Hyper-Optimization
for Deterministic Tree Automata

Andreas Maletti*

Institute for Natural Language Processing, Universitat Stuttgart
Pfaffenwaldring 5b, 70569 Stuttgart, Germany
andreas.maletti@ims.uni-stuttgart.de

Abstract. A recent minimization technique, called hyper-minimization,
permits reductions of language representations beyond the limits im-
posed by classical semantics-preserving minimization. Naturally, the se-
mantics is not preserved by hyper-minimization; rather the reduced rep-
resentation, which is called hyper-minimal, can accept a language that
has a finite symmetric difference to the language of the original repre-
sentation. It was demonstrated that hyper-minimization for (bottom-up)
deterministic tree automata (DTAs), which represent the recognizable tree
languages, can be achieved in time O(m - logn), where m is the size of
the DTA and n is the number of its states. In this contribution, this re-
sult is complemented by two results on the quantity of the errors. It
is shown that optimal hyper-minimization for pTAs (i.e., computing a
hyper-minimal DTA that commits the least number of errors of all hyper-
minimal DTAs) can be achieved in time O(m-n). In the same time bound
also the number of errors of any hyper-minimal DTA can be computed.

1 Introduction

In many application areas, large finite-state models are approximated automat-
ically from data. Classical examples in the area of natural language processing
include the estimation of tree automata [6l7] for parsing [I8] and weighted finite-
state automata [19] for speech recognition [I6]. To keep the size of those models
under control, minimization is used whenever possible and efficient. Unfortu-
nately, computing an equivalent minimal nondeterministic (unweighted) finite-
state automaton [2I] is PSPACE-complete [8] and thus inefficient; this remains
true even if the input automaton is deterministic. However, given a determinis-
tic finite-state automaton (DFA) the computation of an equivalent minimal DFA
is very efficient [12]. Consequently, we restrict our focus to deterministic finite-
state devices. Exactly, the same situation exhibits itself for tree automata [I7J3],
which are the finite-state models used in this contribution. We note that (bottom-
up) deterministic tree automata are as expressive as (nondeterministic) tree au-
tomata (albeit the deterministic device might require exponentially more states
as in the string case), which recognize exactly the regular tree languages.

* The author was financially supported by the German Research Foundation (DFG)
grant MA 4959 / 1-1.

S. Konstantinidis (Ed.): CIAA 2013, LNCS 7982, pp. 244-255, 2013.
© Springer-Verlag Berlin Heidelberg 2013

andreas.maletti@ims.uni-stuttgart.de

Hyper-Optimization for Deterministic Tree Automata 245

In several applications it is beneficial to reduce the size even further at the
expense of errors. In hyper-minimization [2] we simply allow any finite number
of errors; i.e., the obtained representation might recognize a language that has a
finite symmetric difference to the language recognized by the original represen-
tation. While this error profile is rather simplistic, it allows a convenient theoret-
ical treatment [2], efficient minimization algorithms [TJ4ITTIT4], and sometimes
finitely many errors are even absolutely inconsequential [20]. Moreover, more
refined error profiles often yield Np-hard minimization problems [5] and thus
inefficient minimization procedures. Recently, an efficient hyper-minimization
algorithm [13] for (bottom-up) deterministic tree automata (DTAS) was devel-
oped. It runs in time O(m - logn), where m is the size of the input DTA and
n is the number of its states. Thus, it is asymptotically as efficient as the fastest
classical minimization algorithms [9] for DTAs.

The existing hyper-minimization algorithm for DTAs is purely qualitative in
the sense that it guarantees that the resulting hyper-minimal DTA (a DTA M is
hyper-minimal if there exists no DTA with fewer state&ﬂ that recognizes a tree
language with a finite difference to the tree language recognized by M) commits
only finitely many errors, but provides no (non-trivial) bound on this number of
errors. Since there are (in general) many (non-isomorphic) hyper-minimal DTAs
for a given tree language, returning simply any hyper-minimal DTA is short-
sighted. In this contribution, we perform a more quantitative analysis in the
spirit of [I5]. We develop a hyper-minimization algorithm that returns a hyper-
minimal DTA (i.e., it has as many states as the DTA returned by the existing
algorithm of [13]) that commits the least number of errors among all hyper-
minimal DTAs. To this end, we first characterize all hyper-minimal DTAs for a
given tree language. For DFAs the structural differences between hyper-minimal
DFAs for the same language were characterized in [2] Thms. 3.8 and 3.9]. Despite
the additional complications encountered in DTAs hyper-minimization, we faith-
fully generalize the results for DFAs to DTAs. Thus, any two hyper-minimal DTAs
for a given tree language permit a bijection between their states such that the
distinction into preamble (i.e., those states that can only be reached by finitely
many trees) and non-preamble (or kernel) states is preserved. Moreover, the DTAs
behave equivalently on their preambles except for their acceptance decisions and
isomorphically on their kernels. Finally, the strange condition on the initial state
in [2 Thms. 3.8 and 3.9] disappears completely for DTAs.

