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ABSTRACT

The fundamental properties of the class QUASI of quasi-relabeling relations are
investigated. A quasi-relabeling relation is a tree relation that is de�ned by a tree bi-
morphism (ϕ,L, ψ), where ϕ and ψ are quasi-relabeling tree homomorphisms and L is a
regular tree language. Such relations admit a canonical representation, which immedi-
ately also yields that QUASI is closed under �nite union. However, QUASI is not closed
under intersection and complement. In addition, many standard relations on trees (e.g.,
branches, subtrees, v-product, v-quotient, and f -top-catenation) are not quasi-relabeling
relations. If quasi-relabeling relations are considered as string relations (by taking the
yields of the trees), then every Cartesian product of two context-free string languages is
a quasi-relabeling relation. Finally, the connections between quasi-relabeling relations,
alphabetic relations, and classes of tree relations de�ned by several types of top-down
tree transducers are presented. These connections yield that quasi-relabeling relations
preserve the regular and algebraic tree languages.

Keywords: regular tree language, tree homomorphism, tree bimorphism, tree transducer

1. Introduction

Tree relations were extensively study in the past four decades from the algebraic

point of view o�ered by tree bimorphisms [3, 6, 25, 27, 28] or from the dynamic

point of view provided by tree transducers [4, 9, 11, 19, 21]. Recently, new types

of tree transducers were used with considerable success in modeling translations

between natural languages especially because of their ability to capture syntax-

sensitive transformations and complex reorderings of the syntax trees of sentences.

Those tree transducers are now an essential device in the new �eld of syntax-based

machine translation (see [12, 14, 15, 17] and the references therein). Unfortunately,
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JDCI-2007-760.
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properties that are essential for the translation process (e.g., closure under com-

position and preservation of recognizable and algebraic tree languages [14, 15]) do

not hold in general for most of the main tree transducer types [5, 9, 11, 17], which

shows that the added power comes with severe drawbacks.

Synchronous grammars [1, 22, 23, 24], which were �rst proposed as models of

compilers [13], describe translations between natural languages in a very natural

way. Such devices consist of two formal grammars, of which the productions are

linked by some criteria. This link extends to the derivations and in this way related

sentences are generated simultaneously. They can thus easily model syntax-sensitive

transformations because their one-sided (say input) derivation can essentially be

seen as a syntax tree of the sentence it generates. The links can communicate

information about the shape of the input parse tree to the output side. However, this

mechanism also limits their power because the shapes of both derivations should be

similar. However, they can describe local rotations commonly used in phrase-based

machine translation (a phrase is any part of the input sentence). Unfortunately,

the mathematical framework o�ered by such formalisms is quite poor since, for

example, no results for closure under composition were known until [23].

Tree bimorphisms o�er an elegant algebraic way to de�ne tree relations. A tree

bimorphism is formed by two tree homomorphisms de�ned on the same common

tree language. Tree bimorphisms were used with considerable success in proving

properties like closure under composition and preservation of recognizability by

imposing suitable restrictions on its constituents [3, 6, 25, 27, 28]. Moreover, by

taking the yields of the input and output trees, they can be seen as devices that

generate string relations. A survey on the main classes of tree bimorphisms and

their characteristics is [20].

Using the tree bimorphism formalism, Stuart Shieber was the �rst one who

linked tree transducers and synchronous grammars in an attempt to improve the

mathematical framework of the latter devices [23, p.95: �...the bimorphism char-

acterization of tree transducers has led to a series of composition closure results.

Similar techniques may now be applicable to synchronous formalisms, where no

composition results are known...�]. Following this lead, the class of quasi-alphabetic

tree bimorphisms (we call them quasi-relabeling in this paper) that de�ne the same

translations as syntax-directed translation schemata of [1] was introduced in [26].

It was already shown in [26] that the tree relations de�ned by quasi-relabeling

(or quasi-alphabetic in [26]) tree bimorphisms, which are called quasi-relabeling

relations, are closed under composition and inverses and preserve the recognizability

of tree languages. In the present work we further investigate the properties of

this class from a theoretical point of view. We are interested in its other closure

properties, common operations that are preserved, canonical representations, and

their place in the tree transducer hierarchy. In addition, we outline some properties

of the string relations computed by them.

Our results can be summarized as follows. We show in Section 3 that there is

a canonical representation of quasi-relabeling relations that allows us to prove that

quasi-relabeling relations are closed under union. Unfortunately, but not surpris-
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ingly, we can also show that they are not closed under intersection and complement.

We end this section with a result on string relations: every Cartesian product of two

context-free languages is a quasi-relabeling string relation. This strengthens a result

of [6], where it was shown for a more general class of bimorphisms. In Section 4

we investigate the connection of quasi-relabeling relations with other well-known

classes of tree relations such as alphabetic relations [6], �nite-state relabelings [9],

tree relations de�ned by several types of top-down tree transducers [21, 29, 9] and

top-down tree transducers with look-ahead [10]. All the results are depicted in the

Hasse diagram in Figure 5, which also shows the relation between the correspond-

ing classes of string relations. Moreover, as an immediate consequence of the fact

that the class of quasi-relabeling relations is contained in the class of alphabetic

relations, we obtain that quasi-relabeling relations preserves regular and algebraic

tree languages.

2. Preliminaries

Let R, S, and T be sets, and consider a relation τ ⊆ S × T . The fact (s, t) ∈ τ
can also be expressed by writing s τ t. For every s ∈ S, let sτ = {t | s τ t}. More

generally, for every A ⊆ S, we let Aτ =
⋃
a∈A aτ . The inverse of τ is the relation

τ−1 = {(t, s) | s τ t}. The composition of two relations ρ ⊆ R × S and τ ⊆ S × T
is the relation ρ ◦ τ = {(r, t) | ∃s ∈ S : r ρ s τ t}. The identity relation idS is

{(s, s) | s ∈ S}. For (total) mappings ϕ : S → T we generally identify sϕ and ϕ(s)
for every s ∈ S.

The nonnegative integers are denoted by N. For every k ∈ N, we write [k] for
the set {i ∈ N | 1 ≤ i ≤ k}. For a set V , V ∗ is the set of strings over V with ε ∈ V ∗
denoting the empty string. By an alphabet we mean a �nite set of symbols. A

ranked alphabet (Σ, rk) consists of an alphabet Σ and a mapping rk : Σ→ N. Often
we leave the mapping rk implicit. For every k ≥ 0, let Σk = {f ∈ Σ | rk(f) = k}.
We will write Σ = {f1/k1, . . . , fn/kn} to indicate that Σ consists of the symbols

f1, . . . , fn with the respective ranks k1, . . . , kn.

