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Abstract. Several tree transformation devices that are relevant in nat-
ural language processing are presented with a focus on the dependencies
that they are able to capture. In many cases, the consideration of the
dependencies alone can be used to provide a high-level explanation of
the short-comings of tree transformation devices and allows surprising
insights into their structure.

1 Motivation

In the subfield of machine translation [31], which is concerned with the automatic
translation of natural language texts, it was recently realized that string-based
systems [50] cannot easily compute certain important translations [48,1,49,9] and
that the structural information provided by modern and reliable parsers [11,28,27,6]
actually helps the translation process [53]. This development created renewed in-
terest in tree automata [5,8] and tree transducers [32,14], which are finite-state
devices that compute tree languages and tree transformations, respectively. How-
ever, there does not exist a tree translation model that is universally accepted
and used in the machine translation task. On the contrary, many different models
with different expressive power are used.

The first formal tree transducer model was the top-down tree transducer
investigated by Thatcher [46] and Rounds [41]. Several other models such as

– bottom-up tree transducers [47],
– attributed tree transducers [20,30] and pebble tree transducers [38],
– macro tree transducers [12,18] and modular tree transducers [19],
– monadic second-order logic tree transducers [16,7], and
– tree bimorphisms [3] and various models with synchronization [40]

were introduced later and have been investigated in the theory of formal lan-
guages. In general, tree transducers process an input tree and nondeterministi-
cally generate an output tree. In the process, they can move complete subtrees
or decide to process subtrees differently based on an internal state. Shieber [42]
and others have argued that top-down tree transducers are generally inadequate
for linguistic tasks. In this survey we will focus on three models that received
attention from the machine translation community, which are:
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– extended top-down tree transducers [13,2,29,26],
– extended multi bottom-up tree transducers [33,3,21,22,15,35], and
– synchronous tree-sequence substitution grammars [40,51,52,45].

We review these three models and investigate their expressive power from
a very abstract viewpoint by looking only at the type of dependencies that
they create. It turns out that the models, which indeed have successively more
expressive power, can already be distinguished easily based on the types of de-
pendencies that they can compute. Informally, a dependency records that a
certain part of the output tree was created in accordance with a particular part
of the input tree (or vice versa). This influence is informally called dependence,
synchronization, or contribution [17]. Formally, we establish dependencies using
the derivation mechanism, which is typically term rewriting [4]. However, for our
purposes ‘synchronous substitution’ is much more suitable since the synchroniza-
tion links are an explicit representation of our dependencies. Thus, we adjust the
derivation process to use synchronous substitution keeping all synchronization
links during the whole derivation.

We investigate the type of dependencies each of our three mentioned tree
transformation models can compute. It shows that all of them enjoy a certain hi-
erarchy property that can be used to quickly show that transformations that have
crossing dependencies cannot be computed by any of our models. This allows us,
for example, to set all three models apart from synchronous tree-adjoining gram-
mars [44,42,43], which can compute crossing dependencies. Moreover, a stricter
version of the hierarchy property also allows us to distinguish our three mod-
els, which we demonstrate with an example transformation in each case. These
example transformations are taken from the literature, but instead of present-
ing the full proof from the literature, we simply “add” natural dependencies to
the transformation and then show that no dependency computable by a certain
model is compatible with these dependencies. This approach highlights the es-
sential and illustrative part of the formal proof and avoids the technical part of
the proof, which is still needed to justify the initial dependencies. The interested
reader can find these technical parts in the cited literature or can prove them via
a case analysis. Thus, the approach pursued here does not offer full proofs, but
it will be obvious from the examples that those dependencies should be present.

The survey is structured as follows: Section 2 recalls basic notions and nota-
tion. In each of the next three sections (Sections 3–5) we recall one of our three
tree transformation models in order of increasing expressive power (i.e., the order
in which they are mentioned above). Section 3 also contains the definitions of the
hierarchy properties of dependencies that we will investigate. We conclude with
a short summary, which is presented as a table showing the identified properties
of dependencies (including those for synchronous tree-adjoining grammars).