With the help of this characterization we can now easily compare different
hyper-minimal DTAs provided that we can compute the number of errors that
they commit. Thus, we derive a method to compute the number of errors caused
by each relevant decision (finality decision for preamble states and transition
targets for transitions from the preamble into the kernel). For DFAs the same
approach was used in [I5], but our method is slightly more complicated because
we have to avoid counting errors several times (because an error tree can contain
multiple positions at which a switch from preamble to kernel states happens

! Since we consider only deterministic devices, we can as well use the number of
transitions as a size measure.

246 A. Maletti

when processing it by the DTA). We solve this problem by attributing the error
tree to the left-most such transition. It turns out that this change can easily
be incorporated, so that our approach closely resembles the approach of [15].
Overall, we obtain an algorithm that, given a DTA M and a hyper-minimal
DTA N that recognizes a finitely different tree language, can compute the number
of errors committed by N in time O(m - n), where m is the size of M and n is
the number of states of M. In addition, we can also compute an optimal hyper-
minimal DTA N’ in time O(m-n), which is a hyper-minimal DTA that commits the
least number of errors among all hyper-minimal DTAs that recognize a finitely
different tree language. Of course, we can also compute the exact number of
errors committed by this optimal DTA.

2 Preliminaries

The set IN consists of all nonnegative integers and [k] = {i € IN | 1 <i < k} for
all k € IN. The symmetric difference S&T of sets S and T'is (S—T)U(T'—S5). A
binary relation = C S x S is an equivalence relation if it is reflexive, symmetric,
and transitive. Given such an equivalence relation &, the equivalence class [s] of
se€Sis{s €S |s=s}. If S is finite, then we write |S| for its cardinality.

An alphabet X' is a finite set, and a ranked alphabet (X, rk) consists of an
alphabet X' and a mapping rk: X~ — IN that assigns a rank to each symbol of Y.
The set of all symbols of rank k € INis X, = rk ! (k). We typically denote (X, rk)
by just X, and we let X(T) = {o(t1,...,tx) | 0 € Xk, t1,...,tx € T} for every
set T. The set Tx(Q) of X-trees with states @ is the smallest set T such that
QUX(T) C T. We write T’x, for T;((}). The mapping height ht(¢): Tx(Q) — IN is
defined by ht(q) = 0 for all ¢ € Q and ht(o (¢1,...,tx)) = 1+max {ht(¢;) | i € [k]}
for all ¢ € Xy and t1,...,tx € Tx(Q). The subset Cx(Q) € Txyuny(Q) of
contexts contains all trees in which the special nullary symbol O occurs exactly
once. Again, we write C'x; for C'x(0). For all ¢ € Cx(Q) and t € Txy(ny(Q), we
write c[t] for the tree obtained from c¢ by replacing O by . The tree t is a subtree
of c[t] for all contexts ¢ € Cx(Q).

A (total bottom-up) deterministic (finite-state) tree automaton (DTA) [6l[7]
is a tuple M = (Q, X, 6, F') where @ is the finite, nonempty set of states, X' is
the ranked alphabet of input symbols, 6: X(Q) — Q is the transition mapping,
and F' C @ is the set of final states. The transition mapping J extends to
0: Tx(Q) = Q by d(¢) =q for all ¢ € Q and

§(o(tr,....tr)) =6(a(8(t1),...,8(tx)))

for all o € Xy and ty,...,tx € Tx(Q). We let L(M)}, = {c € Cx | d(c[¢']) = ¢}
for all ¢,¢" € Q. Moreover, L(M)y = U, L(M){, contains all (stateless) con-

texts that take ¢’ into a final state, and L(M)9 = §~1(q)NTx contains all (state-
less) trees that are recognized in the state g. A state ¢ € @ is a kernel (resp.,
preamble) state [2] if L(M)? is infinite (resp., finite). The sets Kerp; and Preyy,
contain all kernel and preamble states, respectively. The DTA M recognizes the

Hyper-Optimization for Deterministic Tree Automata 247

tree language L(M) = |, e L(M)?, and all DTAs that recognize the same tree
language are equivalent. A DTA is minimal if there exists no equivalent DTA
with strictly fewer states. We can compute a minimal DTA that is equivalent
to M using an adaptation [9] of HOPCROFT’s algorithm [12], which runs in
time O(|M|-logn) where |M| =", .\ k- |Zk| - n¥ is the size of M and n = |Q).

