
July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

UNWEIGHTED AND WEIGHTED HYPER-MINIMIZATION∗

ANDREAS MALETTI† and DANIEL QUERNHEIM†

Universität Stuttgart, Institute for Natural Language Processing

Pfa�enwaldring 5b, 70569 Stuttgart, Germany

{andreas.maletti & daniel.quernheim}@ims.uni-stuttgart.de

Received (15 December 2011)
Revised (20 June 2012)
Accepted (30 June 2012)

Communicated by (Pál Dömösi and Zoltán Ésik)

Hyper-minimization of deterministic �nite automata (dfa) is a recently introduced state
reduction technique that allows a �nite change in the recognized language. A gener-
alization of this lossy compression method to the weighted setting over semi�elds is
presented, which allows the recognized weighted language to di�er for �nitely many in-
put strings. First, the structure of hyper-minimal deterministic weighted �nite automata
is characterized in a similar way as in classical weighted minimization and unweighted
hyper-minimization. Second, an e�cient hyper-minimization algorithm, which runs in
time O(n logn), is derived from this characterization. Third, the closure properties of
canonical regular languages, which are languages recognized by hyper-minimal dfa, are
investigated. Finally, some recent results in the area of hyper-minimization are recalled.

1. Introduction

Deterministic �nite automata (dfa) [44] are one of the simplest, but most useful

devices in computer science. Their simplicity and the availability of e�cient ma-

nipulation software [32, 1] makes them attractive in many application areas such as

speech processing [37], image compression [11], morphology [4] and linguistic anal-

ysis [28], natural language semantics [15], and pattern matching [10]. Often huge

dfa consisting of several million states are required. Fortunately, every dfa admits

an e�ciently computable and unique (up to isomorphism) equivalent minimal dfa.

Virtually every �nite-state toolkit implements minimization, which is the process

of computing such an equivalent minimal dfa. The asymptotically most e�cient

algorithm [24, 19, 42] for general dfa minimization computes the equivalent states

and merges them in time O(n log n), where n is the number of states of the input

dfa.

∗This article is an extended and revised version of [Maletti, Quernheim: Hyper-minimisation

of deterministic weighted �nite automata over semi�elds. pp. 285�299] and [Maletti: Notes on

hyper-minimization. pp. 34�49], which both appeared in the proceedings of the 13th International

Conference on Automata and Formal Languages. Nyíregyháza College, 2011.
†Both authors were supported by the German Research Foundation (DFG) grant MA/ 4959 / 1�1.

1

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

2 A. Maletti and D. Quernheim

Recently, hyper-minimization of dfa [3] has been proposed, which is a means

of state reduction beyond the usual notion of the minimal dfa. Thus, it can poten-

tially compress dfa even further at the expense of a �nite change in the recognized

language. The asymptotically fastest hyper-minimization algorithms [16, 23] com-

pute the �almost-equivalence� relation and merge states with �nite left language

according to it in time O(n log n). Variations such as cover automata minimiza-

tion [8], which has been explored before hyper-minimization due to its usefulness in

compressing �nite languages, or k-minimization [16] restrict the length of the error

strings instead of their number.

We will generalize hyper-minimization to the weighted setting. Our weight struc-

tures will be commutative semi�elds, which are commutative semirings [21, 18] with

multiplicative inverses. As before, we will restrict our attention to deterministic

automata. Actually, the mentioned applications of dfa often use the weighted

version to compute a quantitative answer. For weighted deterministic �nite au-

tomata (wdfa) [39] over semi�elds, similar results are known. They can be e�-

ciently minimized, but the minimal equivalent wdfa is no longer unique due to

ability to �push� weights [37, 14]. The asymptotically fastest minimization algo-

rithms [37, 14] nevertheless still run in time O(n log n). Essentially, they normalize

the input wdfa by �pushing� weights towards the initial state. In the process, the

signatures of equivalent states become equivalent, so that a classical unweighted

minimization can then perform the computation of the equivalence and the merges.

We focus on the notion that allows the recognized weighted languages to di�er

for �nitely many input strings. More sophisticated notions that are based on di�er-

ences between the weights of strings are conceivable [38], yet the notion we consider

has the bene�t that it is simple, but realistic enough. We will join unweighted hyper-

minimization and weighted minimization to weighted hyper-minimization. Our al-

gorithms (see Algorithms 1 and 2) contain features of both of their predecessors and

are asymptotically as e�cient as them because they also run in time O(n log n). In

contrast to [38], we introduce standardized signatures to avoid the explicit pushing

of weights. This adjustment allows us to mold our weighted hyper-minimization

algorithm into the structure of the unweighted algorithm [23].

Finally, we provide an extensive review of recent progress in the area of lossy

compression for dfa, which includes the generalization from a �nite di�erence to

a regular di�erence [22]. In particular, we study canonical languages [3], which

are the languages accepted by hyper-minimal dfa, and answer an open question

of [3]. We will also review how to optimize the obtained hyper-minimal dfa with

respect to particular secondary criteria. Such an optimization is possible because

there is no unique hyper-minimal dfa for a given input language. We recall from

the literature that we can optimize the number of errors or the length of the longest

error string easily, but that if we want to optimize ratios (for example, saved states

vs. errors made), then the problem becomes intractable. We close the review with

an application of cover automata minimization and k-minimization, which can be

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

Unweighted and weighted hyper-minimization 3

combined to compute a `�nite-factored dfa' in [2]. Such a dfa can exactly represent

certain languages much more succinctly. We show that the critical step of the length

bound selection can be done automatically without any (asymptotic) overhead.

2. Preliminaries

The set of all nonnegative integers is N. The symmetric di�erence S	T of two sets

S and T is S	T = (S−T)∪(T −S). An alphabet Σ is simply a �nite set, and Σ∗ is

the set of all strings over it including ε, which is the empty string. The length |s| of
a string s = σ1 · · ·σ` with σ1, . . . , σ` ∈ Σ is |s| = `. The sets Σ≤` and Σ≥` contain

all strings over Σ of length at most ` and at least `, respectively. Concatenation of

strings is simply denoted by juxtaposition. A language L over Σ is a subset L ⊆ Σ∗.

Our weights are taken from a commutative semi�eld 〈K,+, ·, 0, 1〉, which means

that 〈K,+, 0〉 and 〈K, ·, 1〉 are commutative monoids, the multiplication · distributes
over �nite sums (including the empty sum), and for every k ∈ K− {0} there exists
k−1 ∈ K such that k · k−1 = 1. In other words, commutative semi�elds are commu-

tative semirings [21, 18] with multiplicative inverses. Useful commutative semi�elds

include the real numbers 〈R,+, ·, 0, 1〉, the tropical semi�eld 〈R∪{∞},min,+,∞, 0〉,
the probabilistic semi�eld 〈[0, 1],max, ·, 0, 1〉 with [0, 1] = {k ∈ R | 0 ≤ k ≤ 1}, and
the Boolean semi�eld B = 〈{0, 1},max,min, 0, 1〉. From now on, let 〈K,+, ·, 0, 1〉
be a commutative semi�eld with 0 6= 1, and let K = K − {0}. We will sometimes

write k1
k2

instead of k1 · k−1
2 .

