) in X}, for every f € Xy,

o symbol-to-symbol [7] if py(v) € Y for every v € V and ¢i(f) € A(Xy) for
every f € X,

e alphabetic [6, 2] (démarquage linéaire in [2]) if it is linear, oy (v) € Y for every
v eV, and pr(f) € X UA(Xy) for every f € ¥y, and

e strictly alphabetic [6] if it is complete, alphabetic and symbol-to-symbol.

We denote by 1H, cH, ssH, aH, and saH the classes of all linear, complete, symbol-
to-symbol, alphabetic, and strictly alphabetic tree homomorphisms, respectively.
Further subclasses of tree homomorphisms can be obtained by combining any of
these restrictions. For example, IcH is the class of all linear complete tree homo-
morphisms.



Example 1 Let ¥ = {f/3,9/2,¢/0}, V = {v}, and Y = {0,1}. Consider the tree
homomorphisms @,v,n: Ts (V) — Tx(Y) defined by

@3(f) = g(z2,21) p2(9) = g(z1,21)  @ole)=e  v(v)=0
VY3(f) = 22 Y2(9) = g(z2,71)  tole)=e  Yy(v) =1
n(f) = flw3,21,22)  ma2(g9) = g(z1,22)  mole)=e  nv(v)=1.

Then, ¢ is symbol-to-symbol, 1 is alphabetic and n is strictly alphabetic. More-
over, note that o is neither linear nor complete and v is not complete. For the
tree t = f(e,g(v,e),v) in Tx(V), we get to = h(h(0,0),d), typ = h(d,1) and
tn = f(1,d,h(1,d)). The input tree and the obtained trees are displayed in Fig-
ure 2.
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Figure 2: Application of tree homomorphisms (see Example 1).

A (tree) bimorphism is a triple B = (p,L,v), where L C Tr(Z) is a tree
language and ¢: Tr(Z) — Tx(V) and ¢: Tr(Z) — Ta(Y) are homomorphisms.
The tree relation defined by B is 75 = ¢! oidy o) = {(tp,t) | t € L}, and the
translation defined by B is

yd(7p) = {(ydy (t¢), ydy (1)) | t € L} = {(ydy (), ydy (u)) | (t,u) € 7B}

For all classes H; and Ho of homomorphisms and every class £ of tree languages,
we denote by B(Hi, L, Hz) the class of tree relations 75, where B = (¢, L,v) with
p€H, LeLl,and Y € Ho.

Example 2 Let ¥ = {f/3,9/1}, A = {h/1}, V = {v}, and Y = {1}. Moreover,
let

L={f(d'(v), 9" (v),9"(v)) | l,m,n € N} C Tx(V) ,

and let ¢: T (V) — Tx(V) and ¢: Tss(V) — Ta(Y) be the homomorphisms given
by

e3(f) = f(zs, 22, 21) e1(9) = g(z1) v (v)
Y3(f) = s Y1(g) = h(z1) Yv(v)
Then the tree relation defined by B = (p, L, 1) is
8 = {(f(g"(v), g™ (v),4'(v)), B"(1)) | I, m,n € N}

with Tp € B(saH, Rec,aH), where Rec is the class of regular tree languages. The
translation defined by B is yd(75) = {(vvv,1)}.

v
1.



A top-down tree transducer [21, 29] is a system (@, X, A, I, R), where
e () = (1 is a unary ranked alphabet of states disjoint with X U A,
e Y and A are an input and an output alphabet, respectively,

e [ C Q is aset of initial states, and

e R is a finite set of rules of the form q(f(z1,...,2%)) — r, where ¢ € Q,
fe€Xk, and r € TA(Q(Xk)).