3 Structural Characterization of Hyper-Minimal DTAs

In this section we develop a characterization that points out the differences
between different hyper-minimal DTAs for the same tree language. It will tell
us which alternatives to consider when we search for an optimal hyper-minimal
DTA, which commits the least number of errors. However, before we start, we
recall the basic notions (e.g., almost equivalence and hyper-minimality).

Throughout the paper, let M = (Q,X,§, F) and N = (P, X, u, G) be min-
imal DTAs. Since we ultimately want to compare two DTAs, we introduce all
basic notions for M and N. However, we often use them in the particular case
that M = N. Two states ¢ € Q and p € P are almost equivalent [I3, Def. 1],
written ¢ ~ p or p ~ ¢, if E;, = L(M), & L(N), is finite. We also say that
q and p disagree on each element of E, ,,. If E, , = 0, then ¢ and p are equivalent,
which is written ¢ = p or p = ¢. It is well-known [3] Sect. 1.5] that minimal DTAs
do not have different, but equivalent states. Correspondingly, the DTAs M and N
are almost equivalent, also written M ~ N, if E = L(M) & L(N) is finite.

Lemma 1 (see [13, Lm. 4]). If M ~ N, then 6(t) ~ u(t) and §(t') = p(t') if
ht(t') > |Q x P| for all t,t' € Tx P

Proof. The property 6(t) ~ p(t) is proven in [I3, Lm. 4]. For the other property,
we consider the product DTA M x N = (Q x P, X, x u, F x G), where

(6 X :u) (U(<QIap1>’ EERR) <qk’pk>)) = <6(U(q17 s ,Qk)),M(O(pl, s apk))>

for all o € Xy and (g1, p1), - -, (qk, pr) € Q x P. Clearly, (0 x p)(t) = (6(¢), u(t))
for all ¢ € Tx. If ht(t) > |Q x PJ, then (6 x p)(t) is a kernel state of M x N
because the tree ¢t can be pumped [6/7]. For the sake of a contradiction, suppose
that 6(t) # wu(t); i.e., there exists ¢ € Ej(y)). Since (0(t), u(t)) is a kernel state
of M x N, there exist infinitely many u € T’s; such that (6(u), p(u)) = (6(¢), p(t)).
However, for each such tree u we have c[u] € E, which contradicts M ~ N. O

The previous lemma shows that almost equivalent DTAs are in almost equiv-
alent states after processing the same (stateless) tree. If the tree is tall, then
they are even in equivalent states. Before we proceed with the comparison of
almost equivalent DTAs, we recall another notion and a related result. A DTA is
hyper-minimal if all almost equivalent DTAs have at least as many states.

Theorem 2 ([I3, Thm. 7]). A minimal DTA is hyper-minimal if and only if
all pairs of different, but almost equivalent states consist only of kernel states.

2If M = N, then ht(#) > |Q| is actually sufficient.

248 A. Maletti

Now we can investigate how almost equivalent hyper-minimal DTAs differ.
We extend each mapping h: Q@ — P to a mapping h: Tx(Q) — Tx(P) by
h(o(t1,...,tx)) = o(h(t1),...,h(tx)) for every o € Xy and t1,...,t; € Tx(Q).
Such a mapping h: Q — P is a transition homomorphisnﬂ if h(d(s)) = p(h(s))
for every s € X(Q). Moreover, h is a DTA homomorphism if additionally h(q) € G
if and only if ¢ € F. As usual, a bijective homomorphism is called isomor-
phism. Next, we show that two almost equivalent hyper-minimal DTAs have
DTA-isomorphic kernels and transition-isomorphic preambles.

Theorem 3. If M ~ N and both M and N are hyper-minimal, then there exists
a bijection h: Q — P such that

1. h is bijective on Kerps x Kery,
2. h(q) € G if and only if ¢ € F for all g € Kerps, and
3. h(4(s)) = p(h(s)) for every s € X(Q) — {s € X(Prens) | 6(s) € Kerps}.

Proof. Clearly, |Q| = |P| since M and N are both hyper-minimal. For every
g € Q select t, € L(M)? such that ht(¢,) > |Q x P| whenever ¢ € KerME|
We let h: Q — P be such that h(q) = u(t,) for every ¢ € @, which imme-
diately proves that h(q) € Kery for all ¢ € Kerps because ht(t,) > |Q x P.
Moreover, for each ¢ € Kerys the facts M ~ N and ht(t,) > |Q x P| imply
q = 0(ty) = p(ty) = h(g) by Lemma 1| Thus, h is injective on Kerp; x Kery
because h(q1) = q1 Z g2 = h(gz) for all different ¢1,q2 € KerME| Finally, for
every p € Kery, select u, € L(N)? such that ht(u,) > |Q x P|. Clearly,
0(up) € Kerpr and by Lemma [If we obtain p = p(up) = d(up) = h(6(up)).
Since N is minimal, we can conclude that p = h(d(u,)), which shows that h is
surjective on Kery; x Kery, thereby proving the first item.