A weighted language is a mapping ϕ : Σ∗ → K, whose support supp(ϕ) ⊆ Σ∗ is

supp(ϕ) = ϕ−1(K). Given k ∈ K, we let (k · ϕ) : Σ∗ → K be the weighted language

such that (k · ϕ)(s) = k · ϕ(s) for every s ∈ Σ∗. A weighted deterministic �nite

automaton (wdfa) [40, 31] is a tuple A = (Q,Σ, q0, k0, δ,wt, F), in which Q is a

�nite set of states, Σ is an alphabet of input symbols, q0 ∈ Q is an initial state,

k0 ∈ K is an initial weight, δ : Q×Σ→ Q is a transition mapping, wt: Q×Σ→ K

a transition weight assignment, and F ⊆ Q is a set of �nal states. The transition

and transition weight mappings `δ' and `wt' extend to mappings δ : Q × Σ∗ → Q

and wt: Q × Σ∗ → K by δ(q, ε) = q and wt(q, ε) = 1, and δ(q, σs) = δ(δ(q, σ), s)

and wt(q, σs) = wt(q, σ) · wt(δ(q, σ), s) for every q ∈ Q, σ ∈ Σ, and s ∈ Σ∗. We

simply write δ(s) and wt(s) for δ(q0, s) and wt(q0, s), respectively. Next, we de�ne

the q-semantics JqKA : Σ∗ → K of A for every q ∈ Q. Formally, for every q ∈ Q and

s ∈ Σ∗, let JqKA(s) = wt(q, s) if δ(q, s) ∈ F and JqKA(s) = 0 otherwise. Intuitively,

JqKA is the weighted language recognized by A starting in state q (with initial

weight 1). The wdfa A recognizes the weighted language JAK = k0 · Jq0KA. Two
wdfa are equivalent if their recognized weighted languages coincide. A wdfa over

the Boolean semi�eld B is also called dfa [44] and written (Q,Σ, q0, δ, F) because

the components `k0' and `wt' are uniquely determined. Moreover, we identify each

Boolean weighted language ϕ : Σ∗ → {0, 1} with its support.

Two states q, q′ ∈ Q are equivalent [5], written q ≡ q′, if there exists k ∈ K
such that JqKA = k · Jq′KA. An equivalence relation ∼= ⊆ Q × Q is a congruence

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

4 A. Maletti and D. Quernheim

relation if δ(q, σ) ∼= δ(q′, σ) for all σ ∈ Σ and q ∼= q′. Note that ≡ is a congruence

relation. The wdfa A is minimal if there is no equivalent wdfa with strictly fewer

states. We can compute a minimal wdfa e�ciently using a variant of Hopcroft's

algorithm [24, 37, 14] that computes ≡ and runs in time O(n log n) where n = |Q|.

3. A Characterization of Hyper-Minimality

Hyper-minimization [3] of wdfa is a form of lossy compression that allows any

�nite number of errors. It has been investigated in [3] for the Boolean semi�eld.

We generalize their results to our weighted setting.

Let A = (Q,Σ, q0, k0, δ,wt, F) and B = (P,Σ, p0, k
′
0, µ,wt′, G) be

wdfa over the commutative semi�eld 〈K,+, ·, 0, 1〉 with 0 6= 1.

De�nition 1. Two weighted languages ϕ1, ϕ2 : Σ∗ → K are almost-equivalent,

written ϕ1 ≈ ϕ2, if there exists k ∈ K such that ϕ1(s) = k · ϕ2(s) for almost

all s ∈ Σ∗. We write ϕ1 ≈ ϕ2 (k) to indicate the factor k. The wdfa A and B
are almost-equivalent if JAK ≈ JBK (1). Finally, the states q ∈ Q and p ∈ P are

almost-equivalent if JqKA ≈ JpKB.

First, we show some basic properties of ≈. In particular, we show that ≈ ⊆ Q×Q
is a congruence relation in a way similar to Lemma 2.10 in [3].

Lemma 2. Almost-equivalence is an equivalence relation such that δ(q, s) ≈ µ(p, s)

for all s ∈ Σ∗, q ∈ Q, and p ∈ P with q ≈ p.

Proof. Trivially, ≈ is re�exive and symmetric. Let ϕ1, ϕ2, ϕ3 : Σ∗ → K be weighted

languages such that ϕ1 ≈ ϕ2 (k) and ϕ2 ≈ ϕ3 (k′). Then there exist �nite sets

L and L′ such that ϕ1(s) = k · ϕ2(s) and ϕ2(s′) = k′ · ϕ3(s′) for all s ∈ Σ∗ − L
and s′ ∈ Σ∗ − L′. Consequently, ϕ1(s′′) = k · k′ · ϕ3(s′′) for all s′′ ∈ Σ∗ − (L ∪ L′),
which proves ϕ1 ≈ ϕ3 (k ·k′). The same arguments can be used for ≈ on wdfa and

states.

For the second property, induction allows us to easily prove

JqKA(ss′) = wt(q, s) · Jδ(q, s)KA(s′) and (†)
JpKB(ss′) = wt′(p, s) · Jµ(p, s)KB(s′)

for all s, s′ ∈ Σ∗. Since q ≈ p (k), there exists a �nite set L ⊆ Σ∗ such that

JqKA(s′′) = k · JpKB(s′′) for all s′′ ∈ Σ∗ − L. Consequently,

Jδ(q, s)KA(s′) =
JqKA(ss′)

wt(q, s)
= k · JpKB(ss′)

wt(q, s)
= k · wt′(p, s)

wt(q, s)
· Jµ(p, s)KB(s′)

for all s′ ∈ Σ∗ such that ss′ /∈ L, which proves that δ(q, s) ≈ µ(p, s).

Given the wdfa A, the goal of hyper-minimization is to construct an almost-

equivalent wdfa B such that no wdfa is smaller than B and almost-equivalent

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

Unweighted and weighted hyper-minimization 5

(a) (b) (c)

1 2

3

5 7

2 4 6

1 3

5 7

2 4 6

1 3

Fig. 1. Three hyper-minimal dfa with indicated almost-equivalence.

to A. Since almost-equivalence is an equivalence relation, we can replace the re-

quirement �almost-equivalent to A� by �almost-equivalent to B� and call a wdfa B
hyper-minimal if no (strictly) smaller wdfa is almost-equivalent to it. Then hyper-

minimization is the computation of a hyper-minimal wdfa B that is almost-

equivalent to A. Let us �rst investigate hyper-minimality, which was characterized

in [3] for the Boolean semi�eld using the additional notion of a preamble state.

