
March 3, 2018 17:43 WSPC/INSTRUCTION FILE mal18

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Compositions of Tree-to-Tree
Statistical Machine Translation Models∗

Andreas Maletti†

Universität Leipzig, Institute of Computer Science
PO box 100 920, 04009 Leipzig, Germany
maletti@informatik.uni-leipzig.de

Received (23 January 2017)
Revised (3 March 2018)

Accepted (21 February 2018)
Communicated by (Alexandre Blondin Massé and Srečko Brlek and Christophe Reutenauer)

The well-known synchronous context-free grammars (SCFGs) and synchronous tree-
substitution grammars (STSGs), both of which are used as tree-to-tree translation mod-
els in statistical machine translation are investigated. Their composition hierarchies are
established in both the unweighted as well as the weighted case. More precisely, it is
shown that SCFGs are closed under composition in both cases and that there is a close
connection between compositions of STSGs and compositions of certain tree transducers.
With the help of the close ties, the composition closure of STSGs is identified in both
cases as well. The results for the weighted case utilize a new lifting technique that might
prove useful also in similar setups.

1. Introduction

Several different translation models are nowadays used in syntax-based statistical
machine translation [16]. The translation model is the main component respon-
sible for the transformation of the input into the translated output, and thus the
expressive power of the translation model limits the possible translations. For exam-
ple, the framework ‘Moses’ [17] provides implementations of synchronous context-
free grammars (SCFGs) [1] and several variants of synchronous tree-substitution
grammars (STSGs) [7]. The expressive power of SCFGs and STSGs is reasonably
well-understood, and in particular, knowledge of the limitations of the models has
helped many authors to pre-process [27, 6, 19] or post-process [5, 26] their data and
to achieve better translation results. Together with pre- or post-processing steps,
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the translation model is no longer solely responsible for the transformation pro-
cess, but we rather obtain a composition of several models or simply a composition
chain [22]. Occasionally, composition chains also appear because they ideally sup-
port a modular development of components for specific translation tasks [4] (e.g.,
translating numerals or geographic locations). However, it is often difficult to eval-
uate such composition chains efficiently especially when the pre- or post-processing
steps are not realized by functions (i.e., are nondeterministic).

In the string-to-string setting the phrase-based models are essentially finite-state
transducers and chains of them can be collapsed into a single transducer [23] be-
cause their translations are closed under composition. However, this is not true for
several tree-to-tree models. Efficient on-the-fly evaluations for composition chains
are presented in [22] along with the observation that the straightforward sequen-
tial evaluation of composition chains is terribly inefficient. Even in the on-the-fly
evaluation the chains should be as short as possible. In this contribution, we will in-
vestigate the expressive power of composition chains of the established tree-to-tree
translation models. The symmetric tree-to-tree setting, although typically worse in
terms of translation quality than the string-to-tree or tree-to-string setting [24, 25],
is particularly convenient since it allows a clean notion of composition.

We first demonstrate that (unweighted and weighted) composition chains of
SCFGs can always be reduced to just a single SCFG. In addition, we demonstrate
how to utilize results for unweighted extended tree transducers [21] to obtain results
for STSGs. The main insight in this part is that even local models like STSGs obtain
a finite-state behavior in composition chains. Thus, a composition of two STSGs is
as powerful as a composition of two corresponding tree transducers. This close con-
nection allows us to show that two STSGs are necessary and sufficient for arbitrary
composition chains of certain simple, yet commonly used STSGs. These results hold
in the absence of weights. However, all translation models used in statistical ma-
chine translation are weighted, so as a second contribution we demonstrate how to
lift the unweighted results into the weighted setting. Our novel lifting procedure,
which we believe will be useful also in other setups, relies on a separation of the
weights and several normalization procedures. Overall, we achieve the same results
on the power of compositions also in the weighted setting, which essentially shows
that short chains of certain STSGs suffice.

2. Preliminaries

We use N for the set of nonnegative integers (including 0), and set N+ = N \ {0}.
For every k ∈ N, we let [k] = {i ∈ N+ | 1 ≤ i ≤ k}. For a set A and k ∈ N, we let
Ak = A× · · · ×A containing k factors A. Note that A0 = {()}, and we also write ε
for (). Moreover, we let A∗ =

⋃
k∈NA

k be the set of all finite sequences over A. The
concatenation of sequences v, w ∈ A∗ is denoted by v.w or simply by the juxtapo-
sition vw. For concatenations of the same sequence w ∈ A∗, we use exponents as
usual, so w2 = ww. For every w ∈ A∗, the length |w| of w is the unique k ∈ N such
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that w ∈ Ak. Given a relation τ ⊆ A×B, we let dom(τ) = {a ∈ A | (a, b) ∈ τ} and
ran(τ) = {b ∈ B | (a, b) ∈ τ}. Given another ν ⊆ B × C, their composition τ ; ν is
given by τ ; ν = {(a, c) ∈ A× C | ∃b ∈ B : (a, b) ∈ τ, (b, c) ∈ ν}.