2 Notation

The set of all nonnegative integers is IN. A relation ρ from a set S to a set T
is a subset ρ ⊆ S × T . The set of all finite words over S is S∗, where ε is the
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empty word. The concatenation of the words v, w ∈ S∗ is v.w or simply vw. The
length of a word w ∈ S∗ is denoted by |w|. An alphabet Σ is a nonempty and
finite set, of which the elements are called symbols. A ranked alphabet is a pair
(Σ, rk) consisting of an alphabet Σ and a rank mapping rk: Σ → IN. For every
k ∈ IN, let Σk = rk−1(k). We typically write σ(k) to indicate that rk(σ) = k.
A doubly ranked alphabet simply has a rank mapping rk: Σ → IN2. We use the
same notations for ranked and doubly ranked alphabets. Moreover, we typically
assume that the mapping rk is clear from the context.

The set TΣ(S) of Σ-trees with leaf labels S is the smallest set T such that
S ⊆ T and σ(t1, . . . , tk) ∈ T for every σ ∈ Σk and t1, . . . , tk ∈ T . We generally
assume that Σ ∩ S = ∅, and thus we write ε() simply as ε for every ε ∈ Σ0.
Moreover, we write αk(t) for α(· · ·α(t) · · · ) containing k occurrences of α in
the abbreviated list. We write TΣ for TΣ(∅). The set pos(t) ⊆ IN∗ of positions
of t ∈ TΣ(S) is inductively defined by pos(s) = {ε} for every s ∈ S and

pos(σ(t1, . . . , tk)) = {ε} ∪
k⋃
i=1

{iw | w ∈ pos(ti)}

for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(S). The positions pos(t) are totally or-
dered by the lexicographic order v on IN∗ and the prefix order ≤ on IN∗. Let
t, t′ ∈ TΣ(S) and w ∈ pos(t). The label of t at w is t(w), and the w-rooted subtree
of t is t|w. Formally, s(ε) = s|ε = s for every s ∈ S and

t(w) =

{
σ if w = ε

ti(v) if w = iv and i ∈ IN
and t|w =

{
t if w = ε

ti|v if w = iv and i ∈ IN

where t = σ(t1, . . . , tk) for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(S). For every
L ⊆ S, we let posL(t) = {w ∈ pos(t) | t(w) ∈ L} and poss(t) = pos{s}(t) for
every s ∈ S. The tree t is linear in L if |posl(t)| ≤ 1 for every l ∈ L. Moreover,
var(t) = {s ∈ S | poss(t) 6= ∅}. The expression t[u]w denotes the tree that is ob-
tained from t ∈ TΣ(S) by replacing the subtree t|w at w by u ∈ TΣ(S). We extend
this notation to sequences u = u1, . . . , un of trees and positions w = w1, . . . , wn
of t that are pairwise incomparable with respect to the prefix order. Thus, t[u]w
denotes the tree obtained from t by replacing the subtree t|wi

at wi by ui for all
1 ≤ i ≤ n.

3 Extended Top-down Tree Transducer

Our first model is the (linear and nondeleting) extended top-down tree trans-
ducer [13,2,29,26] (xtop), which is based on the classical top-down tree trans-
ducer [41,46]. A top-down tree transducer is a special xtop, in which all left-hand
sides of rules contain exactly one input symbol. In general, the left-hand side of
an xtop can contain any number of input symbols [34,37].

We present a syntactic version here that is closer to synchronized gram-
mars [10], but equally expressive as the classical version [41,46,29,26] with term
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rewrite rules. In general, equal states in the left and right-hand side of a rule are
linked. In a derivation, they will be replaced at the same time. In a rule of an
xtop, these links are bijective.