De�nition 3 (De�nition 2.11 in [3]) A state q ∈ Q of A is a preamble state if

δ−1(q) ⊆ Σ∗ is �nite. Otherwise, it is a kernel state.

Example 4. Figure 1 shows three dfa, in which we marked almost-equivalence of

states. States 4 and 5 in the dfa (b) and (c) are almost-equivalent because

J4K = {ε} ∪ {99Km−→99Kn | m+ n ≥ 1}
J5K = {99Km−→99Kn | m,n ∈ N} ,

which yields that J4K	 J5K = {ε,−→}. In fact, the dfa (b) and (c) are almost-

equivalent. The preamble states of all three dfa are {1, 3}.

Recall that a wdfa (without unreachable states; i.e., δ−1(q) ∩ Σ∗ 6= ∅ for every
q ∈ Q) is minimal if and only if it does not have a pair of di�erent, but equivalent

states [25]. The �only-if� part of this statement is shown by merging two equivalent

states to obtain a smaller, but equivalent wdfa.

De�nition 5. Let q, q′ ∈ Q and k ∈ K with q 6= q′. The k-weighted merge of q

into q′ is the wdfa mergeA(q
k→ q′) = (Q−{q},Σ, q′0, k′0, δ′,wt′, F −{q}) such that

for all r ∈ Q and σ ∈ Σ

q′0 =

{
q′ if q0 = q

q0 otherwise
k′0 =

{
k · k0 if q0 = q

k0 otherwise

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

6 A. Maletti and D. Quernheim

δ′(r, σ) =

{
q′ if δ(r, σ) = q

δ(r, σ) otherwise
wt′(r, σ) =

{
k · wt(r, σ) if δ(r, σ) = q

wt(r, σ) otherwise.

The 2-weighted merge of F into E in the wdfa C of Figure 2 (left) yields the

wdfa mergeC(F
2→ E) that is displayed in Figure 2 (right).

Lemma 6. Let q, q′ ∈ Q be di�erent states, of which q is a preamble state, and

k ∈ K be such that q ≈ q′ (k). Then mergeA(q
k→ q′) is almost-equivalent to A.

Proof. Let B = merge(q
k→ q′). Clearly, we have JBK(s) = JAK(s) for all s ∈ Σ∗ such

that δ(s′) 6= q for all pre�xes s′ of s (i.e., s = s′s′′ for some s′′ ∈ Σ∗). This is simply

due to the fact that B faithfully replicates the behavior of A in this case. Moreover,

δ(q′, s) 6= q for all s ∈ Σ∗ by a simple variation of Lemma 2.14 in [3], which proves

that Jq′KB = Jq′KA. Now let s ∈ δ−1(q). By assumption, JqKA(s′) = k · Jq′KA(s′) for

almost all s′ ∈ Σ∗. We obtain

JBK(ss′) †=
(
k′0 · wt′(s)

)
· Jq′KB(s′) =

(
k0 · wt(s) · k

)
·
(
k−1 · JqKA(s′)

)
= k0 · wt(s) · JqKA(s′)

†
= JAK(ss′) .

Thus, JBK and JAK coincide for almost all strings with pre�x s. Since q is a preamble

state, δ−1(q) is �nite, which yields that B and A are almost-equivalent.

Lemma 6 shows that the wdfa of Figure 2 (right) is not hyper-minimal because

the states C and D are almost-equivalent and D is a preamble state. Moreover, it

also shows that the wdfa of Figure 2 are almost-equivalent. Finally, we still need

to show that the merging process indeed yields a hyper-minimal wdfa to obtain

a characterization of hyper-minimal wdfa in the spirit of Theorem 3.4 in [3]. For

example, Figure 3 shows a hyper-minimal wdfa that is almost-equivalent to the

wdfa of Figure 2 and can be obtained by a 1-weighted merge of D into C.

Theorem 7. A minimal wdfa is hyper-minimal if and only if it has no pair of

di�erent, but almost-equivalent states, of which at least one is a preamble state.

Proof. Let A be the minimal wdfa. For the �only if� part, we know by Lemma 6

that the smaller wdfa merge(q
k→ q′) is almost-equivalent to A if q ≈ q′ (k) and

q is a preamble state. For the �if� direction, suppose that B is almost-equivalent

to A (i.e., q0 ≈ p0) and |P | < |Q|. For all s ∈ Σ∗ we have δ(s) ≈ µ(s) by

Lemma 2. Since |P | < |Q|, there exist s1, s2 ∈ Σ∗ with q1 = δ(s1) 6= δ(s2) = q2 but

µ(s1) = p = µ(s2). Consequently, q1 = δ(s1) ≈ µ(s1) = p = µ(s2) ≈ δ(s2) = q2,

which yields q1 ≈ q2. By assumption, q1 and q2 are kernel states. Using a variation

of the above argument (see Theorem 3.3 in [3]) we can obtain s1 and s2 with the

above properties such that |s1|, |s2| ≥ |Q|2.
Let s1 = σ1 · · ·σ` with σ1, . . . , σ` ∈ Σ. If we run A and B on the pre�xes of s1,

then we obtain pairs of states 〈qi, pi〉 = 〈δ(σ1 · · ·σi), µ(σ1 · · ·σi)〉 for every 1 ≤ i ≤ `.

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

Unweighted and weighted hyper-minimization 7

0 B D F H

A C E

G I

b

a

a

b

a

4b

2b

a

b

a

2b

4b

a

a

a 0 B D F H

A C E

G I

b

a

a

b

a

4b

2b

a

2b

a

2b

a

a

Fig. 2.Wdfa over the real numbers [left] and the wdfa obtained by merge(F
2→ E) [right]. Where

no weight is indicated, the multiplicative identity 1 is implicit. Omitted transitions lead to the
sink state ⊥. The dashed line indicates the rerouted transition.

By assumption ` ≥ |Q|2 > |Q| · |P |. Consequently, there are indices 1 ≤ i < j ≤ `

such that 〈qi, pi〉 = 〈qj , pj〉. Thus, we obtain that there are in�nitely many strings

in both L(q1, p) = δ−1(q1) ∩ µ−1(p) and L(q2, p) = δ−1(q2) ∩ µ−1(p), where we

used the same argument for q2 to obtain the latter statement. Since A and B are

almost-equivalent, we have

k0 · wt(s′1) · Jq1KA(s′) = JAK(s′1s
′) = JBK(s′1s

′) = k′0 · wt′(s′1) · JpKB(s′)

k0 · wt(s′2) · Jq2KA(s′) = JAK(s′2s
′) = JBK(s′2s

′) = k′0 · wt′(s′2) · JpKB(s′)

for almost all s′1s
′, s′2s

′ ∈ Σ∗ with s′1 ∈ L(q1, p) and s′2 ∈ L(q2, p). In fact, we can

select s1 ∈ L(q1, p) and s2 ∈ L(q2, p) such that the previous two equations hold for

all s′ ∈ Σ∗ because L(q1, p) and L(q2, p) are in�nite. Consequently,

k0 · wt(s1) · Jq1KA(s′)

k′0 · wt′(s1)
=
k0 · wt(s2) · Jq2KA(s′)

k′0 · wt′(s2)
and Jq1KA(s′) = k · Jq2KA(s′)

for all s′ ∈ Σ∗ and k = wt′(s1)·wt(s2)
wt′(s2)·wt(s1) , which yields q1 ≡ q2. This contradicts mini-

mality since q1 6= q2, which shows that such a wdfa B cannot exist.