The top-down tree transducer M = (Q, 3, A, I, R) is linear (respectively, nondelet-
ing) if r is linear (respectively, nondeleting) in X}, for every rule ¢(f(z1,...,2%)) —
in R. The one-step derivation relation = s is defined as follows. For all senten-
tial forms &,{ € Ta(Q(Tx)) we have £ =), ( if and only if there exists a rule
q(f(z1,...,21)) — r € R and a position w € pos(§) such that &(w) = ¢, {(wl) = f,
and ¢ = &[uly, where u = r[€|w11,- -, &wik]. We illustrate a derivation step in
Figure 3. Let =}, be the reflexive and transitive closure of = ;. The tree relation
computed by M is

T ={(s,t) €T x Ta | g€ I:q(s) =3t} -

The class of all tree relations computable by linear (respectively, linear and non-
deleting) top-down tree transducers is denoted by I-TOP (respectively, In-TOP).
Example 3 Consider the ranked alphabet ¥ = {f/3,9/2,h/1,¢/0} and Q = {p, q}.
Then M = (Q,%,%,{q}, R) is a nondeleting, linear top-down tree transducer with
the following rules

q(f(w1,22,23)) — g(g(q(x1), p(x2)), q(x3))
q(h(z1)) — q(z1) q(e) — e
p(h(x1)) — h(p(z1)) ple) —e .

Then q(f(Rh!(e),h™(e), h"(e))) =4, g(g(e, h™(€)),e) for every l,m,n € N. The first
rule and a derivation step involving that rule are illustrated in Figure 3.

Let M = (Q,%,A,1,R) be a top-down tree transducer. It is a finite-state
relabeling [9], if for every rule ¢(f(z1,...,2%)) — r € R there exist q1,...,qx € Q
and g € Ay such that r = g(g1(x1), ..., qe(zx)). If additionally, f = g for all rules
as in the previous sentence (i.e., r(¢) = f for every ¢(f(z1,...,2)) — r € R), then
M is a finite-state tree automaton (fta) [9]. We generally write rules of an fta in the
form ¢ — f(q1,...,qr) instead of q(f(z1,...,zr)) — f(q1(z1),...,qx(xk)). Note
that ) coincides with idy, for some L C Ty if M is an fta. This L is also denoted
by L(M), and additionally, for every ¢ € Q, the notation L(M), stands for L(N)
where N = (Q, 2, A, {q}, R). In other words, L(M), is the language accepted by M
if ¢ were the only initial state. A language L is regular if there exists an fta M
such that L(M) = L. The class of regular tree languages [11, Chapter II] is denoted
by Rec, and Rec(X,V) = {L € Rec | L C T%(V)}. Finally, M is a relabeling |9] if
it a finite-state relabeling and card(Q) = 1. We denote the classes of tree relations
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Figure 3: A sample rule and an illustration of a derivation step using that rule.
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computed by finite-state relabelings, relabelings, and fta by QREL, REL, and FTA,
respectively.

The top-down tree transducer M can be equipped with a look-ahead facil-
ity [10, 17]. The pair (M, c), where M = (Q,%, A, I, R) is a top-down tree trans-
ducer and ¢: R — Rec(X), is called a top-down tree transducer with regular look-
ahead. The look-ahead c is finite if ¢(I — r) € L[Tx,...,Tx] for a finite tree
language L C Tx(X). In the latter case, we often write ¢(I{ — r) = L. Note that all
finite tree languages are regular. The transducer (M, c¢) inherits the properties ‘lin-
ear’ and ‘nondeleting’ from M. The semantics of a top-down tree transducer (M, c)
with look-ahead is defined as for the top-down tree transducer M with the addi-
tional condition that &1 € c(q(f(z1,...,2x)) — r) in the definition of = ,,. The
class of tree relations computed by linear top-down tree transducers with finite
(respectively, regular) look-ahead is denoted by I-TOPY (respectively, -TOP®).

3. Properties of Quasi-Relabelings

Let us start by recalling the main notion of this contribution. A quasi-relabeling
homomorphism is linear, complete, and basically symbol-to-symbol, but allows vari-
ables as successors of an output symbol. The precise definition from [26, Section 3]
(where they are called ‘quasi-alphabetic’) follows.

Definition 1 A tree homomorphism ¢: Ts, (V) — Ta(Y) is a quasi-relabeling if
(i) it is linear and complete,
(ii) pyv(v) €Y for everyv € V, and

(113) pr(f) € AY UXy) for every f € Xy,.

By qH we denote the class of all quasi-relabelings. A quasi-relabeling bimorphism
is a bimorphism (¢, L, ) such that ¢ and ¢ are quasi-relabelings and L is regular.