Definition 1 (see [37, Sect. 2.2]). A (linear and nondeleting) extended tree
transducer (xtop) is a tuple (Q,Σ,∆, I,R), where

– Q is a finite set of states,
– Σ and ∆ are ranked alphabets of input and output symbols,
– I ⊆ Q is a set of initial states, and
– R ⊆ TΣ(Q)×Q× T∆(Q) is a finite set of rules such that l and r are linear

in Q and var(l) = var(r) for every (l, q, r) ∈ R.

In the following, let M = (Q,Σ,∆, I,R) be an xtop. As already mentioned,
M is a top-down tree transducer if for every (l, q, r) ∈ R there exist σ ∈ Σk and
q1, . . . , qk ∈ Q such that l = σ(q1, . . . , qk). To simplify the notation, we often

write rules as l
q

— r instead of (l, q, r).

Example 2 (see [3, Sect. 3.4]). Let

Mbin = (Q,Σ,Σ, {?}, R) and Mdebin = (Q,Σ,Σ, {?}, R′)

be the xtop with

– Q = {?, p, q, r},
– Σ = {σ(3), δ(2), α(1), ε(0)},
– R, which contains the following rules for all x ∈ {q, p, r}:

δ(p, ?)
?

— δ(p, ?) σ(p, q, ?)
?

— δ(p, δ(q, ?)) σ(p, q, r)
?

— δ(p, δ(q, r))

α(x)
x
— α(x) ε

x
— ε ,

– and R′, which contains the following rules for all x ∈ {q, p, r}:

δ(p, ε)
?

— δ(p, ε) δ(p, δ(q, ?))
?

— σ(q, p, ?) δ(p, α(q))
?

— δ(p, α(q))

α(x)
x
— α(x) ε

x
— ε .

Clearly, Mbin is even a top-down tree transducer, whereas Mdebin is not a top-
down tree transducer. The rules of Mbin are illustrated in Fig. 1.

Next, we move to the semantics of an xtopM , which is given by synchronous
substitution. While the links in an xtop rule are implicit and established due
to occurrences of equal states, we need an explicit linking structure for our
sentential forms. In addition, these links will form the dependencies that we are
interested in. To this end, we store a relation between positions of the input and
output tree, which encodes the links. Let L = P(IN∗×IN∗) = {S | S ⊆ IN∗×IN∗}
be the set of all link structures. First, we define general sentential forms. Roughly
speaking, we have an input tree and an output tree, in which positions are linked.
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σ

p q ?

?
—

δ

p δ

q ?

σ

p q r

?
—

δ

p δ

q r

δ

p ?

?
—

δ

p ?

α

x

x
—

α

x
ε x

— ε

Fig. 1. Example rules of the xtop Mbin of Ex. 2.

Definition 3 (see [23, Sect. 3]). An element 〈ξ,D, ζ〉 ∈ TΣ(Q)×L× T∆(Q)
is a sentential form if v ∈ pos(ξ) and w ∈ pos(ζ) for every (v, w) ∈ D.

Now we lift the implicit link structure in an xtop rule into an explicit link
relation. This link relation will then be used in the derivation process once the
rule is applied to determine the next links in the obtained sentential form.

Definition 4. Let l
q

— r ∈ R be a rule, and let v, w ∈ IN∗. The rule’s link

structure linksv,w(l
q

— r) ∈ L is

linksv,w(l
q

— r) =
⋃
p∈Q
{(vv′, ww′) | v′ ∈ posp(l), w

′ ∈ posp(r)} .

Note that linksv,w(l
q

— r) is a bijective relation on the state occurrences. The
derivation process is started with a simple sentential form 〈q, {(ε, ε)}, q〉 consist-
ing of the input tree q and the output tree q for some initial state q ∈ I and the
trivial link relating both states. This is clearly a link structure that is bijective

between state occurrences. Next, we (nondeterministically) apply a rule l
q

— r
to a pair of linked occurrences of the state q. Such an application replaces the
linked occurrences of q by the left and right-hand side of the rule. The implicit
links in the rule are added to the (explicit) link structure to obtain a new sen-
tential form. This yields another link structure that is bijective between state
occurrences. Since we are interested in the dependencies created during deriva-
tion, we preserve all links and never remove a link from the linking structure.
Note that this preservation causes that the link structure need not be functional
on all positions because we keep the links that were used in the replacement pro-
cess. This replacement process is repeated until no linked occurrences of states
remain.