For finite sets Σ and V , the set TΣ(V ) of Σ-trees indexed by V is the smallest
set T such that V ⊆ T and σ(t1, . . . , tk) ∈ T for all k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ T .
We simply write TΣ for TΣ(∅), and for all k ∈ N, γ ∈ Σ, and t ∈ TΣ(V ) we
write γk(t) for the tree γ(· · · γ(γ(t)) · · · ) containing k times the symbol γ atop t.
We will often omit the quantification and simply write ‘t = σ(t1, . . . , tk)’ to express
that t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ(V ). Given
t ∈ TΣ(V ), its positions pos(t) are inductively defined by

pos(t) =

{
{ε} if t ∈ V
{ε} ∪ {i.p | i ∈ [k], p ∈ pos(ti)} if t = σ(t1, . . . , tk) .

The positions are totally ordered by the lexicographic order v on N∗. For every
tree t ∈ TΣ(V ), its size |t| is defined to be |t| = |pos(t)|, and the tree t is shallow if
{1} ⊆ pos(t) ⊆ {ε} ∪ N+. Moreover, for every p ∈ pos(t), the label of t at p is t(p)
and inductively defined by

t(p) =


t if t ∈ V and p = ε

σ if t = σ(t1, . . . , tk) and p = ε

ti(p
′) if t = σ(t1, . . . , tk) and p = i.p′ for some i ∈ N and p′ ∈ pos(ti) .

For a subset Q ⊆ V we let leavesQ(t) = {p ∈ pos(t) | p.1 /∈ pos(t), t(p) ∈ Q} be the
Q-labeled leaf positions. Given a position p ∈ pos(t) and another tree u ∈ TΣ(V ),
we let t[u]p be the tree obtained from t by replacing the subtree at position p by u.
Formally,

t[u]ε = u

σ(t1, . . . , tk)[u]i.p′ = σ(t1, . . . , ti−1, ti[u]p′ , ti+1, . . . , tk)

for all k ∈ N, σ ∈ Σ, t1, . . . , tk ∈ TΣ(V ), i ∈ [k], and p′ ∈ pos(ti). These notations
are illustrated in Figure 1, and we refer to [12] for an in-depth exposition.

Our weights will be taken from commutative semirings [15, 13], which are al-
gebraic structures (C,+, ·, 0, 1) such that (C,+, 0) and (C, ·, 1) are commutative
monoids and (

∑k
i=1 ci) · c =

∑k
i=1(ci · c) for all k ∈ N and c, c1, . . . , ck ∈ C. Typical

examples of such semirings include the Boolean semiring B = ({0, 1},max,min, 0, 1),
the Viterbi semiring ([0, 1],max, ·, 0, 1) on the unit interval [0, 1], and the semi-
ring (Q,+, ·, 0, 1) of rational numbers. In the following, let C = (C,+, ·, 0, 1) be an
arbitrary commutative semiring.

A weighted (linear, nondeleting extended top-down) tree transducer [14, 9] is a
tuple T = (Q,Σ, Q0, R,wt) consisting of (i) a finite set Q of states, (ii) a finite
set Σ of labels for the trees generated, (iii) designated initial states Q0 ⊆ Q × Q,
(iv) a finite set R of rules of the form (q, t)

ϕ
— (q′, t′) consisting of states q, q′ ∈ Q,
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Figure 1. The left tree t is not shallow, whereas the right tree u is. If Q = {q}, then leavesQ(t) = ∅
and leavesQ(u) = {3}. Obviously, its label is u(3) = q. Moreover, u[her]3 = S(He, likes, her). Note
that the q-labeled node vanishes in the replacement.
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Figure 2. Example rules of a tree transducer [top left], an STSG [top right], and an SCFG [bottom].

input and output tree fragments t, t′ ∈ TΣ(Q), and a bijective alignment (par-
tial) mapping ϕ : leavesQ(t) 99K leavesQ(t′) such that ϕ 6= {(ε, ε)}, and (v) a
rule weight assignment wt: R → C. The transducer T is a synchronous tree-
substitution grammar (STSG) [7] if Q = Σ and t(ε) = q and t′(ε) = q′ in each
rule (q, t)

ϕ
— (q′, t′) ∈ R; i.e., the root labels of t and t′ are q and q′, respectively.

Finally, T is a synchronous context-free grammar (SCFG) [1] if it is an STSG and in
each rule (q, t)

ϕ
— (q′, t′) ∈ R the trees t and t′ are shallow. In an SCFG, the input

and the output tree are assembled like derivation trees of a context-free grammar
(i.e., one level at a time). We recall two restrictions on tree transducer rules. A rule
(q, t)

ϕ
— (q′, t′) is an ε-rule if ε ∈ dom(ϕ). Similarly, it is non-strict if ε ∈ ran(ϕ).

The tree transducer T is ε-free if it does not contain any ε-rules in R, and it is strict
provided that it has no non-strict rules in R. Finally, simple tree transducers are
both ε-free and strict. Note that an SCFG is always simple. We show a few example
rules of each type in Figure 2.