Recall from the previous paragraph that ¢ = h(q) for every g € Kerys. Thus,
h(g) € G if and only if ¢ € F, which proves the second item. For the third
objective, let s = o(q1,...,qr) € 2(Q). Then

5(s) = 0(0(tgs---stq)) L oty tg)) = plo(ulte,), - ulte,)))
= p(o(hlqr);- -, hgr))) = pu(h(s))

where the step marked { is due to Lemma [I} In the following, assume that
s ¢ X(Preps), which yields that there exists ¢ € [k] such that ¢; € Kery,.
Consequently, ht(o(tq,,...,tq.)) > |@Q % P| by the selection of t,,, which can be
used in Lemmato show that the step marked T is actually equivalence (=). We
obtain that §(s) = u(h(s)) and 6(s) € Kerps. Thus, h(6(s)) = §(s) = u(h(s)) by
the argument in the previous paragraph. Since N is minimal, we can conclude
that h(d(s)) = u(h(s)) as desired.

Before we prove the missing case, in which s € X' (Prejps) with d(s) € Preyy,
we prove that h is bijective on Prej; x Prey, which automatically also proves

3 or a homomorphism between the X-algebras [Bl7] associated with M and N

* Such trees exist because each state is reachable (by hyper-minimality) and L(M)? is
infinite for each kernel state gq.

5 We have q1 # ¢z because M is minimal.

Hyper-Optimization for Deterministic Tree Automata 249

that h: @ — P is a bijection. Since h is bijective on Ker,; x Kery by the proven
first item, which yields |Kerys| = |Kery|, and additionally |Q| = |P|, we obtain
that |Preps| = |Pren|. Suppose that h(q) € Kery for some ¢ € Preps. Then
q ~ h(q) = plun(g)) ~ 0(un(q)) with ht(uyq)) > |Q x P| because h(q) € Kery,
where the almost equivalences are due to Lemma [I} Clearly, d(up(q)) is a ker-
nel state of M, which yields that ¢ # d(up(g)). Together with ¢ ~ d(up(q))
and ¢ € Preys, these facts contradict the hyper-minimality of M by Theo-
rem [2l It remains to prove that h is injective on Prey; x Prep, which due to
|Preps| = |Pren| also proves that h is surjective. For the sake of a contradiction,
let g1, g2 € Prey be such that g1 # g2 but h(q1) = h(gz). Using Lemma 1] we ob-
tain g1 ~ h(q1) = h(gz2) ~ q2, which together with ¢; # g2 contradicts the hyper-
minimality of M by Theorem [2] Consequently, & is bijective on Prejs x Prey.
Now we return to the final missing objective, which requires us to show that
h(d(s)) = u(h(s)) if 6(s) € Preps. Recall that §(s) ~ pu(h(s)) for all s € X(Q).
Moreover, if §(s) € Pre(M), then h(d(s)) € Prey by the results of the previous
paragraph and additionally h(6(s)) ~ 6(s) ~ p(h(s)) by Lemmal[l} Consequently,
we have a preamble state h(d(s)) of N that is almost equivalent to p(h(s)). Since
N is hyper-minimal, we have h(d(s)) = p(h(s)) by Theorem O

The previous theorem states that two almost equivalent hyper-minimal DTAs
are indeed very similar. They have a bijection between their states that pre-
serves the distinction between preamble and kernel states. Moreover, via this
bijection the two DTAs behave equally (besides acceptance) on the preamble
states and isomorphically on the kernel states. Thus, two such DTAs can only
differ in two aspects, which mirror the corresponding aspects for deterministic
finite-state string automata [2]:

1. the finality (i.e., whether the state is final or not) of preamble states, and
2. transitions from exclusively preamble states to a kernel state.