Definition 5 (see [23, Sect. 3]). Given two sentential forms 〈ξ,D, ζ〉 and
〈ξ′, D′, ζ ′〉 such that D and D′ are bijective on state occurrences, we write

〈ξ,D, ζ〉 ⇒M 〈ξ′, D′, ζ ′〉
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if there exists a rule l
q

— r ∈ R and an input position v ∈ posq(ξ) such that

– ξ′ = ξ[l]v and ζ ′ = ζ[r]w, where w ∈ posq(ζ) is the unique q-labelled position
such that (v, w) ∈ D, and

– D′ = D ∪ linksv,w(l
q

— r).

As usual ⇒∗M is the reflexive and transitive closure of ⇒M . The xtop M com-
putes the dependencies dep(M) ⊆ TΣ × L× T∆, which are given by

dep(M) = {〈t,D, u〉 ∈ TΣ × L× T∆ | ∃q ∈ I : 〈q, {(ε, ε)}, q〉 ⇒∗M 〈t,D, u〉} .

Moreover, the xtop M computes the tree transformation M ⊆ TΣ × T∆, which
is given by M = {(t, u) | (t,D, u) ∈ dep(M)}.

? ? ⇒M

δ

p ?

δ

p ?
⇒M

δ

p σ

p q ?

δ

p δ

p δ

q ?

⇒M

δ

ε σ

p q ?

δ

ε δ

p δ

q ?

⇒M

δ

ε σ

α

p

q ?

δ

ε δ

α

p

δ

q ?

⇒M

δ

ε σ

α

ε

q ?

δ

ε δ

α

ε

δ

q ?

⇒M

δ

ε σ

α

ε

q σ

p q r

δ

ε δ

α

ε

δ

q δ

p δ

q r

⇒M

δ

ε σ

α

ε

ε σ

p q r

δ

ε δ

α

ε

δ

ε δ

p δ

q r

⇒3
M

δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

Fig. 2. Example derivation where M = Mbin (see Ex. 6).
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Example 6. Let M = Mbin be the xtop of Ex. 2, and let δ(ε, σ(α(ε), ε, σ(ε, ε, ε)))
be the input tree. Selecting the only initial state ?, we can obtain the derivation
that is displayed in Fig. 2. Overall δ(ε, δ(α(ε), δ(ε, δ(ε, δ(ε, ε))))) is a translation
of the input tree. The translations of Mbin and Mdebin of Ex. 2 are illustrated
in Fig. 3.

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

⇒∗Mbin

δ

t1 δ

t2 δ

t3 δ

t4 δ

tn−3 δ

tn−2 δ

tn−1 tn

⇒∗Mdebin

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

Fig. 3. Translations of [3] that are individually computed by the xtopMbin and Mdebin.

Since every translation (t, u) ∈ M is ultimately created by (at least) one
successful derivation, we can inspect the links in the derivation process to ex-
hibit the dependencies. Roughly speaking, the links establish which parts of
the output tree were generated due to a particular part of the input tree. This
correspondence is called contribution in [17].

Example 7. Recall the xtop Mbin of Ex. 2 and the derivation in Ex. 6, which
is displayed in Fig. 2. Looking at the last sentential form, which is displayed in
Fig. 4 for easier reference, its linking structure is

D = {(ε, ε), (1, 1), (2, 2), (21, 21), (211, 211), (22, 221), (23, 222),

(231, 2221), (232, 22221), (233, 22222)} ,

which represents the dependencies introduced by the rule applications.