Next, we recall the derivation tree semantics [10] of a weighted tree transducer
T = (Q,Σ, Q0, R,wt). For all q, q′ ∈ Q, we define the set DT (q, q′) of (q, q′)-rooted
derivation trees by simultaneous induction to be the smallest setsD(q, q′) ⊆ TR such
that ρ(d1, . . . , dk) ∈ D(q, q′) for every rule ρ = (q, t)

ϕ
— (q′, t′) ∈ R and di ∈ D(qi, q

′
i)
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Figure 3. Illustration of a derivation tree and its input and output tree.

for all i ∈ [k] such that {w1, . . . , wk} = dom(ϕ) with w1 @ · · · @ wk and
t(wi) = qi and t′(ϕ(wi)) = q′i for all i ∈ [k]. In other words, derivation trees are trees
of rules that respect the state behavior. Similarly the input tree in(d) ∈ TΣ(Q), the
output tree out(d) ∈ TΣ(Q), and the weight wt(d) of a derivation tree d ∈ DT (q, q′)

are defined inductively. Given a (q, q′)-rooted derivation tree d = ρ(d1, . . . , dk) as
above we let

in(d) = (· · · (t[in(d1)]w1) · · · )[in(dk)]wk

out(d) = (· · · (t′[out(d1)]ϕ(w1)) · · · )[out(dk)]ϕ(wk)

wt(d) = wt(ρ) ·
∏
i∈[k]

wt(di) .

We illustrate derivation trees and the associated notions in Figure 3. Additionally,
we note that given trees t, t′ ∈ TΣ and q, q′ ∈ Q, there are only finitely many
d ∈ DT (q, q′) such that in(d) = t and out(d) = t′ because each rule contributes to
the input or output tree. For all trees t, t′ ∈ TΣ, we hence can define the weight
assigned by T to (t, t′) to be

T (t, t′) =
∑

(q,q′)∈Q0

∑
d∈DT (q,q′)

in(d)=t, out(d)=t′

wt(d) .

In this manner, the transducer T computes a mapping T : TΣ × TΣ → C. We use
SCFG(C), STSG(C), and TT(C) to denote the classes of mappings computed by
SCFGs, STSGs, and tree transducers over the commutative semiring C. It is evident
from the formal definitions that each SCFG is a special STSG, which in turn is
a special tree transducer. Hence, the expressive power necessarily increases from
SCFGs to STSGs to tree transducers (TTs); i.e., SCFG(C) ⊆ STSG(C) ⊆ TT(C).



March 3, 2018 17:43 WSPC/INSTRUCTION FILE mal18

6 A. Maletti

Finally, let us formally introduce compositions of weighted tree translations. For
each alphabet Σ, a mapping τ : TΣ × TΣ → C is finitary, if for every t ∈ TΣ there
exist only finitely many u ∈ TΣ such that τ(t, u) 6= 0. Similarly, it is co-finitary,
if for every u ∈ TΣ there exist only finitely many t ∈ TΣ such that τ(t, u) 6= 0.
Now let τ, τ ′ : TΣ × TΣ → C be such that τ is finitary or τ ′ is co-finitary. Then the
composition τ followed by τ ′, written τ ; τ ′, is defined for all t, v ∈ TΣ by

(τ ; τ ′)(t, v) =
∑
u∈TΣ

τ(t, u) · τ ′(u, v) .

Note that this sum is well-defined because of the finitary or co-finitary restriction,
which yields that only finitely many choices of u yield non-zero products. Roughly
speaking, we sum over all potential intermediate trees u and take the product of the
weights for the translation from t to u and the translation from u to v, which shows
that composition corresponds to executing the second transducer on the output of
the first transducer. Composition extends to classes K of weighted translations in
the usual manner, and we use Kn for the composition K;· · ·;K containing the class K
exactly n times. Finally, the inverse of a weighted tree translation τ : TΣ× TΣ → C

is τ−1 : TΣ× TΣ → C given by τ−1(t, u) = τ(u, t) for all t, u ∈ TΣ. We note that, as
usual, (τ ; τ ′)−1 = (τ ′)−1 ; τ−1.

3. Classification of unweighted composition closures

We start with the unweighted case, in which the Boolean semiring B is the weight
structure. However, several results in this section will immediately be proved in
the weighted setting. Weighted tree-to-tree translations are essentially relations
on trees in the unweighted case, and we omit the rule weight assignment from
the specification of tree transducers. The key property that separates unweighted
SCFGs and STSGs was already identified in [7], where it was observed that the
relations computed by SCFGs only contain pairs of isomorphic trees (in the graph-
theoretic sense disregarding the labels and the order of the children, so in particular
the input and output tree always have the same size). The separation between un-
weighted STSGs and simple tree transducers can easily be achieved by the following
relation τ =

{(
γi(δ(γj(α))), γi+j+1(α)

)
| i ∈ N+, j ∈ N}, which can easily be com-

puted by a simple tree transducer, but cannot be computed by an STSG. More
precisely, the simple tree transducer ({q0, q1, q2},Σ, {(q0, q0)}, R) with the rules(
q0, γ(q0)

) {(1,1)}
—

(
q0, γ(q0)

) (
q1, δ(q2)

) {(1,1)}
—

(
q1, γ(q2)

) (
q2, α

) ∅
—
(
q2, α

)(
q0, γ(q1)