Let Σ be a ranked alphabet and T a set. Then

Σ(T ) = {f(t1, . . . , tk) | f ∈ Σk and t1, . . . , tk ∈ T} .

For every (leaf) alphabet V , the set TΣ(V ) of all Σ-trees indexed by V is the smallest

set T such that V ⊆ T and Σ(T ) ⊆ T . Subsets of TΣ(V ) are called (tree) languages.

Generally, for all considered trees we assume that the ranked alphabet is disjoint

with the leaf alphabet. For every tree t ∈ TΣ(V ), the set pos(t) ⊆ N∗ of positions
of t is inductively given by pos(v) = {ε} for every v ∈ V , and

pos(f(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k] and w ∈ pos(ti)}

for every f ∈ Σk and t1, . . . , tk ∈ TΣ(V ). The label of t at position w ∈ pos(t)
is denoted by t(w), the subtree of t at w is denoted by t|w, and the replace-

ment of that subtree in t by the tree u ∈ TΣ(V ) is denoted by t[u]w. For every

Ω ⊆ Σ ∪ V , let posΩ(t) = {w ∈ pos(t) | t(w) ∈ Ω} and posf (t) = pos{f}(t) for
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every f ∈ Σ ∪ V . For example, consider the tree u ∈ TΣ(V ) of Figure 1 with

Σ = {f/2, g/1, a/0} and V = {v}. Then pos(u) = {ε, 1, 2, 11, 21, 22}, the label at

position 22 is u(22) = v, the subtree at 1 is u|1 = g(v), and u[a]2 = f(g(v), a).
Finally, posf (u) = {ε, 2}. The set of branches of t is br(t) = posΣ0∪V (t), and the

set of subtrees of t is sub(t) = {t|w | w ∈ pos(t)}. Finally, |t|f = card(posf (t)), and
the height of t is hg(t) = max{|w| | w ∈ br(t)}. In other words, |t|f is the number

of f -symbols in t, and hg(t) is the length of a branch of maximal length (among all

branches). For the tree u of Figure 1 we have

br(u) = {11, 21, 22}, sub(u) = {v, a, g(v), f(a, v), u}, |u|f = 2, hg(u) = 2 .

f

g

v

f

a v

Figure 1: Example tree.

A tree t ∈ TΣ(V ) is linear (respectively, nondeleting) in Y ⊆ V if |t|y ≤ 1
(respectively, |t|y ≥ 1) for every y ∈ Y . The Y -yield of a tree t ∈ TΣ(V ) is de�ned
inductively by ydY (y) = y for every y ∈ Y , ydY (v) = ε for every v ∈ V \ Y , and
ydY (f(t1, . . . , tk)) = ydY (t1) · · · ydY (tk) for every f ∈ Σk and t1, . . . , tk ∈ TΣ(V ).
Let V = {v}. Then the tree u of Figure 1 is not linear in V , but nondeleting in V .

The V -yield of u is ydV (u) = vv.

We �x a set X = {xi | i ≥ 1} of formal variables (disjoint to all other ranked

alphabets and leaf alphabets). Let n ≥ 0. We let Xn = {xi | i ∈ [n]} and

CnΣ(V ) = {t ∈ TΣ(V ∪Xn) | ∀i ∈ [n] : |t|xi
= 1} .

In other words, CnΣ(V ) contains all those trees of TΣ(V ∪Xn) in which each vari-

able x1, . . . , xn occurs exactly once. For every t ∈ TΣ(V ∪Xn) and f ∈ Σ1, we let

f0(t) = t and fk+1(t) = f(fk(t)) for all k ≥ 0.
For all t, t1, . . . , tn ∈ TΣ(V ∪ Xn), we denote by t[t1, . . . , tn] the result ob-

tained by replacing, for every i ∈ [n], every occurrence of xi in t by ti. For all

L,L1, . . . , Ln ⊆ TΣ(V ∪Xn), L[L1, . . . , Ln] denotes

{t[t1, . . . , tn] | t ∈ L, t1 ∈ L1, . . . , tn ∈ Ln} .

Let n = |t|v. More generally, for every v ∈ V , the result of replacing, for every

i ∈ [n], the i-th (with respect to the usual lexicographic order on the positions)

occurrence of v by ti is denoted by t[v ← (t1, . . . , tn)]. For every f ∈ Σk, the
f -top-catenation of L1, . . . , Lk ⊆ TΣ(V ∪Xn) is

f(L1, . . . , Lk) = {f(t1, . . . , tk) | t1 ∈ L1, . . . , tk ∈ Lk} .

Moreover for every v ∈ V , the v-product L •v L′ of two languages L,L′ ⊆ TΣ(V ) is

L •v L′ = {t[v ← (t1, . . . , tn)] | t ∈ L, n = |t|v, and t1, . . . , tn ∈ L′} .
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Then, the v-quotient of L by L′ is L/v L
′ = {t ∈ TΣ(V ) | ({t}•v L′)∩L 6= ∅}. For a

more detailed description of these operations on tree languages, we refer the reader

to [6] or [11].

Let us illustrate the previous notions on an example. Let Σ = {f/3, g/2, e/0}
and V = {v}, and consider the tree t = f(g(x2), v, f(e, v, x1)) ∈ TΣ(V ∪ X2) and

two arbitrary trees t1, t2 ∈ TΣ(V ). Then

t[t1, t2] = f(g(t2), v, f(e, v, t1))

t[v ← (t1, t2)] = f(g(x2), t1, f(e, t2, x1))

f({e, t1}, {x2}, {t2}) = {f(e, x2, t2), f(t1, x2, t2)} .

Now let L = {v, f(v, e, f(e, v, e))} and L′ = {t1, t2}. Obviously, L •v L′ equals

L′ ∪ {f(t1, e, f(e, t1, e)), f(t1, e, f(e, t2, e)), f(t2, e, f(e, t1, v)), f(t2, e, f(e, t2, e))} ,

and if t1 = v and t2 = e, then

L /v L
′ = {f(v, v, f(v, v, v)), f(v, v, f(v, v, e)), f(v, v, f(e, v, v)), f(v, v, f(e, v, e))}

∪ {f(v, e, f(v, v, v)), f(v, e, f(v, v, e)), f(v, e, f(e, v, v))} ∪ L .