4. Hyper-Minimization

Let P and K be the sets of preamble and kernel states of A. We

assume an arbitrary, but �xed total order on Σ.

In this section, we consider hyper-minimization of unweighted and weighted dfa.

Since the unweighted case is already well-described in the literature [3, 2, 16, 23, 35]

we focus on weighted hyper-minimization, for which we need co-preamble states,

which are the preamble states of the reversed automaton. Since the reversed au-

tomaton is not necessarily deterministic, we give an equivalent formal de�nition.

De�nition 8. A state q ∈ Q is a co-preamble state if supp(JqKA) is �nite. Oth-

erwise it is a co-kernel state. The sets of all co-preamble states and all co-kernel

states are P and K = Q− P , respectively.

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

8 A. Maletti and D. Quernheim

0 B D F H

A C E

G I

b

a

a

b

4b

2b

a

a

a

2b

a

a

Fig. 3. Hyper-minimal wdfa. The dashed line indicates the rerouted transition.

On our example wdfa of Figure 2 (left), we observe that {G, I} are co-preamble
states and all remaining states are co-kernel states. Transitions entering a co-

preamble state can be ignored while checking almost-equivalence because (up to a

�nite number of weight di�erences) the reached states behave like the sink state ⊥.
Trivially, all co-preamble states are almost-equivalent. In addition, a co-preamble

state cannot be almost-equivalent to a co-kernel state. The interesting part of the

almost-equivalence is thus completely determined by the weighted languages of the

co-kernel states. This special role of the co-preamble states has already been pointed

out in [16] in the context of dfa.

All hyper-minimization algorithms [3, 2, 16, 23] share the same overall structure

(Algorithm 1). In the �nal step we perform state merges (see De�nition 5). Merging

only preamble states into almost-equivalent states makes sure that the resulting

wdfa is almost-equivalent to the input wdfa by Lemma 6.

Algorithm 1 �rst minimizes the input wdfa using, for example, Eisner's algo-

rithm [14]. With the help of a weight redistribution along the transitions (i.e., push-

ing), it reduces the problem to dfa minimization, for which we can use Hopcroft's

algorithm [24]. In the next step, we compute the set K of kernel states of A using

any algorithm that computes strongly connected components (for example, Tar-

jan's algorithm [41]). By [16, 23] a state is a kernel state if and only if it is reachable

from (i) a nontrivial strongly connected component or (ii) a state with a self-loop.

Since the co-kernel is the kernel of the reversed wdfa, we can use the same algo-

rithm to compute the co-kernel states. In line 4 we compute the almost-equivalence

on the states Q, which is the part where the algorithms [3, 2, 16, 23] di�er. Finally,

we merge almost-equivalent states according to Lemma 6 until the obtained wdfa

is hyper-minimal (see Theorem 7).

We generally assume a RAM [43] (random access machine) as our computational

model and a �xed alphabet Σ. computing the almost-equivalence on dfa runs in

time O(n3), where n = |Q|. It was improved in [2] to run in time O(n2). Finally,

[16, 23] independently improved the bound to O(n log n), which coincides with the

well-known bound for classical dfa minimization [24]. All those algorithms use the

following observation (see De�nition 2.2 in [3]), which we immediately present in

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

Unweighted and weighted hyper-minimization 9

Algorithm 1 Structure of the hyper-minimization algorithm.

Require: a wdfa A with n states

Return: an almost-equivalent hyper-minimal wdfa

A ←Minimize(A) // Hopcroft's or Eisner's algorithm; O(n logn)

2: K ← ComputeKernel(A) // Tarjan's algorithm; O(n)

K ← ComputeCoKernel(A) // Tarjan's algorithm; O(n)

4: (∼, t)← ComputeAlmostEquivalence(A,K) // Algorithm 2; O(n logn)

return MergeStates(A,K,∼, t) // Algorithm 3; O(n)

the weighted setting.

Lemma 9. Let A be a minimal wdfa. The states q, q′ ∈ Q are almost-equivalent

if and only if there is k ∈ N such that δ(q, s) = δ(q′, s) for all s ∈ Σ∗ with |s| ≥ k.

Our algorithm for computing the almost-equivalence is a modi�cation of the

algorithm of [23]. However, we need to handle the scaling factors, for which we

introduce another notion. Roughly speaking, the algorithm of [23] just compared

the signatures of states. In the weighted setting, we �rst need to standardize the

signature to account for the scaling factor. To this end, we ignore transitions into

co-preamble states and normalize the transition weights.

De�nition 10. The standardized signature sigq : Σ→ Q×K of q ∈ Q is such that

for every σ ∈ Σ:

• If δ(q, σ) ∈ P , then sigq(σ) = 〈⊥, 1〉.
• Otherwise, let σ0 ∈ Σ be the smallest symbol such that δ(q, σ0) ∈ K. Then

sigq(σ) = 〈δ(q, σ), wt(q,σ)
wt(q,σ0) 〉.

For the example wdfa of Figure 2 (left) we obtain sigE(a) = 〈⊥, 1〉 and

sigE(b) = 〈H, 0〉, which coincides with sigF . Next, we show that states with equal

standardized signature are indeed almost-equivalent.

Lemma 11. Let q, q′ ∈ Q. If sigq = sigq′ , then q ≈ q′.

Proof. If q or q′ is a co-preamble state, then both q and q′ are co-preamble states

and thus q ≈ q′. Now, let q, q′ ∈ K, and let k = wt(q,σ0)
wt(q′,σ0) , where σ0 is the smallest

symbol such that δ(q, σ0) ∈ K. For every σ ∈ Σ and s ∈ Σ∗,

JqKA(σs) = wt(q, σ) · Jδ(q, σ)KA(s) and Jq′KA(σs) = wt(q′, σ) · Jδ(q′, σ)KA(s) .