) {(1,1)}
—

(
q0, γ(q1)

) (
q2, γ(q2)

) {(1,1)}
—

(
q2, γ(q2)

)
obviously computes τ . To prove that τ cannot be computed by an STSG, assume
that an STSG G = (Σ,Σ,Σ0, R) computes τ , and let n ∈ N with n > max(|t|, |t′|)
for every rule (σ, t)

ϕ
— (σ′, t′) ∈ R. Since (γ3n(δ(γ3n(α))), γ6n+1(α)) ∈ τ , we must

have a derivation tree d for this pair of input and output trees. This derivation
tree must have a subtree of the form d′ = ρ3(ρ2(ρ1)) with ρ1, ρ2, ρ3 ∈ R. We
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Table 1. Known results on unweighted composition closures.

Model Composition closure Reference
top-down tree transducer 1 Theorem 1 of [3]

simple tree transducer 2 Théorème 6.2 of [2]

other tree transducer ∞ Theorem 45 of [8]

immediately observe that in(d′) = γj(α) and out(d′) = γ`(α) for some j, ` ∈ N.
We can now distinguish several cases. If j, ` ∈ N+, then d′ ∈ DG(γ, γ) and hence
(γj(α), γ`(α)) ∈ τ , which is a contradiction. If j = 0 (and ` 6= 0), then we can replace
d′ by just ρ2(ρ1) in d. Since ρ3 must contain at least one additional occurrence of γ
besides the root, the newly obtained derivation tree generates the same input tree,
but the output tree γ6n+1−m for some m ≥ 1, which is again a contradiction. The
case of ` = 0 is analogous. Consequently, we obtain the strict hierarchies

SCFG(B) ⊂ STSG(B) ⊂ TT(B) and SCFG(B) ⊂ s-STSG(B) ⊂ s-TT(B) . (1)

Composition essentially corresponds to running two translations consecutively,
where the first translation translates the input into intermediate results and the
second translation translates those intermediate results into the final results. Com-
positions of tree translations have been extensively investigated (see [11] for a sur-
vey). All classes K of translations discussed here contain the identity relation, so
compositions of our classes K form a natural hierarchy; i.e., K ⊆ K2 ⊆ K3 ⊆ · · · .
Such a hierarchy collapses at level n if Kn = Kn+1. We also say that the composition
closure is obtained at level n provided that n is the least integer, for which the hier-
archy collapses. Intuitively, if the closure is obtained at level n, then compositions
of n translations of K are necessary and sufficient to generate any translation com-
putable by any composition of translations from K. Provided that the composition
closure for K is n, we thus have K ⊂ · · · ⊂ Kn = Kn+1 = · · · . We use ∞ to indicate
that the hierarchy never collapses. We summarize the known results [3, 2, 8] on the
composition closure in Table 1.

We start our investigation with SCFGs. Given two SCFGs T and T ′ we can
simply “join” rules of T and T ′ that coincide on the intermediate tree. We illustrate
this approach in Figure 4. Such rules can certainly be executed consecutively in the
on-the-fly approach [22]. A refined version of this approach taking the finite-state
information and the non-shallow output into account is used to prove that (our
linear and nondeleting) top-down tree transducers are closed under composition [3].

Theorem 1. The composition closure of SCFG(C) is achieved at the first level.

Proof. Given two SCFGs T = (Σ,Σ,Σ0, R,wt) and T ′ = (Σ,Σ,Σ′0, R
′,wt′), we

construct the SCFG T ′′ = (Σ,Σ,Σ0 ; Σ′0, R
′′,wt′′), in which the rules R′′ and their

weights wt′′ are defined as follows: For every rule ρ = (σ, s)
ϕ
— (δ, t) of R and

rule ρ′ = (δ, t)
ψ
— (γ, u) of R′ such that ran(ϕ) = dom(ψ) we construct the rule
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Figure 4. Rule matching and joining in the composition of SCFGs. The left and middle part form
a rule of T and the middle and right part form a rule of T ′. The newly constructed rule will simply
avoid the intermediate tree fragment.

(ρ ; ρ′) = (σ, s)
ϕ;ψ
— (γ, u) of R′′ and set wt′′(ρ ; ρ′) = wt(ρ) · wt′(ρ′). No other rules

are in R′′.
To prove correctness, we define the function f : TR × TR′ → TR′′ inductively for

all rules ρ and ρ′ as above and d1, . . . , dk ∈ TR and d′1, . . . , d′k ∈ TR′ by

f(ρ(d1, . . . , dk), ρ′(d′1, . . . , d
′
k)) = (ρ ; ρ′)(f(d1, d

′
π(1)), . . . , f(dk, d

′
π(k))) ,

where π : [k] → [k] is the permutation that ϕ realizes on the v-ordered po-
sitions (e.g., in Figure 4 the permutation would be π(1) = 2 and π(2) = 1

because the first “nonterminal” ADJ is linked to the second “nonterminal” A
in the intermediate tree). Otherwise, f is undefined. It is straightforward
to show that for all q, q′′ ∈ Σ, the partial function f is a bijection be-
tween {(d, d′) ∈ DT (q, q′) × DT ′(q

′, q′′) | out(d) = in(d′)} and DT ′′(q, q
′′) that

additionally also preserves input- and output trees and weights in the sense that
in(d) = in(f(d, d′)), out(d′) = out(f(d, d′)), and wt(d) ·wt(d′) = wt(f(d, d′)). Hence
T ; T ′ = T ′′.