We introduce the new name ‘quasi-relabeling’ because their original name ‘quasi-
alphabetic’ used in [26] clashes with the name ‘alphabetic’ used here and in [6]. In



fact, using our terminology, quasi-relabelings are alphabetic (see Theorem 5), which
is why we chose to rename them. Note that in [26] ‘alphabetic’ is used in the sense
of [11] (a relabeling in our terminology).

Let QUASI = B(qH, Rec,qH) and ALPH = B(aH, Rec, aH) be the classes of all
tree relations defined by quasi-relabeling bimorphisms and alphabetic bimorphisms,
respectively. The elements of QUASI and ALPH are also called quasi-relabeling and
alphabetic relations, respectively.

Example 4 Let I' = {f/3,9/1,¢/0}, ¥ = {h/6,g9/1}, A = {f/3,9/1}, V = {v},
and Y = {0,1}. Consider the regular language

L={f(g"(v),e.g"(v)) | m,n €N} CTp(V)
and the quasi-relabelings p: Tr (V) — Tx(V) and ¢: Tr (V) — Ta(Y) given by

@S(f) = h(U,x27$3,’U,’l},x1) 901(9) (
V3(f) = f(z1, 22, 23) Y1(9) = g(

Then, B = (p, L,v) is a quasi-relabeling tree bimorphism, and

8 = {(h(v,v, 9" (v),v,0,9™(v)), flg™ (1), f(1,1,0),4"(1))) [ m,n € N} .

=g(z1) ole)=v pv(v)
=g ) 7/}0(6) = f(lv 1’0) wV(’U)

I v
X1 1.

Every quasi-relabeling maps each input symbol to an output symbol possibly
with some output leaf variables as direct subtrees. However, the variables of X have
to occur as direct subtrees of the root output symbol. This immediately yields the
following proposition.

Proposition 1 Let p: T (V) — Ta(Y) be a homomorphism and t € Tx,(V).
o If ¢ is a quasi-relabeling, then hg(t) < hg(ty) < hg(t) + 1.
o If ¢ is symbol-to-symbol, then hg(tp) < hg(t).
o If ¢ is strictly alphabetic, then hg(typ) = hg(t).

Let us quickly recall some relevant existing results of [11].
Theorem 1 Let Ly, Ly € Rec(X,V) and p: T (V) — TA(Y) be a homomorphism.

(i) Then Ly N Ly, L1 U La, and Ly \ Ly are regular.
(ii) If ¢ is linear, then L1y is regular.
(i4i) Lo~! is reqular for every L € Rec(A,Y).

Proof. Items (i), (ii), and (iii) are proved in [11, Theorem II.4.2], [11, Theo-
rem I1.4.16], and [11, Theorem II1.4.18], respectively. |
Now we investigate the fundamental properties of quasi-relabeling relations. We
start our investigation with a canonical representation of quasi-relabeling relations
in the spirit of [6, Proposition 3.1]. Note that our product data structure is simpler
than the corresponding one of [6] (see Definition 2). The canonical representation
will allow us to conclude that quasi-relabeling relations are closed under union.



For the rest of this section, let B = (p, L,v¢) with ¢: Tr(Z) — Tx(V) and
Y: Tr(Z) — Ta(Y) be a quasi-relabeling bimorphism. Let [¥ x A] be the ranked
alphabet such that for every k£ > 0

(2 x Al = {{t,u) |t e Z(VUXE)NCE(V) and u € A(Y UX,)NCK(Y)} .

In other words, our product data structure allows us to store (g (f),¥r(f)) for
some f € ['y. Clearly, there are canonical quasi-relabelings

T Tisen)(V xY) = T5(V)  and 72 Tinea)(V X Y) = Ta(Y)
given by

((t,u)) =t
((t,u)) =u

Ty ((v,9) = v G

oy (0,9) =y 0

Eoll VI

for every (v,y) € V xY and (t,u) € [¥ x A]x. Henceforth, we will use these
projections also for other product ranked alphabets. The next two statements were
proved in [6, Proposition 3.1] for alphabetic relations.