A (tree) homomorphism ϕ : TΣ(V ) → T∆(Y ) can be presented by a mapping

ϕV : V → T∆(Y ) and mappings ϕk : Σk → T∆(Y ∪Xk) for every k ≥ 0 as follows:

(i) vϕ = ϕV (v) for every v ∈ V , and

(ii) f(t1, . . . , tk)ϕ = ϕk(f)[t1ϕ, . . . , tkϕ] for every f ∈ Σk and t1, . . . , tk ∈ TΣ(V ).

We say that it is normalized if ydX(ϕk(f)) = x1 · · ·xk for every f ∈ Σk. Moreover,

such a homomorphism ϕ is

• linear [11, 6, 7] (respectively, complete [7]) if ϕk(f) is linear (respectively,

nondeleting) in Xk for every f ∈ Σk,

• symbol-to-symbol [7] if ϕV (v) ∈ Y for every v ∈ V and ϕk(f) ∈ ∆(Xk) for

every f ∈ Σk,

• alphabetic [6, 2] (démarquage linéaire in [2]) if it is linear, ϕV (v) ∈ Y for every

v ∈ V , and ϕk(f) ∈ Xk ∪∆(Xk) for every f ∈ Σk, and

• strictly alphabetic [6] if it is complete, alphabetic and symbol-to-symbol.

We denote by lH, cH, ssH, aH, and saH the classes of all linear, complete, symbol-

to-symbol, alphabetic, and strictly alphabetic tree homomorphisms, respectively.

Further subclasses of tree homomorphisms can be obtained by combining any of

these restrictions. For example, lcH is the class of all linear complete tree homo-

morphisms.
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Example 1 Let Σ = {f/3, g/2, e/0}, V = {v}, and Y = {0, 1}. Consider the tree

homomorphisms ϕ,ψ, η : TΣ(V )→ TΣ(Y ) de�ned by

ϕ3(f) = g(x2, x1) ϕ2(g) = g(x1, x1) ϕ0(e) = e ϕV (v) = 0

ψ3(f) = x2 ψ2(g) = g(x2, x1) ψ0(e) = e ψV (v) = 1

η3(f) = f(x3, x1, x2) η2(g) = g(x1, x2) η0(e) = e ηV (v) = 1 .

Then, ϕ is symbol-to-symbol, ψ is alphabetic and η is strictly alphabetic. More-

over, note that ϕ is neither linear nor complete and ψ is not complete. For the

tree t = f(e, g(v, e), v) in TΣ(V ), we get tϕ = h(h(0, 0), d), tψ = h(d, 1) and

tη = f(1, d, h(1, d)). The input tree and the obtained trees are displayed in Fig-

ure 2.

f

e g

v e

v

g

g

0 0

e
g

e 1

f

1 e g

1 e

t tϕ tψ tη

Figure 2: Application of tree homomorphisms (see Example 1).

A (tree) bimorphism is a triple B = (ϕ,L, ψ), where L ⊆ TΓ(Z) is a tree

language and ϕ : TΓ(Z) → TΣ(V ) and ψ : TΓ(Z) → T∆(Y ) are homomorphisms.

The tree relation de�ned by B is τB = ϕ−1 ◦ idL ◦ ψ = {(tϕ, tψ) | t ∈ L}, and the

translation de�ned by B is

yd(τB) = {(ydV (tϕ), ydY (tψ)) | t ∈ L} = {(ydV (t), ydY (u)) | (t, u) ∈ τB} .

For all classes H1 and H2 of homomorphisms and every class L of tree languages,

we denote by B(H1,L,H2) the class of tree relations τB , where B = (ϕ,L, ψ) with
ϕ ∈ H1, L ∈ L, and ψ ∈ H2.

Example 2 Let Σ = {f/3, g/1}, ∆ = {h/1}, V = {v}, and Y = {1}. Moreover,

let

L = {f(gl(v), gm(v), gn(v)) | l,m, n ∈ N} ⊆ TΣ(V ) ,

and let ϕ : TΣ(V ) → TΣ(V ) and ψ : TΣ(V ) → T∆(Y ) be the homomorphisms given

by

ϕ3(f) = f(x3, x2, x1) ϕ1(g) = g(x1) ϕV (v) = v

ψ3(f) = x3 ψ1(g) = h(x1) ψV (v) = 1 .

Then the tree relation de�ned by B = (ϕ,L, ψ) is

τB = {(f(gn(v), gm(v), gl(v)), hn(1)) | l,m, n ∈ N}

with τB ∈ B(saH,Rec, aH), where Rec is the class of regular tree languages. The

translation de�ned by B is yd(τB) = {(vvv, 1)}.
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A top-down tree transducer [21, 29] is a system (Q,Σ,∆, I, R), where

• Q = Q1 is a unary ranked alphabet of states disjoint with Σ ∪∆,

• Σ and ∆ are an input and an output alphabet, respectively,

• I ⊆ Q is a set of initial states, and

• R is a �nite set of rules of the form q(f(x1, . . . , xk)) → r, where q ∈ Q,

f ∈ Σk, and r ∈ T∆(Q(Xk)).

The top-down tree transducer M = (Q,Σ,∆, I, R) is linear (respectively, nondelet-

ing) if r is linear (respectively, nondeleting) inXk for every rule q(f(x1, . . . , xk))→ r

in R. The one-step derivation relation ⇒M is de�ned as follows. For all senten-

tial forms ξ, ζ ∈ T∆(Q(TΣ)) we have ξ ⇒M ζ if and only if there exists a rule

q(f(x1, . . . , xk))→ r ∈ R and a position w ∈ pos(ξ) such that ξ(w) = q, ξ(w1) = f ,

and ζ = ξ[u]w, where u = r[ξ|w11, . . . , ξ|w1k]. We illustrate a derivation step in

Figure 3. Let ⇒∗M be the re�exive and transitive closure of ⇒M . The tree relation

computed by M is

τM = {(s, t) ∈ TΣ × T∆ | ∃q ∈ I : q(s)⇒∗M t} .

The class of all tree relations computable by linear (respectively, linear and non-

deleting) top-down tree transducers is denoted by l-TOP (respectively, ln-TOP).

Example 3 Consider the ranked alphabet Σ = {f/3, g/2, h/1, e/0} and Q = {p, q}.
Then M = (Q,Σ,Σ, {q}, R) is a nondeleting, linear top-down tree transducer with

the following rules

q(f(x1, x2, x3))→ g(g(q(x1), p(x2)), q(x3))

q(h(x1))→ q(x1) q(e)→ e

p(h(x1))→ h(p(x1)) p(e)→ e .