4 Computing the Number of Errors

Now we can compute the number of errors made by a particular hyper-minimal
DTA N that is almost equivalent to the reference DTA M. In addition, we show
how to obtain a hyper-minimal DTA that commits the least number of errors
among all almost equivalent hyper-minimal DTAs. More precisely, let N be
hyper-minimal and almost equivalent to M, which itself is not necessarily hyper-
minimal. Recall that E = L(M) & L(N) is the set of error trees. We partition E
into (Ep)pep, where E, = L(N)? N E for every p € P. In other words, we as-
sociate each error tree t € E with the state p(f). In the following development,
we distinguish errors associated to preamble and kernel states. Theorem [3|shows
that the preamble-kernel error distinction is stable among all almost equiva-
lent hyper-minimal DTASE| Finally, [I3], Sect. 4] shows how to obtain one hyper-
minimal DTA N’ that is almost equivalent to M. Roughly speaking, we identify

8 An error associated to a preamble state of N can only be associated to a preamble
state of another almost equivalent hyper-minimal pTa N’. Naturally, the error can
be avoided in N’, but the same error cannot be associated to a kernel state of N’.

250 A. Maletti

the almost equivalence ~ on M and then merge each preamble state that is
almost equivalent to another state into this state. For every two different states
q, q, € Q, the DTA merge(Ma q— ql) is (Q - {q}v Ea 6/3 F— {q}) where 6/(8) = q/
if 6(s) = q and 0'(s) = d(s) otherwise for every s € X(Q — {q}). We start with
the errors E, associated to a preamble state p € Prey. Since the preambles of
N and N’ are transition-isomorphic by Theorem |3 we can essentially compute
with N’ and only need to remember that the preamble states of N and N’ can
differ in finality.

Lemma 4 (see [13]). Let N’ = merge(M,q — ¢') for some q ~ ¢ with
[q) € Prepr. Then L(N')T = L(M)TUL(M)? . If N” is the DTA returned by [15]
and B € {[q] | ¢ € Q} is such that B C Prey, Then L(N")2 =], g L(M)1.

By Theorem [3| there exists a mapping h: P/ — P such that N’ and N are
transition-isomorphic on their preambles via h. Together with Lemma [4 we thus
have

L(N)h(‘IB) = L(N")®® = U L(M)4
gEB
for every B € {[q] | ¢ € Q} with B C PreME] Next, we demonstrate how to
compute a, = |L(M)?| for each state ¢ € Preyy.

Proposition 5. For every q € Prey,

0 = 5 (1)

o(q1,--,qx) €67 ()NZ(Q) =1

It is clear that the equations in Proposition [f| yield a recursive algorithm that
runs in time O(|M|), if we do not recompute already computed values. With the
help of Lemma [f] and Proposition [5} we can now compute the number of errors
made due to the finality of preamble states. For every qg € Preys, we know
that its block B C Prey; consists of exclusively preamble states. Consequently,
Lemma [4] can be applied to compute the number of errors associated to ¢p.

Theorem 6. For every p € Prey,

5, = | Zeclw-roa #PEC
g€d(u,)nF Gq Otherwise,

where u, € L(N)P is arbitrary.
Proof. The result follows from Theorem [3] and Lemma [4] O

Since L(N)? and L(N)? are disjoint if p # p/, the total number of errors
associated to preamble states is > p,. |Ep|. To obtain the minimal number of

errors, we select the finality of p such that E, is minimal (see Algorithm E|

" The union is actually disjoint as (L(M)?),cq is a partition of T’s.
8 Clearly, the DTA remains hyper-minimal and almost equivalent as only a finite num-
ber of errors is introduced by making p final or non-final.

Hyper-Optimization for Deterministic Tree Automata 251

Finally, we need to compute the number > .. |Ep| of errors associated
to kernel states. Recall that N’ is the hyper-minimal DTA returned by [I3].
Theorem shows that the preambles of N and N’ are transition-isomorphic and
the kernels are DTA-isomorphic, but the transitions from exclusively preamble
to kernel states are not covered in this characterization. As in the string case,
we thus try to attribute errors to these preamble-to-kernel transitions because
we know what happens before (transition-isomorphic on preamble) and what
happens afterwards (DTA-isomorphic on the kernel). However, in the tree case
this is complicated by the fact that such transitions can be taken several times
in a single error tree as the next example demonstrates.

Ezample 7. Consider the bTA M = (Q, X, {¢a},) such that Q = {¢a,¢s, ¢}
Y ={a®, 30 5@} and

6(a)=q. 0(B)=qs (o(gs,48) =q 0(0(q,q)) = qa

for all (¢,q') € Q*—{(qs,qp)}. Obviously, L(M) = Tx. — {3, 0(53, 8)}. An almost
equivalent hyper-minimal DTA is N = ({T}, X, {T},), where p is such that
p Y (T) = X({T}). Since L(N) = T, we have that E = {3,0(8,3)}. However,
when N processes the error tree o(f,), then it will take two transitions (both
times §(5) = T) that switch from exclusively preamble states (no states in this
case as « is nullary) to the kernel state T.