Proposition 2 There exists a quasi-relabeling n: Tr(Z) — Tinxa)(V x Y) such
that to = (tn)m! and ty = (tn)7? for every t € Tr(Z).
Proof. Let n: Tr(Z) — Tisxa)(V x Y) be the tree homomorphism such that
n2() = (p2(2),0(2)) for every = € Z and m(f) = (pu(f), ¥u(f)) for every
f € I'y. Clearly, 7 is a quasi-relabeling, and it is easy to check that tp = (tn)7!
and ty) = (tn)n? for every t € Tr(Z). O
Using the previous proposition, we can now eliminate the ranked alphabet T,
the index set Z, and the particular tree homomorphisms ¢ and @ from the bi-
morphism B. Essentially, every quasi-relabeling relation 7 C Tx(V) x Ta(Y) is
determined by a regular language L € Rec([X x A,V x Y). The construction is
illustrated in Figure 4.

Tr(Z)

TE (V) TA (Y)

Figure 4: Illustration of the construction in Theorem 2.

Theorem 2 A relation 7 C T (V) x Ta(Y) is a quasi-relabeling relation if and
only if there exists a regular L C Tisxa)(V X Y) such that T = {(tz',tx* | ¢t € L}.
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Proof.  The if-direction is trivial because (7!, L,7?) is a quasi-relabeling bi-
morphism defining 7. For the converse, let B = (¢, L’,4) be a quasi-relabeling
bimorphism such that 75 = 7. By Proposition 2 there exists a quasi-relabeling
n: Tr(Z) — Tisxa)(V X Y) such that 7 = {(tn=',tyn?) | t € L'}. Consequently,
the language L = n(L’) has the desired properties because it is regular by Theo-
rem 1(ii). O
We immediately note that quasi-relabeling relations are trivially closed under
inverses [26, Theorem 4]; i.e., if 7 € QUASI, then so is 771. As promised, let
us use the previous theorem to prove that quasi-relabeling relations are closed un-
der union. The corresponding property for alphabetic relations was proved in [6,
Proposition 3.2].
Corollary 1 QUASI is closed under union.
Proof. Let 71,75 C T5 (V) x Ta(Y) be quasi-relabeling relations. By Theorem 2,
there exist regular L, Ly C Tisxq)(V x Y) such that

n={{tr',tr?) [t € L;} and 1= {(tx',tr?) |t € Ly} .
Then
n Uty = {(tr*,tn?) |t € Ly} U{(tn' tn?) | t € Lo} = {(tn',tn?) |t € L1 U Lo}

which proves that 71 U7, is a quasi-relabeling relation by Theorem 2 (because L;U Lo
is regular by item (i) of Theorem 1). O

Let us move on to closure under intersection. For it we would need to align the
two input homomorphisms and the two output homomorphisms at the same time
and enforce equality both-sided. The next theorem shows that we are not able to
achieve this and hence quasi-relabeling relations are not closed under intersection.

Theorem 3 Any class C of tree relations such that
lessH C C C B(H, Rec, IH)

is not closed under intersection.
Proof. Let ¥ = {f/2,9/1,e¢/0}. We consider the linear complete symbol-to-

symbol homomorphisms 1, : Ty, — T, that are defined by
Pi(f) = f(z1,22) V1(g) = g(z1) Yi(e)
Va(f) = flz2,21) ¥2(g) = g(x1) Pa(e)

Clearly, ¥ and 19 belong to C. Note that i1 = idp,. We observe that for every
m,n € N

e

e .

flg™(e).g"(e))vr = f(g™(e). 9" (e))
flg™(e),g" ()2 = f(g"(e), 9™ (e)) -
Let L = {f(¢g™(e),g™(e)) | m,n € N}. Clearly, L is a regular language. Assume

that there exists 7 € B(H, Rec,1H) such that 7 = ¢; Ns. Since T preserves regular
languages by Theorem 1, the image L7 should be regular, but

Lt ={f(g"(e),g"(e)) | n € N}

(
(

11



is not regular. Hence no 7 with the given properties exists, which proves the state-
ment. U

Corollary 2 (of Theorem 3) QUASI is not closed under intersection.