Further, let sigq(σ) = 〈qσ, kσ〉 = sigq′(σ). If qσ = ⊥, then JqKA(σs) = k · Jq′KA(σs)

for almost all s ∈ Σ∗. Otherwise, we obviously have δ(q, σ) = qσ = δ(q′, σ), and we

obtain

JqKA(σs) = kσ · wt(q, σ0) · JqσKA(s)

=
wt(q′, σ)

wt(q′, σ0)
· wt(q, σ0) · JqaKA(s) = k · Jq′KA(σs)

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

10 A. Maletti and D. Quernheim

Algorithm 2 Algorithm computing the almost-equivalence ∼.
Require: minimal wdfa A and its co-kernel states K

Return: almost-equivalence ∼ as a partition and scaling map f : Q→ K

for all q ∈ Q do

2: π(q)← {q}; f(q)← 1 // trivial initial blocks

h← ∅; I ← Q // hash map of type h : QΣ → Q

4: for all q ∈ I do
succ← sigq // compute standardized signature using current δ and K

6: if HasValue(h, succ) then

q′ ← Get(h, succ) // retrieve state in bucket `succ' of h

8: if |π(q′)| ≥ |π(q)| then
Swap(q, q′) // exchange roles of q and q′

10: I ← I ∪ {r ∈ Q− {q′} | ∃σ : δ(r, σ) = q′} // add predecessors of q′

f(q′)← wt(q′,σ0)
wt(q,σ0) // σ0 is as in De�nition 10

12: A ← mergeA(q′
f(q′)→ q) // merge q′ into q

π(q)← π(q) ∪ π(q′) // q and q′ are almost-equivalent

14: for all r ∈ π(q′) do

f(r)← f(r) · f(q′) // recompute scaling factors

16: h← Put(h, succ, q) // store q in h under key `succ'

return (π, f)

for every s ∈ Σ∗, which shows that q ≈ q′ (k) because the scaling factor k does not

depend on the symbol σ.

In fact, the previous proof also shows that at most the empty string yields a

di�erence in JqKA and Jq′KA (up to the common factor). For the completeness, we

also need a restricted converse for minimal wdfa.

Lemma 12. Let A be minimal, and let q ≈ q′ be such that sigq 6= sigq′ . Then there

exist r, r′ ∈ Q such that r 6= r′ and sigr = sigr′ .

Proof. Since q ≈ q′, there exists an integer ` such that δ(q, s) = δ(q′, s) for all

s ∈ Σ∗ with |s| ≥ ` by Lemma 9. Let s′ ∈ Σ∗ be a maximal string such that

r = δ(q, s′) 6= δ(q′, s′) = r′. Since s′ is maximal, we have δ(q, s′σ) = qσ = δ(q′, s′σ)

for all σ ∈ Σ. If qσ is a co-preamble state, then sigr(σ) = 〈⊥, 1〉 = sigr′(σ). Now, let

σ ∈ Σ be such that qσ is a co-kernel state, and let σ0 ∈ Σ be the smallest symbol

such that δ(r, σ0) ∈ K. Since q ≈ q′ and ≈ is a congruence relation by Lemma 2,

we have r ≈ r′ (k) for some k ∈ K, which means that JrKA(s) = k · Jr′KA(s) for

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

Unweighted and weighted hyper-minimization 11

almost all s ∈ Σ∗. Consequently,

wt(r, σ) · JqσKA(s) = k · wt(r′, σ) · JqσKA(s)

wt(r, σ0) · Jqσ0
KA(s) = k · wt(r′, σ0) · Jqσ0

KA(s)

for almost all s ∈ Σ∗. Since both qσ and qσ0 are co-kernel states, we conclude that

wt(r, σ) = k · wt(r′, σ) and wt(r, σ0) = k · wt(r′, σ0), which yields

wt(r, σ)

wt(r, σ0)
=

k · wt(r′, σ)

k · wt(r′, σ0)
=

wt(r′, σ)

wt(r′, σ0)
.

This proves sigr(σ) = sigr′(σ), and consequently, sigr = sigr′ as required.

Lemmata 11 and 12 suggest Algorithm 2 for computing the almost-equivalence

and a map representing the scaling factors. This map contains a scaling factor

for each state with respect to a representative state of its block. Algorithm 2 is a

straightforward modi�cation of an algorithm by [23] using our standardized signa-

tures. We �rst compute the standardized signature for each state and store it into

a (perfect) hash map [13] to avoid pairwise comparisons. If we �nd a collision (i.e.,

a pair of states with the same signature), then we merge them such that the state

representing the bigger block survives (see Lines 9 and 12). Each state is consid-

ered at most log n times because the size of the �losing� block containing it at least

doubles. After each merge, scaling factors of the �losing� block are computed with

respect to the new representative. Again, we only recompute the scaling factor of

each state at most log n times. Hence the small modi�cations compared to [23] do

not increase the asymptotic run-time of Algorithm 2, which is O(n log n) where n is

the number of states (see Theorem 9 in [23]).

Proposition 13. Algorithm 2 can be implemented to run in time O(n log n).

Finally, we need an adjusted merging process that takes the scaling factors into

account. When merging one state into another, their mutual scaling factor can be

computed from the scaling map by multiplicaton of one scaling factor with the

inverse of the other. Therefore, merging (see Algorithm 3) can be implemented

in time O(n), and hyper-minimization (Algorithm 1) can be implemented in time

O(n log n) in the weighted setting.

Proposition 14. Our hyper-minimization algorithm can be implemented to run in

time O(n log n).

It remains to prove the correctness of our algorithm. To prove the correctness

of Algorithm 2, we still need a technical property.

Lemma 15. Let q, q′ ∈ Q be states such that q 6= q′ but sigq = sigq′ . Moreover, let

B = merge(q′
k→ q) with k = f(q′)

f(q) , and let ∼= be its almost-equivalence (restricted

to P). Then ∼= = ≈ ∩ (P × P) where P = Q− {q′}.

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

12 A. Maletti and D. Quernheim

Algorithm 3 Merging almost-equivalent states.

Require: a minimal wdfa A, its kernel states K, its almost-equivalence ≈, and a

scaling map f : Q→ K

Return: hyper-minimal wdfa A that is almost-equivalent to the input wdfa

for all B ∈ (Q/≈) do

2: select q ∈ B such that q ∈ K if possible

for all q′ ∈ B −K do

4: A ← mergeA(q′
f(q′)
f(q)−→ q)

Proof. Let p1 ≈ p2 with p1, p2 ∈ P . For simplicity's sake, we assume that q′ 6= q0,

but this missing case can be handled in the same manner. Let s = σ1 · · ·σ` with
σ1, . . . , σ` ∈ Σ. Then we obtain the runs

Rp1 = 〈δ(p1, σ1), δ(p1, σ1σ2), · · · , δ(p1, s)〉 with weight wt(p1, s)

Rp2 = 〈δ(p2, σ1), δ(p2, σ1σ2), · · · , δ(p2, s)〉 with weight wt(p2, s).