Next, let us observe some important properties of the computed dependen-
cies. To this end, we disregard the actual input and output trees and say that a
linking structure D ∈ L is computed by M if there exist an initial state q ∈ I
and trees t ∈ TΣ and u ∈ T∆ such that 〈q, {(ε, ε)}, q〉 ⇒∗M 〈t,D, u〉. The set of
all linking structures computed by M is links(M).

Definition 8. A linking structure D ∈ L is input hierarchical if for every
(v1, w1), (v2, w2) ∈ D with v1 < v2 we have w2 6< w1 and there exists (v1, w

′
1) ∈ D

such that w′1 ≤ w2. It is strictly input hierarchical if additionally
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δ

ε σ

α

ε

ε σ

ε ε ε

δ

ε δ

α

ε

δ

ε δ

ε δ

ε ε

Fig. 4. Dependencies computed during the derivation of Fig. 2.

– w ≤ w′ or w′ ≤ w for all (v, w), (v, w′) ∈ D and
– v1 6< v2 for all (v1, w1), (v2, w2) ∈ D with w1 6≤ w2.

Roughly speaking, input hierarchical linking structures have no crossing links
(or dependencies). More formally, let (v, w), (v′, w′) ∈ D be such that v < v′ and
w′ < w. Then (v, w) and (v′, w′) are crossing links (or dependencies). Clearly,
such links cannot exist in an input hierarchical linking structure. The same no-
tions can be defined for the output side by requiring the corresponding properties
for the linking structure D−1. For example, D is strictly output hierarchical if
D−1 is strictly input hierarchical. Moreover, it is strictly hierarchical if it is both
strictly input hierarchical and strictly output hierarchical. Finally, a set D ⊆ L
of linking structures has a certain hierarchical property if each element has it.

Example 9. The linking structure D of Ex. 7 is strictly hierarchical.

In addition, we also need a property that guarantees that there are enough
links. Roughly speaking, there should be an integer that limits the distance
between links.

Definition 10. A set D ⊆ L of link structures has bounded distance if there
exists an integer k ∈ IN such that for every D ∈ D we have that

– for all (v, w), (vv′, w′) ∈ D with |v′| > k there exist v1, v2 ≤ v′ and w1, w2

such that |v1| ≤ k ≥ |v′| − |v2| and (vv1, w1), (vv2, w2) ∈ D, and
– for all (v, w), (v′, ww′) ∈ D with |w′| > k there exist v1, v2 and w1, w2 ≤ w′

such that |w1| ≤ k ≥ |w′| − |w2| and (v1, ww1), (v2, ww2) ∈ D.

In other words, between any two source- or target-nested links of large dis-
tance, there should exist links whose distance to the original links is small. This
yields that the distance to the next nested link (if such a link does exist) can
be at most k. Note however, that the above property does not require a link
every k symbols. This property would also be true for all xtop, but it would no
longer be true for all mbot, which are discussed in the next section. To keep the
presentation simple, we only discuss ‘bounded distance’ as introduced.
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Example 11. The set links(Mbin), where Mbin is the xtop of Ex. 2, has bounded
distance. For the input side, the distance is bounded by 1, and for the output
side, it is bounded by 2.

Lemma 12. The set links(M) computed by an xtop M is strictly hierarchical
with bounded distance.

Proof. This lemma follows trivially from Definition 5.

δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

Fig. 5. Example translation of [3] with dependencies, where the inverse arrow heads
indicate that the dependencies point to any node (not necessarily the root) inside the
subtrees.

In addition, for a (linear and nondeleting) top-down tree transducer every
input position has exactly one link (i.e., the linking structures encountered with
top-down tree transducers are functional). Next, we define the notion of com-
patibility of linking structures (or dependencies). This notion will allow us to
prescribe a semantic dependency and then analyze whether a certain class of tree
transformation devices can handle such linking structures. Naturally, the imple-
mentation in a tree transformation device can add more dependencies, which
are created by the particular choice of rules. Consequently, compatibility only
requires that the given dependencies are a subset of the realized links in the
linking structure. Moreover, given a set of dependencies for a given input and
output tree, it is sufficient to be compatible to at least one dependency because
already one compatible dependency would render the translation plausible.