Finally, we note that QUASI is trivially not closed under complement by Propo-
sition 1. Now let us consider common relations on trees. We immediately observe
that the intersection of a quasi-relabeling relation with idy, where L is a regu-
lar language, is again a quasi-relabeling relation. Also the union with idy is a
quasi-relabeling relation because idy, is a quasi-relabeling relation for every regular
language L and quasi-relabeling relations are closed under union by Corollary 1.

In general, the tree relations ‘sub’ and ‘br’ (if we consider the branches as trees
over a ranked alphabet of symbols of rank 0 and 1) are not quasi-relabeling. More-
over, for regular L C 7% (V) and v € V, also the following relations 7 and p, which
are defined for every ¢ € Tx(V) by tr = t e, L and tp =t /,, L, are not quasi-
relabeling relations, in general (in contrast to [6, Proposition 4.2 & p. 191-200]
where it is shown that all those relations are alphabetic). All these can easily be
proved using Proposition 1. Moreover, in general, quasi-relabeling relations are not
closed under f-top-concatenation (again in contrast to alphabetic relations; see [6,
Proposition 3.6]).

Now, let us turn our attention to the translations computed by quasi-relabeling
bimorphisms. We call them gquasi-relabeling translations. In [26] it was shown that
they define the syntax-directed translations [1]. Here we add to this result that
every Cartesian product of context-free string languages (for definitions and details
about context-free string languages the reader is referred to [11, Section 1.6]) is a
quasi-relabeling translation. This sharpens [6, Proposition 3.6], where the same
property was proved for alphabetic bimorphisms.

Theorem 4 For all context-free string languages K1 and Ky over the same alpha-
bet V, there exists a quasi-relabeling bimorphism B such that yd(75) = K1 X K.
Proof. By [11, Corollary 2.4], there exist regular tree languages Ly C T (V) and
Ly C TA(V) such that K; = {ydv(tl) | t1 € Ll} and Ky = {ydv(tg) | to € Lg}.
Let ¢: Y — V be a bijection, and Y be disjoint with ¥ U A. Then extend ¢ to
¢x:BUY - XUV and ¢pa: AUY — AUV such that ¢s(f) = f and da(g) =g
for every f € ¥ and g € A. We denote the ranked alphabets YUY and AUY, in
which all symbols of Y are nullary, by ¥ and A, respectively. Next, we define the
ranked alphabet
YVA={(f.g)| feX geA}

such that rk((f,g)) = max(rk(f),rk(g)). In a similar way the ranked alphabets
YV A and ¥ V A are defined. Without loss of generality, we can assume that
207&}/7&50 and 21#®¢A1

Next we show how to embed a tree of Tx (V) into Ts,, 5. Roughly speaking, we
read off the first components of the symbols of ¥V A while neglecting the additional
subtrees. However, we need to make sure that the neglected subtrees do not contain
symbols of Y because a quasi-relabeling cannot ignore the additional subtrees, but
should clearly not produce a piece of output string for them. To this end, we
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define the linear top-down tree transducer My with regular look-ahead ¢ such that
My = ({x},X VA, ZUV,{*},R), and for every (f,g) € (¥ V A); we have the rule

r=x((f,9) (@1, k) = o (f) (x(21), - K (@2(p)))

with look-ahead c(r) = (f,g)(T1,...,T}) in R, where T1 = --- = Ty 5y = Toya
and Th(py41 = -+ = Tk = Txya- In an analogous way the top-down tree trans-
ducer M with regular look-ahead is defined. Let L = 7'];[; (L) ﬂTA}lA (L2), which is
regular by [11, Corollary IV.3.17] and Theorem 1. Next, we take the quasi-relabeling
¢: Tsya — Tsya(V), which is defined for every (f, g) € (X V A); by

<f,g>($1,...,.%'m) lff € 2m

or((f,9) = {<h1, ha) (B(f)) otherwise

where (hy, ha) € X1 X Ay is arbitrary. In an analogous fashion, the quasi-relabeling
V: Tsya — Tsya(V) is defined. Now if we take the quasi-relabeling bimor-
phism B = (¢, L,v), then it should be clear that ydy (t¢) = ydy (tTar,) and
ydy (t¥) = ydy (t7ar,) for every ¢ € Tsy,x. Consequently, yd(7p) = K; X Ko,
which concludes our proof. O