Then q(f(hl(e), hm(e), hn(e)))⇒∗M g(g(e, hm(e)), e) for every l,m, n ∈ N. The �rst
rule and a derivation step involving that rule are illustrated in Figure 3.

Let M = (Q,Σ,∆, I, R) be a top-down tree transducer. It is a �nite-state

relabeling [9], if for every rule q(f(x1, . . . , xk)) → r ∈ R there exist q1, . . . , qk ∈ Q
and g ∈ ∆k such that r = g(q1(x1), . . . , qk(xk)). If additionally, f = g for all rules

as in the previous sentence (i.e., r(ε) = f for every q(f(x1, . . . , xk))→ r ∈ R), then
M is a �nite-state tree automaton (fta) [9]. We generally write rules of an fta in the

form q → f(q1, . . . , qk) instead of q(f(x1, . . . , xk)) → f(q1(x1), . . . , qk(xk)). Note

that τM coincides with idL for some L ⊆ TΣ if M is an fta. This L is also denoted

by L(M), and additionally, for every q ∈ Q, the notation L(M)q stands for L(N)
where N = (Q,Σ,∆, {q}, R). In other words, L(M)q is the language accepted byM

if q were the only initial state. A language L is regular if there exists an fta M

such that L(M) = L. The class of regular tree languages [11, Chapter II] is denoted

by Rec, and Rec(Σ, V ) = {L ∈ Rec | L ⊆ TΣ(V )}. Finally, M is a relabeling [9] if

it a �nite-state relabeling and card(Q) = 1. We denote the classes of tree relations
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Figure 3: A sample rule and an illustration of a derivation step using that rule.

computed by �nite-state relabelings, relabelings, and fta by QREL, REL, and FTA,

respectively.

The top-down tree transducer M can be equipped with a look-ahead facil-

ity [10, 17]. The pair 〈M, c〉, where M = (Q,Σ,∆, I, R) is a top-down tree trans-

ducer and c : R → Rec(Σ), is called a top-down tree transducer with regular look-

ahead. The look-ahead c is �nite if c(l → r) ∈ L[TΣ, . . . , TΣ] for a �nite tree

language L ⊆ TΣ(X). In the latter case, we often write c(l→ r) = L. Note that all

�nite tree languages are regular. The transducer 〈M, c〉 inherits the properties `lin-
ear' and `nondeleting' fromM . The semantics of a top-down tree transducer 〈M, c〉
with look-ahead is de�ned as for the top-down tree transducer M with the addi-

tional condition that ξ|w1 ∈ c(q(f(x1, . . . , xk)) → r) in the de�nition of ⇒M . The

class of tree relations computed by linear top-down tree transducers with �nite

(respectively, regular) look-ahead is denoted by l-TOPF (respectively, l-TOPR).

3. Properties of Quasi-Relabelings

Let us start by recalling the main notion of this contribution. A quasi-relabeling

homomorphism is linear, complete, and basically symbol-to-symbol, but allows vari-

ables as successors of an output symbol. The precise de�nition from [26, Section 3]

(where they are called `quasi-alphabetic') follows.

De�nition 1 A tree homomorphism ϕ : TΣ(V )→ T∆(Y ) is a quasi-relabeling if

(i) it is linear and complete,

(ii) ϕV (v) ∈ Y for every v ∈ V , and

(iii) ϕk(f) ∈ ∆(Y ∪Xk) for every f ∈ Σk.

By qH we denote the class of all quasi-relabelings. A quasi-relabeling bimorphism

is a bimorphism (ϕ,L, ψ) such that ϕ and ψ are quasi-relabelings and L is regular.

We introduce the new name `quasi-relabeling' because their original name `quasi-

alphabetic' used in [26] clashes with the name `alphabetic' used here and in [6]. In
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fact, using our terminology, quasi-relabelings are alphabetic (see Theorem 5), which

is why we chose to rename them. Note that in [26] `alphabetic' is used in the sense

of [11] (a relabeling in our terminology).

Let QUASI = B(qH,Rec, qH) and ALPH = B(aH,Rec, aH) be the classes of all
tree relations de�ned by quasi-relabeling bimorphisms and alphabetic bimorphisms,

respectively. The elements of QUASI and ALPH are also called quasi-relabeling and

alphabetic relations, respectively.

Example 4 Let Γ = {f/3, g/1, e/0}, Σ = {h/6, g/1}, ∆ = {f/3, g/1}, V = {v},
and Y = {0, 1}. Consider the regular language

L = {f(gm(v), e, gn(v)) | m,n ∈ N} ⊆ TΓ(V )

and the quasi-relabelings ϕ : TΓ(V )→ TΣ(V ) and ψ : TΓ(V )→ T∆(Y ) given by

ϕ3(f) = h(v, x2, x3, v, v, x1) ϕ1(g) = g(x1) ϕ0(e) = v ϕV (v) = v

ψ3(f) = f(x1, x2, x3) ψ1(g) = g(x1) ψ0(e) = f(1, 1, 0) ψV (v) = 1 .

Then, B = (ϕ,L, ψ) is a quasi-relabeling tree bimorphism, and

τB = {(h(v, v, gn(v), v, v, gm(v)), f(gm(1), f(1, 1, 0), gn(1))) | m,n ∈ N} .

Every quasi-relabeling maps each input symbol to an output symbol possibly

with some output leaf variables as direct subtrees. However, the variables of X have

to occur as direct subtrees of the root output symbol. This immediately yields the

following proposition.

Proposition 1 Let ϕ : TΣ(V )→ T∆(Y ) be a homomorphism and t ∈ TΣ(V ).

• If ϕ is a quasi-relabeling, then hg(t) ≤ hg(tϕ) ≤ hg(t) + 1.

• If ϕ is symbol-to-symbol, then hg(tϕ) ≤ hg(t).

• If ϕ is strictly alphabetic, then hg(tϕ) = hg(t).

Let us quickly recall some relevant existing results of [11].

Theorem 1 Let L1, L2 ∈ Rec(Σ, V ) and ϕ : TΣ(V )→ T∆(Y ) be a homomorphism.

(i) Then L1 ∩ L2, L1 ∪ L2, and L1 \ L2 are regular.

(ii) If ϕ is linear, then L1ϕ is regular.

(iii) Lϕ−1 is regular for every L ∈ Rec(∆, Y ).