Definition 13. Let 〈ξ,D, ζ〉 and 〈ξ,D′, ζ〉 be sentential forms with the same
input and output trees. Then 〈ξ,D′, ζ〉 is compatible with 〈ξ,D, ζ〉 if D ⊆ D′.
Given sets L and L′ of sentential forms, L′ is compatible with L if for every
〈ξ,D, ζ〉 ∈ L there exist 〈ξ,D′, ζ〉 ∈ L′ and 〈ξ,D′′, ζ〉 ∈ L such that 〈ξ,D, ζ〉 is
compatible with 〈ξ,D′′, ζ〉.
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Figure 5 shows the composition of the tree transformations that are com-
puted by the xtop Mbin and Mdebin of Ex. 2. This example was used in [3] to
show that the class of transformations computed by xtop is not closed under
composition. In fact, assuming the dependencies indicated in Fig. 5, we can prove
this statement by observing that this set of dependencies is not compatible to
a strictly hierarchical dependence with bounded distance. Consequently, these
dependencies cannot be computed by an xtop.

Lemma 14. The dependencies depicted in Fig. 5 are not compatible with the
dependencies computed by any xtop.

Proof. Suppose that there is an xtop that computes dependencies that are
compatible with the dependencies depicted in Fig. 5. Then there exits a bound n
such that all input and output tree pairs whose σ-spine is longer than n must
have a link on this σ-spine. However, such a link together with the existing
dependencies makes it incompatible to any strictly hierarchical dependency. ut

The previous lemma also yields that the tree transformation of Fig. 5 cannot
be computed by an xtop. Actually, the difficult, but not very illustrative part
of the full proof establishes that the dependencies depicted in Fig. 5 are really
necessary. This part remains and is proved in [3].

Theorem 15 (see [3, Sect. 3.4]). The tree transformation illustrated in Fig. 5
cannot be computed by any xtop.

4 Extended Multi Bottom-up Tree Transducer

In this section, we recall the (linear and nondeleting) extended multi bottom-up
tree transducer (mbot), which was introduced in [33,3] in the shape of a particu-
lar bimorphism. The name “multi bottom-up tree transducer” seems to originate
from [21,22], where the deterministic variant of the model was rediscovered. A
more detailed presentation of various multi bottom-up tree transducers can be
found in [15], and [35] reports some results for the weighted model.

Definition 16 (see [35, Def. 2]). A (linear and nondeleting) extended multi
bottom-up tree transducer (mbot) is a system (Q,Σ,∆, I,R) where

– Q, Σ, and ∆ are ranked alphabets of states, input symbols, and output
symbols, respectively,

– I ⊆ Q1 is a subset of initial states, all of which are unary, and
– R ⊆ TΣ(Q)×Q× T∆(Q)∗ is a finite set of rules such that l is linear in Q,

rk(q) = n, and
⋃n
i=1 var(ri) ⊆ var(l) for every (l, q, r1 · · · rn) ∈ R.

For all the remaining discussions, let M = (Q,Σ,∆, I,R) be an mbot.
Clearly, any xtop is an mbot. In addition, two items deserve explicit men-
tion. First, the set Q of states is a ranked alphabet in contrast to xtop or
traditional top-down or bottom-up tree transducers [46,41,47]. Roughly speak-
ing, the rank rk(q) of a state q ∈ Q coincides with the number |r| of trees in
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δ

p ?

f
—

σ

? p ?

α

x

x
—

α

x
ε x

— ε

σ

p q ?

?
— p

σ

? q ?

σ

p q r

?
— p

δ

q r

Fig. 6. mbot rules of the mbot Mcomp of Ex. 17.

the right-hand side of all rules (l, q, r) ∈ R. For example, a nullary state has
no output trees at all and can be understood as a pure look-ahead [15] in the
input tree. Second, all initial states are unary (i.e., have exactly one output
tree). In this way, we obtain exactly one output tree and ultimately a relation
between input and output trees. To simplify the discussion, we call l and r of
a rule (l, q, r) ∈ R the left- and right-hand side, respectively. In accordance, we

sometimes write l
q

— r instead of (l, q, r).