4. Relation to Other Classes

In this section, we relate the class of quasi-relabeling relations to other known
classes of tree relations. We focus on classes of relations defined by bimorphisms [3,
8, 7] and classes of relations computed by various top-down tree transducers [21, 29,
11]. Recall that QUASI = B(qH, Rec, qH) and ALPH = B(aH, Rec, aH). Moreover,
we let SALPH = B(saH,Rec,saH). Clearly, every strictly alphabetic homomor-
phism is a quasi-relabeling and thus SALPH C QUASI. We start by showing that
the class QREL of tree relations computed by finite-state relabellings [9] is included
in the class SALPH.

Proposition 3 QREL C SALPH.

Proof. Let 7 € QREL. Since QREL C In-TOP = REL o FTA o IcH [9, Theo-
rem 3.5], there exists a relabeling M such that 7y C T (V) x Tr(Z), a regular tree
language L C Tr(Z), and a linear and complete homomorphism ¢: Tr(Z) — Ta(Y)
such that 7 = {(tr;,/',ty) | t € L}. Moreover, by the constructions of [9], v is
symbol-to-symbol and 7,,': Tr(Z) — Tx(V) [i.e., 73, is computed by a determin-
istic relabeling]. Consequently, TA}l and ¢ are strictly alphabetic because every
deterministic relabeling is strictly alphabetic. Thus, the strictly alphabetic bimor-
phism (TA_/Il, L, 1)) defines 7. a
The next proposition shows that every quasi-relabeling relation can be computed
by a linear top-down tree transducer with finite look-ahead [17]. With that we
establish a rough upper bound to the power of quasi-relabeling bimorphisms.

Proposition 4 QUASI C I-TOPY.
Proof. Let us consider a quasi-relabeling bimorphism B = (p, L,v), where
p: Tr(Z) = Tx(V) and ¢: Tr(Z) — Ta(Y). Without loss of generality, let ¢ be
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normalized. Moreover, let N = (Q,TUZ,TUZ, I, R) be an fta such that L(N) = L.
We construct the linear top-down tree transducer M with finite look-ahead ¢ such
that M = (Q, XUV, AUY,I,R’) and

e for every transition ¢ — z € R with z € Z, we have the rule r = q(zp) — 29
with look-ahead ¢(r) = {z1} in R/, and

e for every transition ¢ — f(q1,...,qx) € R with f € Ty and ¢1,...,q € Q we
have the rule

r=q(ee(f)E) ;- 2n)) = Pr(Hlar(s), - arles,)]

with look-ahead c(r) = {px(f)} in R’, where j; = pos,, (¢r(f)) for every
i€ [kl

First, let us prove 75 C 7y by showing ¢(ty) =73, ti for every ¢ € @ and
t € L(N),. Let t € Z. Then q(t@) = t1) using a rule constructed in the first item.
Now let t = f(t1,...,t;) for some f € Ty and ti,...,t; € Tr(Z). Moreover, let
Q-+, Gk € Q be such that t; € L(N),, for every i € [k] and ¢ — f(q1,-..,qx) € R.
Then

(or(ftro, ... tep])

q(f(te,...,th)p) =q
=q(g(ualtrp, .. trpls - unltios .. tep]))

where ¢i(f) = g(ui,...,u,) for some g € ¥, and wuq,...,u, € Tx(V). Let
Ji = pos,, (pr([f)) for every i € [k]. Then

q(f(t1s - t)e) = ve(Hla(ug [t - tel),s - o ar(ug e, - - trpl])]

using a rule constructed in the second item. Note that the look-ahead restriction is
trivially fulfilled. Clearly, u;, = x; for every ¢ € [k] and thus we have

q(f(tr, -5 t)p) = Ye(Hlar(tre), - artep)] -

By the induction hypothesis, we have g;(t;) =%, t:¢ for every i € [k]. Conse-
quently, we obtain

q(te) =nm V(N (tre), .. ar(tep)] =3 Ve(t1, ... tep] =t .