Next, we will show that the composition closure for simple STSGs can be ob-
tained from the results for simple tree transducers via a small insight. Recall that
SCFGs and STSGs are both local, so they are missing the finite-state behavior of
tree transducers. However, we can simulate the finite-state behavior for both models
in compositions with the help of the intermediate trees. Namely, we can annotate
the desired finite-state information on the intermediate trees in the spirit of the rep-
resentation of a regular tree language as the image of a local tree language under
a relabeling [12]. We illustrate the approach in Figure 5. Note that the first STSG
encodes the states in its output (i.e., the intermediate tree), whereas the second
STSG would encode them in its input (i.e., also the intermediate tree). We use
the prefix ‘s-’ to restrict to simple STSG or tree transducers, so ‘s-TT(C)’ denotes
the class of tree translations computed by simple tree transducers. We immediately
prove the next lemma also in the general weighted setting.

Lemma 2.

s-STSG(C) ; s-TT(C) = s-TT(C) ; s-TT(C) (i)

s-STSG(C) ; s-STSG(C) = s-TT(C) ; s-STSG(C) . (ii)
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Proof. Clearly, the left-to-right inclusions are trivial. For the converse inclusion
in (i), let T = (Q,Σ, Q0, R,wt) and T ′ = (Q′,Σ, Q′0, R

′,wt′) be simple tree trans-
ducers. We construct the STSG U = (Σ′,Σ′,Σ′0, RU ,wtU ) and the tree trans-
ducer U ′ = (Q′,Σ′, Q′0, R

′′,wt′′) such that Σ′ = Σ ∪ (Σ × Q × Q), which allows
us to use combinations of internal symbols together with two states. For every rule
ρ = (q, t)

ϕ
— (q′, t′) ∈ R of the first simple tree transducer T and all mappings

a, b : leavesQ(t)→ Σ, we construct the rule

ρa,b =
(
t(ε), t[a(w1)]w1 . . . [a(wk)]wk

) ϕ
—
(
〈σ, q, q′〉, 〈σ, q, q′〉(u′1, . . . , u′k)

)
∈ RU ,

where u′i = t′i[〈b(w1), t(w1), t′(ϕ(w1))〉]ϕ(w1) · · · [〈b(wk), t(wk), t′(ϕ(wk))〉]ϕ(wk) for
every i ∈ [k], we have t(ε) ∈ Σ due to the ε-freeness, t′ = σ(t′1, . . . , t

′
k)

for some internal symbol σ ∈ Σ and subtrees t′1, . . . , t′k due to strictness, and
leavesQ(t) = {w1, . . . , wk}. Moreover, we set wtU (ρa,b) = wt(ρ). In other words,
we guess the internal symbols that will replace a state leaf in the input and out-
put fragment t and t′ and replace the state leaf by the guessed internal sym-
bol in the input fragment and the triple containing the guessed internal sym-
bol and the two synchronized states. No other rules are in RU . Finally, we
set Σ′0 = {(σ, 〈δ, q, q′〉) | (q, q′) ∈ Q0, σ, δ ∈ Σ}. In preparation for the defini-
tion of U ′, we let ı : Σ′ → Σ be such that ı(σ) = σ and ı(〈σ, q, q′〉) = σ for all σ ∈ Σ

and q, q′ ∈ Q. We extend ı to a mapping ı : TΣ′(Q
′) → TΣ(Q′) by ı(q′) = q′ for

every q′ ∈ Q′ and ı(σ′(t1, . . . , tk)) = ı(σ′)(ı(t1), . . . , ı(tk)) for all k ∈ N, σ′ ∈ Σ′,
and t1, . . . , tk ∈ TΣ′(Q

′). For every rule ρ′ = (q, t)
ϕ
— (q′, t′) ∈ R′ of the second

tree transducer, we have that ρ′u = (q, u)
ϕ
— (q′, t′) ∈ R′′ for every u ∈ ı−1(t).

Moreover, wt′′(ρ′u) = wt′(ρ′). No other rules are in R′′. In other words, the second
tree transducer simply ignores the additional annotation of the intermediate tree.