Example 17 (see [3, Sect. 3.4]). Let Mcomp = (Q,Σ,Σ, {f}, R) be the mbot
with

– Q = {?(2), p(1), q(1), r(1), f (1)},
– Σ = {σ(3), δ(2), α(1), ε(0)}, and
– R, which contains the following rules for every x ∈ {p, q, r}:

δ(p, ?)
f
— σ(?, p, ?) σ(p, q, ?)

?
— p . σ(?, q, ?) σ(p, q, r)

?
— p . δ(q, r)

α(x)
x
— α(x) ε

x
— ε ,

where we separate trees in a sequence by full stops.

The rules of Mcomp are illustrated in Fig. 6.

Since our rules now have a more general structure, we again need to lift
the implicit link structure in an mbot rule into an explicit link relation. This
time we provide an input position and additionally as many output positions as

required. The required number is the rank of the state q in a rule l
q

— r.

Definition 18. Let l
q

— r ∈ R be a rule. Moreover, let v, w1, . . . , wn ∈ IN∗ and

w = w1 · · ·wn where n = rk(q). The rule’s link structure linksv,w(l
q

— r) ∈ L is

linksv,w(l
q

— r) =
⋃
p∈Q

n⋃
i=1

{(vv′, wiw′i) | v′ ∈ posp(l), w
′
i ∈ posp(ri)} .

Note that the inverse relation linksv,w(l
q

— r)−1 is functional on the state
occurrences. However, in general, it is not bijective, and in particular, a state
occurrence in the input might be without any link.
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The semantics is again presented using synchronous substitution. However,
this time several states in the output side of a sentential form can be linked to
the state that is replaced in the input side of the sentential side. As before, the
derivation process is started with a simple sentential form 〈q, {(ε, ε)}, q〉. Next,

we (nondeterministically) apply a rule l
q

— r to an occurrence of a state in the
input side and all its linked occurrences on the output side. Those occurrences are
replaced by the left and right-hand side of the rule, where the potentially several
trees in the right-hand side replace the linked occurrences in lexicographic order.
The final step adds the implicit links in the rule to the (explicit) link structure to
obtain a new sentential form. Note that the functionality of the inverse implicit
linking structure of a rule is lost in the sentential forms due to the preservation
of old links.

Definition 19 (see [36, Sect. 3]). Given two sentential forms 〈ξ,D, ζ〉 and

〈ξ′, D′, ζ ′〉, we write 〈ξ,D, ζ〉 ⇒M 〈ξ′, D′, ζ ′〉 if there exists a rule l
q

— r ∈ R
and an input position v ∈ posq(ξ) such that

– rk(q) = n,
– ξ′ = ξ[l]v and ζ ′ = ζ[r]w, where w = w1 · · ·wn with (i) w1, . . . , wn ∈ posq(ζ),

(ii) w1 @ · · · @ wn, and (iii) {w1, . . . , wn} = {w | (v, w) ∈ D}, and

– D′ = D ∪ linksv,w(l
q

— r).

As usual ⇒∗M is the reflexive and transitive closure of ⇒M . The mbot M com-
putes the dependencies dep(M) ⊆ TΣ × L× T∆, which are given by

dep(M) = {〈t,D, u〉 ∈ TΣ × L× T∆ | ∃q ∈ I : 〈q, {(ε, ε)}, q〉 ⇒∗M 〈t,D, u〉} .

Moreover, the mbot M computes the relation M ⊆ TΣ × T∆, which is given by
M = {(t, u) | (t,D, u) ∈ dep(M)}, and links(M) = {D | (t,D, u) ∈ dep(M)}.

Example 20. It can easily be verified that Mcomp of Ex. 17 computes the tree
transformation depicted in Fig. 5. An example derivation using Mcomp is shown
in Fig. 7.