We solve this problem by selecting the left-most occurrence of such a tran-
sition and disregarding all other occurrences to avoid counting duplicates. To
this end, we first need to introduce positions. Let A be a ranked alphabet and
t € TA(Q). The set pos(t) C IN* of positions in t is defined by pos(q) = {¢}
for every ¢ € Q and pos(o(t1,...,tx)) = {e} U {iw | i € [k],w € pos(t;)} for
all 0 € A and ty,...,t, € Ta(Q). For every w € pos(t), we write t|,, for the
subtree of ¢ that is rooted in position w. A position w; € pos(t) is to the left
of another position ws € pos(t), written wy C we, if w1 < we and wy £ wa,
where < and < are the lexicographic and prefix order on IN*, respectively. In a
context ¢ € C'x(Q) the unique position of O is denoted by posg(c). Now we can
define the set LC of left-most contexts, which have no subtree to the left of (the
occurrence of) O that is recognized (by M) in a state that is almost equivalent
to a kernel state, as follows:

LC = {c € Cx | Vw € pos(c): w T posg(c) implies [§(c|y)] C Prea} .

With the help of the set LC we can now make the error attribution more formal.
We already know that each remaining error tree has a special transition that
switches from exclusively preamble states to a kernel state. Moreover, we will
now prove that every such error tree decomposes uniquely into a context of LC,
which encodes the part of the tree that is processed after a special transition,
and a tree that uses a special transition at the root. Due to the definition of LC,
we know that the decomposition selects exactly the left-most occurrence of a
special transition.

252 A. Maletti

Lemma 8. Every error tree t € E, with p € Kery decomposes uniquely via
t = clu] into a left-most context ¢ € LC and u € Tx such that p(u) € Kery, but
p(ulw) € Pren for all w € pos(u) with w # ¢.

Proof. Since p(t) € Kery, there must exist positions w € pos(t) such that
w(tly) € Kery but pu(t|w,) € Prey for all wv € pos(t) with v # e. Let w be
the left-most such position (i.e., a minimal such position with respect to C).
It remains to show that ¢[0],, € LC, where ¢[0],, denotes the context obtained
from ¢ by replacing the subtree rooted at w by O. By the selection of w, all
positions v = w are such that u(t|,) € Prey. Thus, [§(t],)] € Preys by Theorem|[3]
and the earlier discussion, which proves that ¢[0],, € LC. Thus, we obtain the
suitable decomposition t = c[t|,] with ¢ = ¢[0],,. The uniqueness is also easy
to show as each other suitable position w’ obeys w C w’ and u(t|,) € Kery,
which by Lemma [l| yields that 6(¢|,,) ~ ¢ for some ¢ € Kerys. Consequently,
t[0]w ¢ LC for all other suitable positions w’ # w. O

The decomposition ¢ = c[u] already hints at the next steps. We can compute
0(u) and p(u), for which we know that §(u) ~ p(u) by Lemma [1] The error is
then made between those two states, so ¢ € Esu),uw) = L(M)sw) © LIN) uw)
is an error context of LC. To make the computation even simpler, we observe
that p(u) € Kery, which with the help of Theorem [3| yields that there exists a
state ¢ € @ such that ¢ = p(u). Consequently, it is sufficient to compute Ej(,) 4
for all §(u) ~ g. In fact, for all ¢ ~ ¢’ we know that E, , is finite, but we need
the exact cardinality d(g, ¢’) of the subset E, , NLC. More exactly, for all ¢ ~ ¢,
let d(q,q") = |E4,¢ NLC| and

CM:CE(Q)OZ(QU{D}) and 6M:CMQCZ(PI‘8M) R

of which the elements are called transition and preamble transition contexts, re-
spectively. To compute d, we adjust the straightforward counting procedure [15].

Lemma 9. For all ¢ ~ ¢ we have d(q,q) =0 and

Aa.q) = (D g, ag, - dO(cla)). 3(cla))) +
ceaM
c=0(q1,,qi,0,@i+15-++,qk)
lq1];---,[q:]CPren

{1 ifqe Fzorqg € F

0 otherwise.