This proves the auxiliary statement and 75 C 7, if we consider states of I.

The converse inclusion can be proved using the statement: For every q € @,
t € Ix(V), and u € TA(Y), if q(t) =%, u, then there exists s € L(N), such that
t = sp and u = s1p. This can be proved by induction on the length of the derivation
in M. We omit the details here. ]

Next let us show that the class of alphabetic relations is essentially different
from the classes of tree relations computed by top-down tree transducers. For the
specific class TOP this was already remarked in [6], and here we only refine their
argument to the statements necessary for our purposes.
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Proposition 5 ALPH ¢ I-TOP® and In-TOP ¢ ALPH.

Proof. It is known that - TOP® C BOT, where BOT is the class of all tree rela-
tions computable by bottom-up tree transducers [30, 9]. As claimed in [6, page 188],
the class ALPH is incomparable to BOT. Consequently, ALPH ¢ 1-TOP®. More-
over, it is known that IcH C In-TOP. Suppose that IcH C ALPH. Then also every
linear and complete inverse homomorphism is an alphabetic relation because alpha-
betic relations are trivially closed under inverses. However, the proof of the main
theorem in [3, Section 3.4] would then show that alphabetic relations are not closed
under composition. This contradicts [6, Theorem 5.2], thus IcH ¢ ALPH. This
yields In-TOP ¢ ALPH. O
Next we consider the relation of quasi-relabeling and alphabetic relations. We
show that every quasi-relabeling relation is also alphabetic. The strictness of this
inclusion can be obtained using Proposition 5. For this result we need a product
ranked alphabet of [6, Section 2].
Definition 2 Let X and A be ranked alphabets, V and Y leaf alphabets, and n € N
be the minimal integer such that ¥ = |J_, S; and A = {J;_, A;. We define the
ranked alphabets X" and A" such that for every k > 1

Z([)n] =Y EE:] = {u € 3(Xy) | u linear in Xj, and |u|,, =1} U {k}
A([)"] = Ay AE:L] = {u € A(Xy) | u linear in Xj and |u|,, =1} U{k} .

The supremum of ¥ and A, denoted by XV A, is defined for every k € N by

Evay=|J oM xall.

max(l,m)=k

Moreover, the two canonical alphabetic homomorphisms o : Tsya(VxY) — Tx(V)
and p®: Tsya(V x Y) — Ta(Y) are defined by

Tk th:k

@%XY“M?J)) =v @E(<t7u>) = {t otherwise

rr ifu=k

ePxy ((0,9) =y o ({t,u)) = {u otherwise

for every (v,y) € VXY and (t,u) € (X V A), with k € N.
Theorem 5 QUASI C ALPH.

Proof.  Let us take a quasi-relabeling tree bimorphism B = (¢, L,v), where
0: Tr(Z) — Tx(V) and ¢: Tr(Z) — Ta(Y). Without loss of generality, let
v € Vandy €Y. We construct the linear homomorphism p: Tr(Z) — Tsya(V xY)
such that pz(z) = (zy, z¢) for every z € Z and

pk(f) = <t(E)W7u(€)w'>(x1; N ,-Tk,tl, “ee 7tl)
for every f € I'y, where

o t = pi(f) and u = Yy (f),
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o {i1,...,im} =posy(t) and {j1,...,jn} = posy (u),

e | = max(m,n) and

(t(ia), u(ja)) if @ < min(m,n)
(ia): y) ifn<a<m
(v,u(ja)) ifm<a<n

for every a € [I], and

e W = wy Wiy and w’ = w)---w), are such that t(w,) = pi(f)(a)n® for
every a € [k+m] and t(w}) = py(f)(b)7? for every b € [k+n] where 7! and 72
are the usual projections to the first and second components, respectively, with

! = 2 = zn? for every = € X.