Proof. Items (i), (ii), and (iii) are proved in [11, Theorem II.4.2], [11, Theo-

rem II.4.16], and [11, Theorem II.4.18], respectively. �
Now we investigate the fundamental properties of quasi-relabeling relations. We

start our investigation with a canonical representation of quasi-relabeling relations

in the spirit of [6, Proposition 3.1]. Note that our product data structure is simpler

than the corresponding one of [6] (see De�nition 2). The canonical representation

will allow us to conclude that quasi-relabeling relations are closed under union.
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For the rest of this section, let B = (ϕ,L, ψ) with ϕ : TΓ(Z) → TΣ(V ) and

ψ : TΓ(Z) → T∆(Y ) be a quasi-relabeling bimorphism. Let [Σ ×∆] be the ranked

alphabet such that for every k ≥ 0

[Σ×∆]k = {〈t, u〉 | t ∈ Σ(V ∪Xk) ∩ CkΣ(V ) and u ∈ ∆(Y ∪Xk) ∩ Ck∆(Y )} .

In other words, our product data structure allows us to store 〈ϕk(f), ψk(f)〉 for
some f ∈ Γk. Clearly, there are canonical quasi-relabelings

π1 : T[Σ×∆](V × Y )→ TΣ(V ) and π2 : T[Σ×∆](V × Y )→ T∆(Y )

given by

π1
V×Y (〈v, y〉) = v π1

k(〈t, u〉) = t

π2
V×Y (〈v, y〉) = y π2

k(〈t, u〉) = u

for every 〈v, y〉 ∈ V × Y and 〈t, u〉 ∈ [Σ × ∆]k. Henceforth, we will use these

projections also for other product ranked alphabets. The next two statements were

proved in [6, Proposition 3.1] for alphabetic relations.

Proposition 2 There exists a quasi-relabeling η : TΓ(Z) → T[Σ×∆](V × Y ) such

that tϕ = (tη)π1 and tψ = (tη)π2 for every t ∈ TΓ(Z).
Proof. Let η : TΓ(Z) → T[Σ×∆](V × Y ) be the tree homomorphism such that

ηZ(z) = 〈ϕZ(z), ψZ(z)〉 for every z ∈ Z and ηk(f) = 〈ϕk(f), ψk(f)〉 for every

f ∈ Γk. Clearly, η is a quasi-relabeling, and it is easy to check that tϕ = (tη)π1

and tψ = (tη)π2 for every t ∈ TΓ(Z). �
Using the previous proposition, we can now eliminate the ranked alphabet Γ,

the index set Z, and the particular tree homomorphisms ϕ and ψ from the bi-

morphism B. Essentially, every quasi-relabeling relation τ ⊆ TΣ(V ) × T∆(Y ) is

determined by a regular language L ∈ Rec([Σ × ∆], V × Y ). The construction is

illustrated in Figure 4.

TΓ (Z)

TΣ(V ) T∆(Y )

ϕ ψ

TΓ (Z)

TΣ(V ) T∆(Y )

η

T[Σ×∆](V × Y )

π1 π2

Figure 4: Illustration of the construction in Theorem 2.

Theorem 2 A relation τ ⊆ TΣ(V ) × T∆(Y ) is a quasi-relabeling relation if and

only if there exists a regular L ⊆ T[Σ×∆](V × Y ) such that τ = {(tπ1, tπ2 | t ∈ L}.
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Proof. The if-direction is trivial because (π1, L, π2) is a quasi-relabeling bi-

morphism de�ning τ . For the converse, let B = (ϕ,L′, ψ) be a quasi-relabeling

bimorphism such that τB = τ . By Proposition 2 there exists a quasi-relabeling

η : TΓ(Z) → T[Σ×∆](V × Y ) such that τ = {(tηπ1, tηπ2) | t ∈ L′}. Consequently,

the language L = η(L′) has the desired properties because it is regular by Theo-

rem 1(ii). �
We immediately note that quasi-relabeling relations are trivially closed under

inverses [26, Theorem 4]; i.e., if τ ∈ QUASI, then so is τ−1. As promised, let

us use the previous theorem to prove that quasi-relabeling relations are closed un-

der union. The corresponding property for alphabetic relations was proved in [6,

Proposition 3.2].

Corollary 1 QUASI is closed under union.

Proof. Let τ1, τ2 ⊆ TΣ(V )× T∆(Y ) be quasi-relabeling relations. By Theorem 2,

there exist regular L1, L2 ⊆ T[Σ×Ω](V × Y ) such that

τ1 = {(tπ1, tπ2) | t ∈ L1} and τ2 = {(tπ1, tπ2) | t ∈ L2} .

Then

τ1 ∪ τ2 = {(tπ1, tπ2) | t ∈ L1} ∪ {(tπ1, tπ2) | t ∈ L2} = {(tπ1, tπ2) | t ∈ L1 ∪ L2} ,

which proves that τ1∪τ2 is a quasi-relabeling relation by Theorem 2 (because L1∪L2

is regular by item (i) of Theorem 1). �
Let us move on to closure under intersection. For it we would need to align the

two input homomorphisms and the two output homomorphisms at the same time

and enforce equality both-sided. The next theorem shows that we are not able to

achieve this and hence quasi-relabeling relations are not closed under intersection.

Theorem 3 Any class C of tree relations such that

lcssH ⊆ C ⊆ B(H,Rec, lH)

is not closed under intersection.

Proof. Let Σ = {f/2, g/1, e/0}. We consider the linear complete symbol-to-

symbol homomorphisms ψ1, ψ2 : TΣ → TΣ that are de�ned by

ψ1(f) = f(x1, x2) ψ1(g) = g(x1) ψ1(e) = e

ψ2(f) = f(x2, x1) ψ2(g) = g(x1) ψ2(e) = e .

Clearly, ψ1 and ψ2 belong to C. Note that ψ1 = idTΣ . We observe that for every

m,n ∈ N

f(gm(e), gn(e))ψ1 = f(gm(e), gn(e))

f(gm(e), gn(e))ψ2 = f(gn(e), gm(e)) .

Let L = {f(gm(e), gn(e)) | m,n ∈ N}. Clearly, L is a regular language. Assume

that there exists τ ∈ B(H,Rec, lH) such that τ = ψ1 ∩ψ2. Since τ preserves regular

languages by Theorem 1, the image Lτ should be regular, but

Lτ = {f(gn(e), gn(e)) | n ∈ N}
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is not regular. Hence no τ with the given properties exists, which proves the state-

ment. �

Corollary 2 (of Theorem 3) QUASI is not closed under intersection.