Proof. The first equation is trivial and the second equation straightforwardly
formalizes |E, |, but only counts the error contexts of LC. More precisely, the
final summand checks whether 0 € LC is in the difference E, ;. Every other
difference context ¢’ = [¢] € E, , consists of (i) a context ¢ obtained from a
transition context ¢ = o(q1, ..., ¢, 0, ¢is1,- - -, qr) of Cas by replacing the states
q1s---,qx € Q by t; € L(M)® ... tx € L(M)%, respectively, which yields the
factors ag,, . . ., aq,, and (ii) an error context ¢ for the states §(c[g]) and d(c[¢']),
which yields the factor d(d(c[q]),d(c[¢’])). We can immediately restrict ourselves
to preamble transition contexts because d(c[q]) = d(c[¢']) by [13, Prop. 18],

Hyper-Optimization for Deterministic Tree Automata 253

which yields that d(5(c[q]),5(c[q’])) = 0, for all ¢ € Cpr — Cpr. Moreover, if the
states q1, ..., ¢; to the left of O are not such that [¢1],...,[¢;] C Preys, then the
context ¢’ is not in LC and thus discarded. a

Since we now have a recursive procedure to compute d, let us quickly analyse
its time complexity. The analysis is based on the idea that entries in d are never
recomputed once they have been computed once.

Corollary 10 (of Prop. [5|and Lm. E[) For all ¢ ~ ¢’ we can compute d(q,q")
in time O(m - n) where m = |M| and n = Q).

Proof. We can trivially compute all a, with ¢ € Prejs in time O(m) as already
mentioned, and we can compute each entry in d in time O(%) without the time
needed to compute the recursive calls because there are Y, o, k - |Zx| - |Q[*!
transition contextsﬂ Since there are at most n? entries in d, we obtain the stated
time-bound. O

Thus, we can now identify and count the errors caused in kernel states of M.
To this end, we look at all the transitions that switch from exclusively preamble
to kernel states and compute the number of errors induced by this transition.
Let s = o(p1,...,px) € X(Prey) and p(s) € Kery be such a transition. The
set Fs of errors caused by this transition s is

Ey,=En{clo(ti,...,ty)] | ¢ € L(N)u NLC, Vi € [K]: t; € L(N)"'} |

which contains all errors that use the transition s as the left-most special tran-
sition.

Lemma 11. For every s = o(p1,...,pr) € X(Pren) with u(s) € Kery

|Es| = €s,g = Z Qg+ ag - d(8(o(qr, ... aqw)), q)
q1€[0(upy)], ar €[5 (up,)]

where u, € L(N)P for every p € Preny and g € Kerps is such that ¢ = u(s).

Proof. Let N' = (P, X, i/, G") be the DTA returned by [I3], and for every i € [k
let p} = p'(up,). Then L(N)?: = L(N')Pi = que[d(up,.)] L(M)% by Theorem
and Lemma Moreover, L(N),) = L(M), by assumption. Together with these

statements, the equation is a straightforward implementation of the definition
of F. a

By Lemma [8] the sets E for suitable s € X(Prey) are pairwise disjoint, so
the errors just add up. In addition, any state p € P such that p ~ p(s) is a valid
transition target, so to optimize the errors, we can simply select the transition
target p € P with p ~ pu(s) that minimizes the number of caused errors. In
summary, this yields our main theorem (and Algorithm .

9 This actually needs another trick. Given a transition o(q1, ..., q) € X(Q) we obtain
k transition contexts ci,...,cr by replacing in turn each state qi,...,qr by O. To
avoid a multiplication effort of O(k) we once compute ag, -. . .-aq, and then compute

the value for the context ¢; by dividing this product by the value ay,.

254 A. Maletti

Algorithm 1 Optimal choice of preamble-to-kernel transitions.
Require: a minimal DTA M, its almost equivalence ~ C @ X @, and
an almost equivalent hyper-minimal bta N
Return: an almost equivalent hyper-minimal DTA N minimizing |L(M) & L(N)]
select up € L(N)P for all p € Pren
20 G {p € P| X cisup—r % < 2qels(up)inr %}
for all s € X(Prey) with pu(s) € Kery do
4: select p € P such that p = argmin, (e;’q | g € Kernr,q ~ ,u(s))
u(s) «~p // reroute transition

6: return N

Theorem 12. Let m = |[M| and n = |Q|. For every hyper-minimal DTA N that
is almost equivalent to M we can determine |L(M) & L(N)| in time O(m - n).
Moreover, we can compute a hyper-minimal DTA N’ that minimizes the num-
ber |L(M) © L(N')| of errors in time O(m - n).

Future Work

Recently, [10] showed results in the string case for other regular languages of
allowed differences. These should translate trivially to tree automata. The dif-
ference in the number of errors between the optimal dta and the worst dta can be
exponential, so the optimization can avoid a large number of errors. A practical
evaluation for dta remains future work, but a simple experiment was already
conducted in [I5, Sect. 6] for the string case. A reviewer suggested to consider
the sum of the error tree sizes instead of the simple count of error trees, but
the optimization of that criterion seems closely related to bin packing already
in the acyclic case (i.e., the case where the automaton has no kernel states),
but the details should still be worked out. In addition, the reviewer suggested to
consider those languages L C T, for which the minimal dta is hyper-minimal
and optimal and in addition no other dta of strictly smaller size recognizes a tree
language that is almost equivalent to L. Clearly, such tree languages exist (e.g.,
Tx), but the author is unaware of the particular properties of those languages.