Next, we prove the correctness of the construction. First, we observe that
U ′(u, t′) = T ′(ı(u), t′) for all u ∈ TΣ′ and t′ ∈ TΣ. For every q, q′ ∈ Q and ev-
ery derivation tree d ∈ DT (q, q′) we let `(d) = in(d)(ε) and r(d) = out(d)(ε) be the
root labels of the input and output tree generated by the derivation tree. For every
such derivation tree d there exists a derivation tree d′ ∈ DU (`(d), 〈r(d), q, q′〉),
which is inductively defined by d′ = ρa,b(d

′
1, . . . , d

′
k), where d = ρ(d1, . . . , dk)

with ρ = (q, t)
ϕ
— (q, t′), the derivation tree d′i corresponds to the derivation

tree di for every i ∈ [k], and a, b : leavesQ(t) → Σ are defined by a(wi) = `(di)

and b(wi) = r(di) for every i ∈ [k] and {w1, . . . , wk} = leavesQ(t) with
w1 @ · · · @ wk. Moreover, in(d) = in(d′), out(d) = ı(out(d′)), and wt(d) = wtU (d′).
This correspondence actually establishes weight-preserving bijections between the
sets {d ∈ DT (q, q′) | `(d) = σ, r(d) = γ} and DU (σ, 〈γ, q, q′〉) for all σ, γ ∈ Σ and
q, q′ ∈ Q. Given t, u ∈ TΣ we thus have T (t, u) =

∑
u′∈ı−1(u) U(t, u′) and

(T ; U)(t, v) =
∑
u∈TΣ

T (t, u) · T ′(u, v) =
∑
u∈TΣ

∑
u′∈ı−1(u)

U(t, u′) · U ′(u′, v)

=
∑

u′∈TΣ′

U(t, u′) · U ′(u′, v) = (U ; U ′)(t, v)
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(
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(SENT, q, q′)
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(V, q1, q
′
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′
2)

Figure 5. Illustration of the state annotation on the intermediate tree. The left part shows the
original tree transducer rule and the right STSG rule shows how the state annotation is performed
on the output tree using the guessed nonterminal pairs (VBP,V) and (NP,NP) for (q1, q′1) and
(q2, q′2), respectively.

for all t, v ∈ TΣ.
For statement (ii), where T ′ is an STSG (Σ,Σ,Σ0, R

′,wt′), we use the same
construction but instead construct the STSG U ′ = (Σ′,Σ′,Σ′′0 , R

′′,wt′′) with
Σ′′0 = {(κ, σ) ∈ Σ′ ×Σ′ | (ı(κ), σ) ∈ Σ0} and for every rule ρ′ = (t(ε), t)

ϕ
— (t′(ε), t′)

of R′ of the STSG T ′, we have that the rule ρ′u = (u(ε), u)
ϕ
— (t′(ε), t′) belongs

to R′′ for every u ∈ ı−1(t). As before, wt′′(ρu) = wt′(ρ), and no other rules are
in R′′. The proof remains valid also in this case.

Corollary 3. For all n ≥ 2, compositions of n simple STSGs are as expressive as
compositions of n simple tree transducers.

Proof. Since the classes s-STSG(C) and s-TT(C) are obviously closed under in-
verses, we can conclude from Lemma 2(ii) that

s-STSG(C) ; s-TT(C) = s-STSG(C)−1 ; s-TT(C)−1 =
(
s-TT(C) ; s-STSG(C)

)−1

=
(
s-STSG(C) ; s-STSG(C)

)−1
= s-STSG(C)−1 ; s-STSG(C)−1 = s-STSG(C)2 .

Consequently, s-TTn = s-STSGn by n − 1 applications of Lemma 2(i) and an
application of the previous conclusion.

Theorem 4. The composition closure of s-STSG(B) is obtained at the second level.

Proof. Unweighted simple tree transducers achieve the composition closure at the
second level [2]. Since the second levels of the composition hierarchy for s-TT(B) and
s-STSG(B) coincide by Corollary 3, and unweighted simple STSGs are strictly less
expressive by (1), the composition closure of unweighted simple STSGs is achieved
at the second level as well.

In the remaining unweighted cases, which consist of (i) strict STSGs, (ii) ε-free
STSGs, and (iii) general STSGs, the composition hierarchy of the corresponding
unweighted tree transducers is infinite. We summarize the results in Table 2.
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Table 2. Composition closure results for unweighted and weighted SCFGs and STSGs. They mirror
the corresponding results for tree transducers.

Model (Un-)weighted composition closure Results
SCFGs 1 Theorem 1

simple STSGs 2 Theorems 4 and 8
other STSGs ∞ Theorems 5 and 9

Theorem 5. The composition hierarchy of unweighted strict STSGs, unweighted
ε-free STSGs, and unweighted general STSGs is infinite.

Proof. If we re-examine the counterexample translation τ provided in Example 43
of [8], then we can easily see that it does not utilize its states and can be gener-
ated by an unweighted ε-free STSG as well. Hence for every n ≥ 1 we obtain a
translation τn+1 that can be computed by (n + 1) unweighted ε-free STSGs, but
not by n unweighted tree transducers according to Lemma 44 of [8]. Since by (1)
we have STSG(B) ⊆ TT(B), it follows that STSG(B)n ⊆ TT(B)n and thus n un-
weighted STSGs also cannot implement τn+1, which proves the infiniteness of the
composition hierarchies for unweighted ε-free and general STSGs. The analogous
arguments using the inverse translation τ−1 can be used to prove the infiniteness
of the composition hierarchy for unweighted strict STSGs.

4. Classification of weighted composition closures

In the weighted setting, which is more relevant in statistical machine translation,
the models assign a weight to each rule. The weights of the rules occurring in
a derivation tree are multiplied, and if there are several derivation trees for the
same input- and output-tree pair, then their weights are summed up. To avoid
infinite summations in compositions, we restrict ourselves to ε-free or strict models
to enforce that all translations are finitary or co-finitary.