By Theorem 1(ii), Lp is regular. An easy proof shows that
B = {t”,tp®) | t € Lp}

where > and p® are the canonical alphabetic homomorphisms of Definition 2.
Hence, 75 is an alphabetic relation by [6, Proposition 3.1], which is the analogue of
our Theorem 2 for alphabetic relations. O
As an immediate consequence of Theorem 5 and [6, Proposition 3.7], which
proves that alphabetic relations preserve regular and algebraic tree languages, we
get the following result.
Corollary 3 Quasi-relabeling relations preserve the reqular and the algebraic tree
languages.
Finally, we need to show that linear top-down tree transducers are not sufficiently
powerful to implement all quasi-relabeling relations.
Proposition 6 QUASI Z I-TOP.
Proof. Let ¥ = {f/2,e/0} and V = {vy,v2}. Moreover, let ¢ : Ts, — Tx(V)
be a quasi-relabeling with ¢g(e) = f(v1,v2). Then B = (p,{e},idr,) is a quasi-
relabeling tree bimorphism that defines {(f(v1,v2),e)}. It is known [9, Example 2.6]
that 75 is not in -TOP, and hence QUASI ¢ 1-TOP. ]
Let us collect our results in a HASSE diagram (see Figure 5). Note that in such
a diagram every edge is oriented upwards and denotes strict inclusion. We also add
the corresponding classes of translations, which we denote by yd(C) if C is the class
of tree relations.
Theorem 6 Figure 5 is a HASSE diagram.

Proof. The following six statements are sufficient to prove the claims of the left
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ALPH -TOPR

-TOP* SCFG
= yd(ALPH) = yd(I-TOP®)
QUASI -TOP = yd(QUASI) = yd(I-TOP)
= yd(SALPH) = yd(I-TOP)
TOP = yd(In-TOP)
SALPH yd(QREL)

QREL

Figure 5: Hasse diagram of classes of tree relations (left) and corresponding string
relations (right).

diagram.

QREL C SALPH C QUASI C ALPH (
SALPH C In-TOP c I-TOP C I-TOP¥ C I-TOP® (
QUASI C I-TOPY (3
QUASI ¢ -TOP (
In-TOP ¢ ALPH (
ALPH ¢ 1.TOP® (6

Statement 1 is clear using Proposition 3. The strictness is due to the fact that QREL
is closed under intersection whereas this is not true for SALPH by Theorem 3. The
final inclusion of (1) is proved in Theorem 5. The inclusions of (2) are all obvious and
(3) is shown in Proposition 4. Finally, the inequality (4) is proved in Proposition 6
and inequalities (5) and (6) are proved in Proposition 5.

It is proved in [18, Theorems 3 and 7] that yd(QREL) C yd(SALPH) = SCFG,
where SCFG denotes the class of string translations computed by synchronous
context-free grammars (or equivalently, syntax-directed translation schemas) [1].
Moreover, [26, Theorem 1] proves that SCFG = yd(QUASI). To prove that the
remaining classes also collapse to SCFG, we prove that for every 7 € B(IH, Rec, IH)
we can construct a quasi-relabeling bimorphism B such that yd(7g) = yd(7). It is
clear that alphabetic bimorphisms are linear and -TOP® C B(IH, Rec, 1H) by [16,
Theorem 4]. To this end, we first prove that yd(7) € yd(B(lcH,Rec,1cH)) us-
ing a construction that is similar to the one in the proof of Theorem 4 and [18,
Lemma 9] (eliminating variables in the center tree language and turning the homo-
morphisms into complete ones such that no variables are output for the subtrees
that were deleted by the original homomorphisms). Next we flatten the output
trees. Let B’ = (p,L,%) be a linear, complete bimorphism such that L C Tr
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and ¢: Tr — Tx(V) and ¢: Tt — Ta(Y). Then we construct quasi-relabelings
¢’ and ©’ for every f € 'y by

(p;c(f) :g(tla"'vtn) and ¢;€(f) :gl(ula"'aun’) )

where g and ¢’ are new output symbols. In addition, t1,...,t, € V U X and
UL, ..., Uy €Y UX are such that

deUX((pk(f)) =ty tn and ydyUX (wk(f)) =UL Uy -

Now let B” = (¢', L,9’). It should be clear that yd(rp~) = yd(7p:), which proves
the statement because 75, € QUASI. (]
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