The corresponding runs R′p1 and R′p2 in B replace every occurrence of q′ in both

Rp1 and Rp2 by q. Their weights are

wt′(p1, s) =

{
k′0
k0
· wt(p1, s) if δ(p1, s) 6= q′

k′0
k0
· wt(p1, s) · k otherwise

wt′(p2, s) =

{
k′0
k0
· wt(p2, s) if δ(p2, s) 6= q′

k′0
k0
· wt(p2, s) · k otherwise.

Since δ(p1, s
′) = δ(p2, s

′) for suitably long strings s′ ∈ Σ∗ and p1 ≈ p2, we obtain

that p1
∼= p2. The same reasoning can be used to prove the converse.

Theorem 16. Algorithm 2 computes ≈ and a scaling map.

Proof sketch. If there exist di�erent, but almost-equivalent states, then there exist

di�erent states with the same standardized signature by Lemma 12. Lemma 11

shows that such states are almost-equivalent. Finally, Lemma 15 shows that we

can continue the computation of the almost-equivalence after a weighted merge of

such states. The correctness of the scaling map is shown implicitly in the proof of

Lemma 11.

Theorem 17. We can hyper-minimize wdfa in time O(n log n).

5. Canonical Regular Languages and Hyper-Optimization

In the remaining sections, we will only work with dfa; i.e., wdfa over the Boolean

semi�eld. An open question in [3] suggests to call a regular language L ⊆ Σ∗ canon-

ical if it is recognized by a hyper-minimal dfa. In other words, the regular lan-

guage L is canonical if and only if the minimal dfa for L is hyper-minimal. The

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

Unweighted and weighted hyper-minimization 13

class complement ∗ reversal h h−1 ∪ ∩ − concatenation

regular 3 3 3 3 3 3 3 3 3

canonical 3 7 7 7 7 7 7 7 7

Table 1. Closure properties for regular and canonical regular languages (h means homomorphism).

authors of [3] already remark that the canonical regular languages are a proper

subset of the regular languages (because the �nite languages are not canonical)

and closed under complement (because the complement of a hyper-minimal dfa is

still hyper-minimal by Theorem 7). However, it remained open which other closure

properties canonical regular languages have (see Table 1).

Theorem 18. Canonical regular languages are not closed under any of the fol-

lowing operations: star, reversal, homomorphism, inverse homomorphism, union,

intersection, set di�erence, and concatenation.

Proof. We present all the relevant counterexamples in Figure 4. It can easily

be veri�ed that the input dfa are hyper-minimal and the output dfa are not

hyper-minimal using Theorem 7. To facilitate this check, we indicated the almost-

equivalence for all displayed dfa.

Another question raised in [3] was whether we can optimize another criterion

such as the number of errors or the length of the longest error. This process of

optimizing with respect to a secondary criterion is called hyper-optimization. We

have already remarked that the dfa (b) and (c) of Figure 1 are hyper-minimal and

almost-equivalent. In addition, they are almost-equivalent to the union of (b) and (c)

displayed in Figure 4, so both are potential results of a hyper-minimization. In

this case, both hyper-minimal dfa commit exactly one error relative to the union

dfa, but an example in [36] shows that the gap can be signi�cant. Moreover, the

dfa (c) of Figure 1 commits an error of length 3, whereas the error of the dfa (b)

is of length 2. Thus, there are qualitative di�erences between hyper-minimal and

almost-equivalent dfa.

The characterization in Theorem 3.9 of [3] establishes the exact relation between

almost-equivalent hyper-minimal dfa. Such dfa can only di�er in three aspects:

• the �nality of preamble states,

• the target of transitions from preamble to kernel states, and

• the initial state.

To formalize these di�erences, we need some additional notions. A mapping

h : Q→ P is a transition homomorphism if h(δ(q, σ)) = µ(h(q), σ) for every q ∈ Q
and σ ∈ Σ. If additionally q ∈ F if and only if h(q) ∈ G for every q ∈ Q, then

h is a dfa homomorphism. In both cases, h is an isomorphism if it is bijective. It

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

14 A. Maletti and D. Quernheim

Reversal of (a) Union of (b) & (c) Intersection of (b) & (c)

23 1

12 2

5 7

2 4 6

1 3 45

5 7

2 4 6

1 3 45

Homomorphism Inverse homomorphism Concatenation input

23 1

12 2

23 1

8

12 9 2

1 2 3

4 5 6

Star input Concatenation output

1 2 3

Star output

1 2 3

2 34 345

25 346 3-6

14 6

h1

h−1
2

Fig. 4. Hyper-minimal dfa used to prove non-closure under homomorphic image, inverse homo-
morphic image, and concatenation. The dfa (a), (b), (c) are shown in Figure 1. The dfa below
the heading �Homomorphism� yields the �Reversal of (a)� via the homomorphism h1 that keeps all
letters but sends the dotted arrow to the dashed arrow. The dfa below �Inverse homomorphism�
yields the same dfa via the inverse of the homomorphism h2 that preserves −→, but sends 99K
to 99K−→. The dfa below �Concatenation input� concatenated yield the dfa �Concatenation out-
put�, which is not hyper-minimal. Similarly, we demonstrate the nonclosure under star.

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

Unweighted and weighted hyper-minimization 15

Algorithm 4 CompE(q, q′): Compute the size of JqKA	 Jq′KA.
Require: minimal dfa A and almost-equivalent states q ∼ q′
Global: Q×Q error matrix E over N∪{∞} initially 0 on diagonal and∞ elsewhere

if Eq,q′ =∞ then

2: c← (q ∈ F) xor (q′ ∈ F) // 1 error if q and q′ di�er on �nality

Eq,q′ ← c+
∑
σ∈Σ

CompE(δ(q, σ), δ(q′, σ)) // recursive calls

4: return Eq,q′ // return the computed value

is well-known that dfa are equivalent if and only if there exists a dfa isomorphism

between them.

Theorem 19 (Theorem 3.9 in [3]) Let A and B be almost-equivalent hyper-

minimal dfa. Then there exists a bijection h : Q→ P such that

• q ∼ h(q) for every q ∈ Q,
• h is a transition isomorphism between preamble states of A and B, and
• h is a dfa isomorphism between kernel states of A and B.

Lemma 20 (Lemma 2 in [36]) Let B = mergeA(q′ → q) for some q, q′ ∈ Q with

q 6= q′. Then

JAK	 JBK = {ss′ | shortest s: δ(q0, s) = q, s′ ∈ JqKA	 Jq′KA} .

It is shown in [34] that (i) all three aspects are responsible for di�erent errors

and (ii) the number of errors introduced in a single merge can easily be computed

using Lemma 20. Whether a preamble state q is �nal can be decided based on the

�nitely many strings leading to q. We simply check which option (�nal or non�nal)

yields fewer errors. To decide the target of a transition from a preamble state q′ to

a kernel state, we compute the number of errors for each potential target q. This

is achieved with the help of Lemma 20, for which we compute (i) the number of

strings that lead into state q′ and (ii) the size of JqKA	 Jq′KA using Algorithm 4.