The goal of this section is to lift the unweighted results of the previous section
into the weighted setting. In Theorem 1 we already proved that SCFGs are closed
under composition. Moreover, Corollary 3 shows that the composition closure of
simple STSGs coincides with that of simple tree transducers, so it only remains to
establish the composition closure for simple tree transducers. Roughly speaking, we
will reduce this problem to the unweighted setting by removing the weights from
the tree transducer and moving them into a particularly simple type of translation,
called weighted relabeling, which we define next.

For a given alphabet Σ, a (weighted) relabeling is a mapping κ : Σ × Σ → C.
In other words, it is a weighted association between symbols. It extends to pairs
of trees such that (i) it assigns weight 0 to all pairs of trees of different shape and
(ii) it simply takes the product of the symbol-to-symbol weights given by κ for all
corresponding nodes in trees of the same shape. Formally, each such relabeling κ
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extends to a weighted tree translation κ : TΣ(Q)×TΣ(Q)→ C, which is defined for
every t, u ∈ TΣ(Q) by

κ(t, u) =


∏

w∈pos(t)\leavesQ(t)

κ
(
t(w), u(w)

)
if pos(t) = pos(u) and
t(w) = u(w) for all w ∈ leavesQ(t)

0 otherwise.

We use REL(C) for the class of all weighted translations computable by relabelings.

Lemma 6. For every composition of a simple tree transducer and a relabeling in
either order, we can present an equivalent simple tree transducer.

s-TT(C) ; REL(C) ⊆ s-TT(C) and REL(C) ; s-TT(C) ⊆ s-TT(C)

Proof. The first statement is obtained by combining the decomposition
in Lemma 4.1 of [9] and the composition results in Theorem 2.4 of [18]. More-
over, since all the involved models are closed under inverses, we also immediately
obtain the second statement.

The next lemma shows that we can separate the weights from a simple tree
transducer. A tree transducer T = (Q,Σ, Q0, R,wt) is Boolean if wt: R → {0, 1};
i.e., it only uses the rule weights 0 and 1. Moreover, it is unambiguous if for ev-
ery t, u ∈ TΣ there exists at most one (q, q′) ∈ Q0 and d ∈ DT (q, q′) such that
in(d) = t and out(d) = u. When we strip the weights from a tree transducer we
construct a composition of an unambiguous and Boolean simple tree transducer T ′

and a relabeling. Moreover, the tree translation computed by T ′ : TΣ × TΣ → C

will be injective, which means that for every output tree u ∈ TΣ there exists at
most one input tree t ∈ TΣ such that T ′(t, u) 6= 0. We use ‘su-TT0,1

inj (C)’ for the
class of injective translations computed by unambiguous and Boolean simple tree
transducers. Note that these translations are essentially the characteristic functions
of the relations computed by the corresponding unweighted tree transducers and
enjoy the same properties as su-TTinj(B).

Lemma 7. Every simple tree transducer T can be equivalently represented by a
composition of an unambiguous and Boolean simple tree transducer T ′ computing
an injective translation followed by a relabeling κ.

s-TT(C) ⊆ su-TT0,1
inj (C) ; REL(C)

Proof. Let T = (Q,Σ, Q0, R,wt) be the simple tree transducer. We con-
struct the tree transducer T ′ = (Q,Σ′, Q0, R

′,wt′) with Σ′ = Σ ∪ (Σ × R)

and the set R′ of rules and their weights wt′ as follows. For every rule
ρ = (q, t)

ϕ
— (q′, t′) ∈ R with wt(ρ) 6= 0, we have t′ = σ(t′1, . . . , t

′
k) for some inte-

ger k, symbol σ ∈ Σ, and subtrees t′1, . . . , t′k ∈ TΣ(Q) because T is strict. Then the
rule ρ′ = (q, t)

ϕ
— (q′, 〈σ, ρ〉(t′1, . . . , t′k)) ∈ R′ belongs to R′, which essentially records
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the rule application in the root of the output tree fragment. We set wt′(ρ′) = 1.
No other rules are in R′. Finally, the relabeling κ : Σ′×Σ′ → C is defined for every
ω, ω′ ∈ Σ′ such that

κ(ω, ω′) =


wt(ρ) if ω = 〈ω′, ρ〉 for some ρ ∈ R
1 if ω = ω′ ∈ Σ

0 otherwise.

In other words, the relabeling removes the annotation and charges the weight of the
annotated rule.