Finally, we note that QUASI is trivially not closed under complement by Propo-

sition 1. Now let us consider common relations on trees. We immediately observe

that the intersection of a quasi-relabeling relation with idL, where L is a regu-

lar language, is again a quasi-relabeling relation. Also the union with idL is a

quasi-relabeling relation because idL is a quasi-relabeling relation for every regular

language L and quasi-relabeling relations are closed under union by Corollary 1.

In general, the tree relations `sub' and `br' (if we consider the branches as trees
over a ranked alphabet of symbols of rank 0 and 1) are not quasi-relabeling. More-

over, for regular L ⊆ TΣ(V ) and v ∈ V , also the following relations τ and ρ, which

are de�ned for every t ∈ TΣ(V ) by tτ = t •v L and tρ = t /v L, are not quasi-

relabeling relations, in general (in contrast to [6, Proposition 4.2 & p. 191�200]

where it is shown that all those relations are alphabetic). All these can easily be

proved using Proposition 1. Moreover, in general, quasi-relabeling relations are not

closed under f -top-concatenation (again in contrast to alphabetic relations; see [6,

Proposition 3.6]).

Now, let us turn our attention to the translations computed by quasi-relabeling

bimorphisms. We call them quasi-relabeling translations. In [26] it was shown that

they de�ne the syntax-directed translations [1]. Here we add to this result that

every Cartesian product of context-free string languages (for de�nitions and details

about context-free string languages the reader is referred to [11, Section I.6]) is a

quasi-relabeling translation. This sharpens [6, Proposition 3.6], where the same

property was proved for alphabetic bimorphisms.

Theorem 4 For all context-free string languages K1 and K2 over the same alpha-

bet V , there exists a quasi-relabeling bimorphism B such that yd(τB) = K1 ×K2.

Proof. By [11, Corollary 2.4], there exist regular tree languages L1 ⊆ TΣ(V ) and
L2 ⊆ T∆(V ) such that K1 = {ydV (t1) | t1 ∈ L1} and K2 = {ydV (t2) | t2 ∈ L2}.
Let φ : Y → V be a bijection, and Y be disjoint with Σ ∪ ∆. Then extend φ to

φΣ : Σ ∪ Y → Σ ∪ V and φ∆ : ∆ ∪ Y → ∆ ∪ V such that φΣ(f) = f and φ∆(g) = g

for every f ∈ Σ and g ∈ ∆. We denote the ranked alphabets Σ ∪ Y and ∆ ∪ Y , in
which all symbols of Y are nullary, by Σ̄ and ∆̄, respectively. Next, we de�ne the

ranked alphabet

Σ̄ ∨ ∆̄ = {〈f, g〉 | f ∈ Σ̄, g ∈ ∆̄}

such that rk(〈f, g〉) = max(rk(f), rk(g)). In a similar way the ranked alphabets

Σ ∨ ∆̄ and Σ̄ ∨ ∆ are de�ned. Without loss of generality, we can assume that

Σ̄0 6= Y 6= ∆̄0 and Σ1 6= ∅ 6= ∆1.

Next we show how to embed a tree of TΣ(V ) into TΣ̄∨∆̄. Roughly speaking, we

read o� the �rst components of the symbols of Σ̄∨∆̄ while neglecting the additional

subtrees. However, we need to make sure that the neglected subtrees do not contain

symbols of Y because a quasi-relabeling cannot ignore the additional subtrees, but

should clearly not produce a piece of output string for them. To this end, we
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de�ne the linear top-down tree transducer MΣ with regular look-ahead c such that

MΣ = ({?}, Σ̄ ∨ ∆̄,Σ ∪ V, {?}, R), and for every 〈f, g〉 ∈ (Σ̄ ∨ ∆̄)k we have the rule

r = ?(〈f, g〉(x1, . . . , xk))→ φΣ(f)(?(x1), . . . , ?(xrk(f)))

with look-ahead c(r) = 〈f, g〉(T1, . . . , Tk) in R, where T1 = · · · = Trk(f) = TΣ̄∨∆̄

and Trk(f)+1 = · · · = Tk = TΣ∨∆̄. In an analogous way the top-down tree trans-

ducerM∆ with regular look-ahead is de�ned. Let L = τ−1
MΣ

(L1)∩τ−1
M∆

(L2), which is

regular by [11, Corollary IV.3.17] and Theorem 1. Next, we take the quasi-relabeling

ϕ : TΣ̄∨∆̄ → TΣ∨∆̄(V ), which is de�ned for every 〈f, g〉 ∈ (Σ̄ ∨ ∆̄)k by

ϕk(〈f, g〉) =

{
〈f, g〉(x1, . . . , xm) if f ∈ Σm
〈h1, h2〉(φ(f)) otherwise

where 〈h1, h2〉 ∈ Σ1×∆1 is arbitrary. In an analogous fashion, the quasi-relabeling

ψ : TΣ̄∨∆̄ → TΣ̄∨∆(V ) is de�ned. Now if we take the quasi-relabeling bimor-

phism B = (ϕ,L, ψ), then it should be clear that ydV (tϕ) = ydV (tτMΣ) and

ydV (tψ) = ydV (tτM∆) for every t ∈ TΣ̄∨∆̄. Consequently, yd(τB) = K1 × K2,

which concludes our proof. �

4. Relation to Other Classes

In this section, we relate the class of quasi-relabeling relations to other known

classes of tree relations. We focus on classes of relations de�ned by bimorphisms [3,

8, 7] and classes of relations computed by various top-down tree transducers [21, 29,

11]. Recall that QUASI = B(qH,Rec, qH) and ALPH = B(aH,Rec, aH). Moreover,

we let SALPH = B(saH,Rec, saH). Clearly, every strictly alphabetic homomor-

phism is a quasi-relabeling and thus SALPH ⊆ QUASI. We start by showing that

the class QREL of tree relations computed by �nite-state relabellings [9] is included

in the class SALPH.

Proposition 3 QREL ⊆ SALPH.