References

1. Andrew Badr. Hyper-minimization in O(n?). Int. J. Found. Comput. Sci.,
20(4):735-746, 2009.

2. Andrew Badr, Viliam Geffert, and Ian Shipman. Hyper-minimizing minimized
deterministic finite state automata. RAIRO Theor. Inf. Appl., 43(1):69-94, 2009.

3. Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Loding, Florent Jacque-
mard, Denis Lugiez, Sophie Tison, and Marc Tommasi. Tree automata: Techniques
and applications. http://tata.gforge.inria.fr/, 2007. release October, 12.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Hyper-Optimization for Deterministic Tree Automata 255

Pawel Gawrychowski and Artur Jez. Hyper-minimisation made efficient. In Proc.
84th Int. Symp. Mathematical Foundations of Computer Science, volume 5734 of
LNCS, pages 356-368. Springer, 2009.

Pawel Gawrychowski, Artur Jez, and Andreas Maletti. On minimising automata
with errors. In Proc. 36th Int. Conf. Mathematical Foundations of Computer Sci-
ence, volume 6907 of LNCS, pages 327-338. Springer, 2011.

Ferenc Gécseg and Magnus Steinby. Tree Automata. Akadémiai Kiado, Budapest,
1984.

Ferenc Gécseg and Magnus Steinby. Tree languages. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Languages, volume 3, chapter 1, pages
1-68. Springer, 1997.

Gregor Gramlich and Georg Schnitger. Minimizing nfa’s and regular expressions.
J. Comput. System Sci., 73(6):908-923, 2007.

Johanna Hogberg, Andreas Maletti, and Jonathan May. Backward and forward
bisimulation minimization of tree automata. Theoret. Comput. Sci., 410(37):3539—
3552, 2009.

Markus Holzer and Sebastian Jakobi. From equivalence to almost-equivalence, and
beyond — minimizing automata with errors. In Proc. 16th Int. Conf. Developments
in Language Theory, volume 7410 of LNCS, pages 190-201. Springer, 2012.
Markus Holzer and Andreas Maletti. An nlogn algorithm for hyper-minimizing
a (minimized) deterministic automaton. Theoret. Comput. Sci., 411(38-39):3404—
3413, 2010.

John E. Hopcroft. An nlogn algorithm for minimizing states in a finite automaton.
In Zvi Kohavi and Azaria Paz, editors, Theory of Machines and Computations,
pages 189-196. Academic Press, 1971.

Artur Jez and Andreas Maletti. Hyper-minimization for deterministic tree au-
tomata. In Proc. 17th Int. Conf. Implementation and Application of Automata,
volume 7381 of LNCS, pages 217—228. Springer, 2012.

Andreas Maletti and Daniel Quernheim. Hyper-minimisation of deterministic
weighted finite automata over semifields. In Proc. 13th Int. Conf. Automata and
Formal Languages, pages 285-299. Nyiregyhéza College, 2011.

Andreas Maletti and Daniel Quernheim. Optimal hyper-minimization. Int. J.
Found. Comput. Sci., 22(8):1877-1891, 2011.

Mehryar Mohri. Finite-state transducers in language and speech processing. Com-
put. Linguist., 23(2):269-311, 1997.

Maurice Nivat and Andreas Podelski. Tree Automata and Languages. Studies in
Computer Science and Artificial Intelligence. North-Holland, 1992.

Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accurate,
compact, and interpretable tree annotation. In Proc. 44th Ann. Meeting of the
ACL, pages 433-440. Association for Computational Linguistics, 2006.

Jacques Sakarovitch. Rational and recognisable power series. In Manfred
Droste, Werner Kuich, and Heiko Vogler, editors, Handbook of Weighted Automata,
EATCS Monographs on Theoretical Computer Science, chapter IV, pages 105-174.
Springer, 2009.

Sven Schewe. Beyond hyper-minimisation — minimising DBAs and DPAs is NP-
complete. In Proc. 30th Int. Conf. Foundations of Software Technology and The-
oretical Computer Science, volume 8 of LIPIcs, pages 400—411. Schloss Dagstuhl,
2010.

Sheng Yu. Regular languages. In Grzegorz Rozenberg and Arto Salomaa, editors,
Handbook of Formal Languages, volume 1, chapter 2, pages 41-110. Springer, 1997.

	Hyper-Optimization for Deterministic Tree Automata