Theorem 21 (Corollary 9 in [34]) A hyper-minimal dfa that commits the least

number of errors (among all hyper-minimal dfa) can be computed in time O(n2).

So we can optimize a secondary criterion, but optimizing a ratio (e.g., balance

the number of saved states and the number of errors) is di�cult. For example,

deciding whether a hyper-minimal dfa with at most m states exists that commits

at most ` errors (relative to A) is NP-hard by Corollary 1 in [17]. Finally, hyper-

minimization and hyper-optimization have been evaluated on random dfa [36].

They are e�ective (good reduction and almost all errors avoidable) on dfa that are

also easy to minimize. Surprisingly, dfa that are hard to minimize are also hard to

hyper-minimize and hyper-optimize in the sense that only very few states are saved

at the expense of a large number of unavoidable errors (see Section 6 in [36]).

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

16 A. Maletti and D. Quernheim

6. Cover Automata and k-Minimization

For all input dfa that recognize a �nite language, hyper-minimization simply re-

turns the trivial dfa that recognizes no string, which is undesirable in most appli-

cations [37, 4, 33]. A �nite language is best represented by a cover automaton [8],

which is a dfa A together with a length limit k ∈ N. It accepts a string s ∈ Σ∗ if

and only if (i) |s| ≤ k and (ii) s ∈ JAK. Thus the dfa A can make errors on strings

longer than k. In cover automata minimization we construct a minimal dfa B
such that JBK ∩Σ≤k = JAK ∩Σ≤k for a given cover automaton (A, k). Similarly, in

k-minimization [16] we construct a minimal dfa B such that JBK∩Σ≥k = JAK∩Σ≥k.

A uniform framework is provided by [22], in which the �nite di�erence that we con-

sider for almost-equivalence is generalized to a regular di�erence.

Cover automata minimization [8, 7, 30, 6, 9, 27] has been studied well, so let us

consider k-minimization [16]. It is based on the equivalence relation ∼k, which is

de�ned for every q ∈ Q and p ∈ P by q ∼k p if and only if JqKA	 JpKB ⊆ Σ≤k. The

smallest such k (which is −∞ if q and p are equivalent) is called the gap gap(q, p)

between q and p, and it is the length of a longest string on which q and p dis-

agree. To limit the length of error strings, we also need to consider the lengths

levelA(q) and levelB(p) of longest strings that lead to q and p, respectively. For-

mally, levelA(q) = sup {|s| | s ∈ δ−1(q)}.

De�nition 22 (Section 4.1 in [16]) Let q ∈ Q and p ∈ P . Then q and p are

k-similar if and only if gap(q, p) + min(k, levelA(q), levelB(p)) ≤ k.

Unfortunately, k-similarity is only a compatibility relation (re�exive and sym-

metric). However, `gap' behaves like an ultrametric [12], which allows us to con-

struct an ultrametric tree [20, 26, 29] for it in time O(n log n) by Theorem 5 of [17].

Using the ultrametric tree we can compute k-similarity easily [16, 17]. Overall,

k-minimization can be performed in time O(n log n) [30, 16, 17].

Theorem 23. Cover automata and k-minimization run in time O(n log n).

Thus, restricting the length of the errors instead of their number is feasible [3].

However, if we combine the restrictions, then minimization becomes intractable.

Formally, given k, ` ∈ N and a dfa A, it is NP-hard to decide whether there exists

a k-minimal dfa B committing at most ` errors by Corollary 2 of [17].

Finally, let us consider an application that combines cover automata and

k-minimization. A �nite-factored dfa [2] is a triple F = (B, k, C) of two dfa B and C
over the same alphabet Σ and k ∈ N. It accepts the language

JFK = {s ∈ Σ∗ | s ∈ JBK ∩ Σ≤k or s ∈ JCK ∩ Σ>k} .

In other words, the authoritative dfa is selected based on the length of string s,

which is slightly di�erent in Section 3 of [2]. As an example [2] let us consider the

language L = {0, 1}≤5 ∪ {a, b}∗ over Σ = {0, 1, a, b}, for which a minimal dfa and

two �nite-factored dfa are shown in Figure 5.

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

Unweighted and weighted hyper-minimization 17

(d) (e) (f)

0 A

1 ⊥

2 5

3 4

0, 1

0, 1

0, 1

0, 1

0, 1

Σ

a, b
a, b

Σ

0,1

a,b

a,b

a,b
a,b

0 A

1 ⊥

0, 1

a, b
a, b

0, 1

Σ

0, 1

a, b

0 ⊥0, 1

a, b

Σ

0 A

1 ⊥

B

C

0, 1

a, b
a, b

0, 1

Σ

0, 1

a, b

Fig. 5. (d) Minimal dfa A and (e) and (f) equivalent �nite-factored dfa (B, 5, C) without and with
sharing, respectively.

In the example, we selected k = 5 and then just minimized the cover automa-

ton (A, k) and k-minimized A to obtain B and C, respectively, in time O(n log n).

The optimal value for k can be computed using Theorem 3 of [17] and Theorem 11

in [27] by computing the sizes of the relevant minimal cover automata and k-minimal

dfa in time O(n log n) for all sensible values of k. The size of the �nite-factored

dfa is the sum of the sizes of two constituting dfa. In the example, we see that

the representation using a �nite-factored dfa can be smaller than the equivalent

minimal dfa. Using all the results previously mentioned we can conclude that even

minimization to a �nite-factored dfa can be achieved e�ciently.

Theorem 24. We can minimize using �nite-factored dfa in time O(n log n).

Acknowledgments

The authors would like to express their gratitude towards the reviewers, who helped

to improve the presentation of the material.

References

[1] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut and M. Mohri, �OpenFst: A general
and e�cient weighted �nite-state transducer library,� in Proc. 12th Int. Conf. Im-

plementation and Application of Automata (Springer, 2007), vol. 4783 of LNCS, pp.
11�23.

[2] A. Badr, �Hyper-minimization in O(n2),� Int. J. Found. Comput. Sci. 20 (2009)
735�746.

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

18 A. Maletti and D. Quernheim

[3] A. Badr, V. Ge�ert and I. Shipman, �Hyper-minimizing minimized deterministic �nite
state automata,� RAIRO Theor. Inf. Appl. 43 (2009) 69�94.

[4] K. R. Beesley and L. Karttunen, Finite State Morphology, CSLI Studies in Compu-
tational Linguistics (CSLI Publications, Stanford, CA, 2003).

[5] J. Berstel and C. Reutenauer, Rational Series and Their Languages, vol. 12 of EATCS
Monographs on Theoret. Comput. Sci. (Springer, 1988).

[6] C. Câmpeanu, A. Paun and J. R. Smith, �An incremental algorithm for constructing
minimal deterministic �nite cover automata,� in Proc. 10th Int. Conf. Implementation
and Application of Automata (Springer, 2005), vol. 3845 of LNCS, pp. 90�103.