Proof. Let τ ∈ QREL. Since QREL ⊆ ln-TOP = REL ◦ FTA ◦ lcH [9, Theo-

rem 3.5], there exists a relabeling M such that τM ⊆ TΣ(V )×TΓ(Z), a regular tree

language L ⊆ TΓ(Z), and a linear and complete homomorphism ψ : TΓ(Z)→ T∆(Y )
such that τ = {(tτ−1

M , tψ) | t ∈ L}. Moreover, by the constructions of [9], ψ is

symbol-to-symbol and τ−1
M : TΓ(Z) → TΣ(V ) [i.e., τ−1

M is computed by a determin-

istic relabeling]. Consequently, τ−1
M and ψ are strictly alphabetic because every

deterministic relabeling is strictly alphabetic. Thus, the strictly alphabetic bimor-

phism (τ−1
M , L, ψ) de�nes τ . �

The next proposition shows that every quasi-relabeling relation can be computed

by a linear top-down tree transducer with �nite look-ahead [17]. With that we

establish a rough upper bound to the power of quasi-relabeling bimorphisms.

Proposition 4 QUASI ⊆ l-TOPF.

Proof. Let us consider a quasi-relabeling bimorphism B = (ϕ,L, ψ), where

ϕ : TΓ(Z) → TΣ(V ) and ψ : TΓ(Z) → T∆(Y ). Without loss of generality, let ϕ be
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normalized. Moreover, let N = (Q,Γ∪Z,Γ∪Z, I,R) be an fta such that L(N) = L.

We construct the linear top-down tree transducer M with �nite look-ahead c such

that M = (Q,Σ ∪ V,∆ ∪ Y, I,R′) and

• for every transition q → z ∈ R with z ∈ Z, we have the rule r = q(zϕ)→ zψ

with look-ahead c(r) = {x1} in R′, and

• for every transition q → f(q1, . . . , qk) ∈ R with f ∈ Γk and q1, . . . , qk ∈ Q we

have the rule

r = q(ϕk(f)(ε)(x1, . . . , xn))→ ψk(f)[q1(xj1), . . . , qk(xjk)]

with look-ahead c(r) = {ϕk(f)} in R′, where ji = posxi
(ϕk(f)) for every

i ∈ [k].

First, let us prove τB ⊆ τM by showing q(tϕ) ⇒∗M tψ for every q ∈ Q and

t ∈ L(N)q. Let t ∈ Z. Then q(tϕ)⇒M tψ using a rule constructed in the �rst item.

Now let t = f(t1, . . . , tk) for some f ∈ Γk and t1, . . . , tk ∈ TΓ(Z). Moreover, let

q1, . . . , qk ∈ Q be such that ti ∈ L(N)qi
for every i ∈ [k] and q → f(q1, . . . , qk) ∈ R.

Then

q(f(t1, . . . , tk)ϕ) = q(ϕk(f)[t1ϕ, . . . , tkϕ])

= q(g(u1[t1ϕ, . . . , tkϕ], . . . , un[t1ϕ, . . . , tkϕ]))

where ϕk(f) = g(u1, . . . , un) for some g ∈ Σn and u1, . . . , un ∈ TΣ(V ). Let

ji = posxi
(ϕk(f)) for every i ∈ [k]. Then

q(f(t1, . . . , tk)ϕ)⇒M ψk(f)[q1(uj1 [t1ϕ, . . . , tkϕ]), . . . , qk(ujk [t1ϕ, . . . , tkϕ])]

using a rule constructed in the second item. Note that the look-ahead restriction is

trivially ful�lled. Clearly, uji = xi for every i ∈ [k] and thus we have

q(f(t1, . . . , tk)ϕ)⇒M ψk(f)[q1(t1ϕ), . . . , qk(tkϕ)] .

By the induction hypothesis, we have qi(tiϕ) ⇒∗M tiψ for every i ∈ [k]. Conse-

quently, we obtain

q(tϕ)⇒M ψk(f)[q1(t1ϕ), . . . , qk(tkϕ)]⇒∗M ψk(f)[t1ψ, . . . , tkψ] = tψ .

This proves the auxiliary statement and τB ⊆ τM if we consider states of I.

The converse inclusion can be proved using the statement: For every q ∈ Q,

t ∈ TΣ(V ), and u ∈ T∆(Y ), if q(t) ⇒∗M u, then there exists s ∈ L(N)q such that

t = sϕ and u = sψ. This can be proved by induction on the length of the derivation

in M . We omit the details here. �
Next let us show that the class of alphabetic relations is essentially di�erent

from the classes of tree relations computed by top-down tree transducers. For the

speci�c class TOP this was already remarked in [6], and here we only re�ne their

argument to the statements necessary for our purposes.
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Proposition 5 ALPH 6⊆ l-TOPR and ln-TOP 6⊆ ALPH.

Proof. It is known that l-TOPR ⊆ BOT, where BOT is the class of all tree rela-

tions computable by bottom-up tree transducers [30, 9]. As claimed in [6, page 188],

the class ALPH is incomparable to BOT. Consequently, ALPH 6⊆ l-TOPR. More-

over, it is known that lcH ⊆ ln-TOP. Suppose that lcH ⊆ ALPH. Then also every

linear and complete inverse homomorphism is an alphabetic relation because alpha-

betic relations are trivially closed under inverses. However, the proof of the main

theorem in [3, Section 3.4] would then show that alphabetic relations are not closed

under composition. This contradicts [6, Theorem 5.2], thus lcH 6⊆ ALPH. This

yields ln-TOP 6⊆ ALPH. �
Next we consider the relation of quasi-relabeling and alphabetic relations. We

show that every quasi-relabeling relation is also alphabetic. The strictness of this

inclusion can be obtained using Proposition 5. For this result we need a product

ranked alphabet of [6, Section 2].

De�nition 2 Let Σ and ∆ be ranked alphabets, V and Y leaf alphabets, and n ∈ N
be the minimal integer such that Σ =

⋃n
i=1 Σi and ∆ =

⋃n
i=1 ∆i. We de�ne the

ranked alphabets Σ[n] and ∆[n] such that for every k ≥ 1

Σ[n]
0 = Σ0 Σ[n]

k = {u ∈ Σ(Xk) | u linear in Xk and |u|xk
= 1} ∪ {k}

∆[n]
0 = ∆0 ∆[n]

k = {u ∈ ∆(Xk) | u linear in Xk and |u|xk
= 1} ∪ {k} .

The supremum of Σ and ∆, denoted by Σ ∨∆, is de�ned for every k ∈ N by

(Σ ∨∆)k =
⋃

max(l,m)=k

Σ[n]
l ×∆[n]

m .

Moreover, the two canonical alphabetic homomorphisms ϕΣ : TΣ∨∆(V ×Y )→ TΣ(V )
and ϕ∆ : TΣ∨∆(V × Y )→ T∆(Y ) are de�ned by

ϕΣ
V×Y (〈v, y〉) = v ϕΣ

k (〈t, u〉) =

{
xk if t = k

t otherwise

ϕ∆
V×Y (〈v, y〉) = y ϕ∆

k (〈t, u〉) =

{
xk if u = k

u otherwise

for every 〈v, y〉 ∈ V × Y and 〈t, u〉 ∈ (Σ ∨∆)k with k ∈ N.
Theorem 5 QUASI ⊆ ALPH.