Obviously, the constructed tree transducer T ′ is Boolean. In addition, for ev-
ery output tree u ∈ TΣ′ there is at most one pair (q, q′) ∈ Q × Q and at most
one derivation tree d ∈ DT ′(q, q

′) such that out(d) = u because the derivation
tree is completely encoded in the output. Consequently, T ′ is unambiguous. More-
over, the derivation tree d uniquely determines the input tree in(d), so the trans-
lation is also injective. Clearly, for all q, q′ ∈ Q, we obtain a bijection between
DT (q, q′) and DT ′(q, q

′) by simply replacing each label ρ ∈ R of a derivation
tree d ∈ DT (q, q′) by the corresponding rule label ρ′ ∈ R′ to obtain the deriva-
tion tree d′ ∈ DT ′(q, q

′). Moreover, for such related derivation trees d and d′ we
have in(d) = in(d′), κ(out(d′), out(d)) = wt(d), and wt′(d′) = 1. Overall, for all
t, u ∈ TΣ this proves

T (t, u) =
∑

(q,q′)∈Q0

∑
d∈DT (q,q′)

in(d)=t, out(d)=u

wt(d) =
∑

(q,q′)∈Q0

d∈DT (q,q′)
in(d′)=t, out(d)=u

κ(out(d′), out(d))

=
∑
t′∈TΣ′

( ∑
(q,q′)∈Q0

d′∈DT ′ (q,q
′)

in(d′)=t, out(d′)=t′

wt′(d′)

)
· κ(t′, u) =

∑
t′∈TΣ′

T ′(t, t′) · κ(t′, u)

= (T ′ ; κ)(t, u) .

Using Lemmas 6 and 7 we can now separate the weights from a composition
chain because

s-TT(C) ; s-TT(C)2 ⊆ su-TT0,1
inj (C) ; REL(C) ; s-TT(C)2 (Lemma 7)

⊆ su-TT0,1
inj (C) ; s-TT(C)2 ⊆ su-TT0,1

inj (C)2 ; REL(C) ; s-TT(C) (Lemmas 6 and 7)

⊆ su-TT0,1
inj (C)2 ; s-TT(C) ⊆ su-TT0,1

inj (C)3 ; REL(C) . (Lemmas 6 and 7)

Next we identify the neutral elements {0, 1} of C with the corresponding ele-
ments of B, which yields su-TT0,1

inj (C) = su-TTinj(B). Since the composition closure
of s-TT(B) is achieved at the second level [2] and since the composition of injective
translations is injective, we obtain

su-TT0,1
inj (C)3 ; REL(C) ⊆ s-TT(B)2︸ ︷︷ ︸

injective

; REL(C)
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We cannot simply simulate those unweighted tree transducers directly by tree trans-
ducers over C since there might be different derivation trees d and d′ for a given
input-output tree pair (t, u); i.e., in(d) = in(d′) = t and out(d) = out(d′) = u. In the
Boolean semiring the obtained weight for (t, u) is still 1 because max(1, 1) = 1. How-
ever, in the semiring C we might have 1 + 1 6= 1 (i.e., C might be non-idempotent),
which yields that the existence of several derivation trees for the same tree pair
would potentially yield wrong weights. It is well known that if f ; g is injective for
given mappings f : A → B and g : B → C, then the mappings f ∩ (A × dom(g))

and g ∩ (ran(f) × C) are injective as well. Moreover the translations τ ∈ s-TT(B)

computed by unweighted simple tree transducers have regular tree languages as
domain dom(τ) and range ran(τ) [21] and for every τ ′ ∈ s-TT(B) and all regu-
lar tree languages L and L′ we also have τ ′ ∩ (L × L′) ∈ s-TT(B) [21]. Thus we
can use regular restrictions restricting the output of the first translation to the in-
puts of the second and vice versa to make both unweighted translations injective.
Moreover each injective translation can be made unambiguous using the regular
look-ahead [21], so we obtain

s-TT(B)2︸ ︷︷ ︸
injective

; REL(C) ⊆ su-TTinj(B)2 ; REL(C) ⊆ s-TT(C)2 ,

where the last step uses Lemma 6. Note that unweighted unambiguous tree trans-
ducers can easily be simulated by the corresponding tree transducers over C. Thus,
we derived the difficult part of the composition closure.

Theorem 8. The composition closure of s-STSG(C) is achieved at the second level.

Proof. We showed that s-TT(C)3 ⊆ s-TT(C)2, so the composition hierarchy of the
class s-TT(C) collapses at level 2. Moreover using the linking arguments of [20] we
can also conclude that s-TT(C) ⊂ s-TT(C)2.

Finally, for the remaining classes (i.e., strict STSGs and ε-free STSGs), we can
essentially import the infinite composition hierarchy from the unweighted case using
the linking technique of [20].

Theorem 9. The composition hierarchy of strict STSGs and ε-free STSGs is infi-
nite.

Conclusion

We have investigated the expressive power of compositions of the well-established
tree-to-tree translation models: SCFGs, STSGs, and tree transducers. In the un-
weighted case, the results for the local devices [i.e., SCFGs and STSGs] closely
mirror the known composition results for tree transducers due to the fact that we
can encode the finite-state information in the intermediate trees of a composition.
The same picture presents itself in the weighted setting, for which we showed how to
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lift the corresponding results from the unweighted setting to the weighted setting.
This uses a novel decomposition separating the weights from simple tree transducers
and then constructions for the obtained unambiguous and injective tree transducers.
Overall, we demonstrated that in the relevant cases, short (length 1 or 2) compo-
sition chains are necessary and sufficient to simulate arbitrarily long composition
chains.
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