[7] C. Câmpeanu, A. Paun and S. Yu, �An e�cient algorithm for constructing minimal
cover automata for �nite languages,� Int. J. Found. Comput. Sci. 13 (2002) 83�97.

[8] C. Câmpeanu, N. Santean and S. Yu, �Minimal cover-automata for �nite languages,�
Theor. Comput. Sci. 267 (2001) 3�16.

[9] J.-M. Champarnaud, F. Guingne and G. Hansel, �Similarity relations and cover au-
tomata,� RAIRO Theor. Inf. Appl. 39 (2005) 115�123.

[10] M. Crochemore and W. Rytter, Jewels of Stringology (World Scienti�c, 2003).
[11] K. Culik II and J. Kari, �Image compression using weighted �nite automata,� Com-

puter and Graphics 17 (1993) 305�313.
[12] B. A. Davey and H. A. Priestley, Introduction to Lattices and Order (Cambridge

University Press, 2002), 2nd edn.
[13] M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert

and R. E. Tarjan, �Dynamic perfect hashing: Upper and lower bounds,� SIAM J.

Comput. 23 (1994) 738�761.
[14] J. Eisner, �Simpler and more general minimization for weighted �nite-state au-

tomata,� in Human Language Technology Conf. of the North American Chapter of

the ACL (2003), pp. 64�71.
[15] T. Fernando, �A �nite-state approach to events in natural language semantics,� J.

Logic Computat. 14 (2004) 79�92.
[16] P. Gawrychowski and A. Je», �Hyper-minimisation made e�cient,� in Proc. 34th Int.

Symp. Mathematical Foundations of Computer Science (Springer, 2009), vol. 5734 of
LNCS, pp. 356�368.

[17] P. Gawrychowski, A. Je» and A. Maletti, �On minimising automata with errors,�
in Proc. 36th Int. Symp. Mathematical Foundations of Computer Science (Springer,
2011), vol. 6907 of LNCS, pp. 327�338.

[18] J. S. Golan, Semirings and their Applications (Kluwer Academic, Dordrecht, 1999).
[19] D. Gries, �Describing an algorithm by Hopcroft,� Acta Inform. 2 (1973) 97�109.
[20] J. A. Hartigan, �Representation of similarity matrices by trees,� J. Amer. Statist.

Assoc. 62 (1967) 1140�1158.
[21] U. Hebisch and H. J. Weinert, Semirings � Algebraic Theory and Applications in

Computer Science (World Scienti�c, 1998).
[22] M. Holzer and S. Jakobi, �From equivalence to almost-equivalence, and beyond �

minimizing automata with errors,� in Proc. 16th Int. Conf. Developments in Language
Theory (Springer, 2012), vol. 7410 of LNCS.

[23] M. Holzer and A. Maletti, �An n logn algorithm for hyper-minimizing a (minimized)
deterministic automaton,� Theor. Comput. Sci. 411 (2010) 3404�3413.

[24] J. E. Hopcroft, �An n logn algorithm for minimizing states in a �nite automaton,� in
Theory of Machines and Computations (Academic Press, 1971), pp. 189�196.

[25] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to Automata Theory,

Languages, and Computation (Addison Wesley, 2007), 3rd edn.
[26] C. J. Jardine, N. Jardine and R. Sibson, �The structure and construction of taxonomic

July 10, 2012 17:26 WSPC/INSTRUCTION FILE a�11

Unweighted and weighted hyper-minimization 19

hierarchies,� Math. Biosci. 1 (1967) 173�179.
[27] A. Je» and A. Maletti, �Computing all l-cover automata fast,� in Proc. 16th Int. Conf.

Implementation and Application of Automata (Springer, 2011), vol. 6807 of LNCS,
pp. 203�214.

[28] C. D. Johnson, Formal Aspects of Phonological Description, no. 3 in Monographs on
Linguistic Analysis (Mouton, The Hague, 1972).

[29] S. C. Johnson, �Hierarchical clustering schemes,� Psychometrika 32 (1967) 241�254.
[30] H. Körner, �A time and space e�cient algorithm for minimizing cover automata for

�nite languages,� Int. J. Found. Comput. Sci. 14 (2003) 1071�1086.
[31] W. Kuich and A. Salomaa, Semirings, Automata, Languages, vol. 5 of EATCS Mono-

graphs on Theoretical Computer Science (Springer, 1986).
[32] S. Lombardy, Y. Régis-Gianas and J. Sakarovitch, �Introducing Vaucanson,� Theor.

Comput. Sci. 328 (2004) 77�96.
[33] C. Mahlow and M. Piotrowski (eds.), State of the Art in Computational Morphology,

vol. 41 of Communications in Computer and Information Science (Springer, 2009).
[34] A. Maletti, �Better hyper-minimization � not as fast, but fewer errors,� in Proc. 15th

Int. Conf. Implementation and Application of Automata (Springer, 2011), vol. 6482
of LNCS, pp. 201�210.

[35] A. Maletti, �Notes on hyper-minimization,� in Proc. 13th Int. Conf. Automata and

Formal Languages (Nyíregyháza College, 2011), pp. 34�49.
[36] A. Maletti and D. Quernheim, �Optimal hyper-minimization,� Int. J. Found. Comput.

Sci. 22 (2011) 1877�1891.
[37] M. Mohri, �Finite-state transducers in language and speech processing,� Comput.

Linguist. 23 (1997) 269�311.
[38] D. Quernheim, �Hyper-minimisation of weighted �nite automata,� Master's Thesis,

Institut für Linguistik, Universität Potsdam, 2010.
[39] J. Sakarovitch, �Rational and recognisable power series,� in Handbook of Weighted

Automata, EATCS Monographs on Theoret. Comput. Sci. (Springer, 2009), chap. 4,
pp. 105�174.

[40] A. Salomaa and M. Soittola, Automata-Theoretic Aspects of Formal Power Series,
Texts and Monographs in Computer Science (Springer, 1978).

[41] R. E. Tarjan, �Depth-�rst search and linear graph algorithms,� SIAM J. Comput. 1

(1972) 146�160.
[42] A. Valmari and P. Lehtinen, �E�cient minimization of DFAs with partial transi-

tion functions,� in Proc. 25th Ann. Symp. Theoretical Aspects of Computer Science

(Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Germany, 2008), vol. 1 of
LIPIcs, pp. 645�656.

[43] P. van Emde Boas, �Machine models and simulation,� in Algorithms and Complexity

(Elsevier and MIT Press, 1990), vol. A of Handbook of Theoretical Computer Science,
pp. 1�66.

[44] S. Yu, �Regular languages,� in Handbook of Formal Languages (Springer, 1997), vol. 1,
chap. 2, pp. 41�110.