Proof. Let us take a quasi-relabeling tree bimorphism B = (ϕ,L, ψ), where
ϕ : TΓ(Z) → TΣ(V ) and ψ : TΓ(Z) → T∆(Y ). Without loss of generality, let

v ∈ V and y ∈ Y . We construct the linear homomorphism ρ : TΓ(Z)→ TΣ∨∆(V ×Y )
such that ρZ(z) = 〈zϕ, zψ〉 for every z ∈ Z and

ρk(f) = 〈t(ε)w, u(ε)w′〉(x1, . . . , xk, t1, . . . , tl)

for every f ∈ Γk where

• t = ϕk(f) and u = ψk(f),
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• {i1, . . . , im} = posV (t) and {j1, . . . , jn} = posY (u),

• l = max(m,n) and

ta =


〈t(ia), u(ja)〉 if a ≤ min(m,n)
〈t(ia), y〉 if n < a ≤ m
〈v, u(ja)〉 if m < a ≤ n

for every a ∈ [l], and

• w = w1 · · ·wk+m and w′ = w′1 · · ·w′n are such that t(wa) = ρk(f)(a)π1 for

every a ∈ [k+m] and t(w′b) = ρk(f)(b)π2 for every b ∈ [k+n] where π1 and π2

are the usual projections to the �rst and second components, respectively, with

xπ1 = x = xπ2 for every x ∈ X.

By Theorem 1(ii), Lρ is regular. An easy proof shows that

τB = {tϕΣ, tϕ∆) | t ∈ Lρ}

where ϕΣ and ϕ∆ are the canonical alphabetic homomorphisms of De�nition 2.

Hence, τB is an alphabetic relation by [6, Proposition 3.1], which is the analogue of

our Theorem 2 for alphabetic relations. �
As an immediate consequence of Theorem 5 and [6, Proposition 3.7], which

proves that alphabetic relations preserve regular and algebraic tree languages, we

get the following result.

Corollary 3 Quasi-relabeling relations preserve the regular and the algebraic tree

languages.

Finally, we need to show that linear top-down tree transducers are not su�ciently

powerful to implement all quasi-relabeling relations.

Proposition 6 QUASI 6⊆ l-TOP.

Proof. Let Σ = {f/2, e/0} and V = {v1, v2}. Moreover, let ϕ : TΣ → TΣ(V )
be a quasi-relabeling with ϕ0(e) = f(v1, v2). Then B = (ϕ, {e}, idTΣ) is a quasi-

relabeling tree bimorphism that de�nes {(f(v1, v2), e)}. It is known [9, Example 2.6]

that τB is not in l-TOP, and hence QUASI 6⊆ l-TOP. �
Let us collect our results in a Hasse diagram (see Figure 5). Note that in such

a diagram every edge is oriented upwards and denotes strict inclusion. We also add

the corresponding classes of translations, which we denote by yd(C) if C is the class
of tree relations.

Theorem 6 Figure 5 is a Hasse diagram.

Proof. The following six statements are su�cient to prove the claims of the left
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ALPH l-TOPR

l-TOPF

QUASI l-TOP

ln-TOP

SALPH

QREL

SCFG
= yd(ALPH) = yd(l-TOPR)

= yd(QUASI) = yd(l-TOPF)
= yd(SALPH) = yd(l-TOP)

= yd(ln-TOP)

yd(QREL)

Figure 5: Hasse diagram of classes of tree relations (left) and corresponding string
relations (right).

diagram.

QREL ⊂ SALPH ⊆ QUASI ⊆ ALPH (1)

SALPH ⊆ ln-TOP ⊂ l-TOP ⊆ l-TOPF ⊆ l-TOPR (2)

QUASI ⊆ l-TOPF (3)

QUASI 6⊆ l-TOP (4)

ln-TOP 6⊆ ALPH (5)

ALPH 6⊆ l-TOPR (6)

Statement 1 is clear using Proposition 3. The strictness is due to the fact that QREL

is closed under intersection whereas this is not true for SALPH by Theorem 3. The

�nal inclusion of (1) is proved in Theorem 5. The inclusions of (2) are all obvious and

(3) is shown in Proposition 4. Finally, the inequality (4) is proved in Proposition 6

and inequalities (5) and (6) are proved in Proposition 5.

It is proved in [18, Theorems 3 and 7] that yd(QREL) ( yd(SALPH) = SCFG,

where SCFG denotes the class of string translations computed by synchronous

context-free grammars (or equivalently, syntax-directed translation schemas) [1].

Moreover, [26, Theorem 1] proves that SCFG = yd(QUASI). To prove that the

remaining classes also collapse to SCFG, we prove that for every τ ∈ B(lH,Rec, lH)
we can construct a quasi-relabeling bimorphism B such that yd(τB) = yd(τ). It is
clear that alphabetic bimorphisms are linear and l-TOPR ⊆ B(lH,Rec, lH) by [16,

Theorem 4]. To this end, we �rst prove that yd(τ) ∈ yd(B(lcH,Rec, lcH)) us-

ing a construction that is similar to the one in the proof of Theorem 4 and [18,

Lemma 9] (eliminating variables in the center tree language and turning the homo-

morphisms into complete ones such that no variables are output for the subtrees

that were deleted by the original homomorphisms). Next we �atten the output

trees. Let B′ = (ϕ,L, ψ) be a linear, complete bimorphism such that L ⊆ TΓ
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and ϕ : TΓ → TΣ(V ) and ψ : TΓ → T∆(Y ). Then we construct quasi-relabelings

ϕ′ and ψ′ for every f ∈ Γk by

ϕ′k(f) = g(t1, . . . , tn) and ψ′k(f) = g′(u1, . . . , un′) ,

where g and g′ are new output symbols. In addition, t1, . . . , tn ∈ V ∪ X and

u1, . . . , un′ ∈ Y ∪X are such that

ydV ∪X(ϕk(f)) = t1 · · · tn and ydY ∪X(ψk(f)) = u1 · · ·un′ .

Now let B′′ = (ϕ′, L, ψ′). It should be clear that yd(τB′′) = yd(τB′), which proves

the statement because τB′′ ∈ QUASI. �
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