Consequently, the tree transformation used in the previous section (see Fig. 5)
can be computed by an mbot. Figure 9 roughly sketches the dependencies cre-
ated during the computation of this transformation with the mbot Mcomp of
Ex. 17. Next, let us look at the properties of the dependencies represented in
Figs. 8 and 9.

Example 21. Figure 8 represents the sentential form 〈t,D, u〉, where

t = δ(ε, σ(α(ε), ε, σ(ε, ε, ε)))

u = σ(α(ε), ε, σ(ε, ε, δ(ε, ε)))

D = {(ε, ε), (1, 2), (2, 1), (2, 3), (21, 1), (211, 11), (22, 32), (23, 31), (23, 33),

(231, 31), (232, 331), (233, 332)} .

The linking structure D is input hierarchical and strictly output hierarchical.
The same properties also hold for the dependencies indicated in Fig. 9.
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Fig. 7. Example derivation where M = Mcomp (see Ex. 17).
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Fig. 8. Example dependency computed by Mcomp (see Ex. 17).
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δ

t1 σ

t2 t3 σ

tn−4 tn−3 σ

tn−2 tn−1 tn

σ

t2 t1 σ

t4 t3 σ

tn−2 tn−3 δ

tn−1 tn

Fig. 9. Example translation of [3] with dependencies suitable for an mbot.

The properties of the dependencies exhibited in Ex. 21 are indicative for
all dependencies computed by mbot. This is observed in the next lemma, which
follows straightforwardly from Def. 19. As usual, the finite size of the rules yields
bounded distance. Note that there can be unboundedly large parts of the input
tree without any link. For example, input subtrees created by nullary states can
have this property because the mbot does only check a regular property [24,25]
and does not produce any corresponding output.

Lemma 22. The set links(M) computed by an mbot M is input hierarchical
and strictly output hierarchical with bounded distance.

Next, we again use our knowledge about the type of dependencies that are
computable by an mbot to illustrate a tree transformation that cannot be com-
puted by any mbot.

Example 23 (see [39, Ex. 4.5] and [40]). The mbot Msort = (Q,Σ,∆, {f}, R)
and Msort2 = (Q,Σ,∆, {f}, R′) are given by

– Q = {p(3), q(3), r(3), f (1)},
– Σ = {ε(0), α(1), β(1), γ(1)} and ∆ = Σ ∪ {σ(3)},
– the following rules in R:

α(p)
p

— α(p) . p . p q
p

— q . q . q

β(q)
q

— q . β(q) . q r
q

— r . r . r p
f
— σ(p, p, p)

γ(r)
r

— r . r . γ(r) ε
r

— ε . ε . ε ,

– and the following rules in R′:

α(p)
p

— α(p) . p . p ε
p

— ε . ε . ε

β(q)
q

— q . β(q) . q p
q

— p . p . p r
f
— σ(r, r, r)

γ(r)
r

— r . r . γ(r) q
r

— q . q . q .
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Figure 10 displays the rules R of the example mbotMsort. Since the rules R′ are
very similar, we omitted a graphical representation. The mbotMsort and Msort2

compute the tree transformations

Msort = {(α`(βm(γn(ε))), σ(α`(ε), βm(ε), γn(ε))) | `,m, n ∈ IN}
Msort2 = {(γn(βm(α`(ε))), σ(α`(ε), βm(ε), γn(ε))) | `,m, n ∈ IN} ,

respectively. In other words, Msort sorts all α-symbols into the first output sub-
tree (below σ), the β-symbols into the second subtree, and the γ-symbols into
the third subtree.

p f
—

σ

p p p

α

p

p
—

α

p
p p

β

q

q
— q

β

q
q

γ

r

r
— r r

γ

r

q p
— q q q r q

— r r r ε r
— ε ε ε

Fig. 10. Example rules of the mbot Msort of Ex. 23.

From the definition of the tree transformations of Ex. 23 we can evidently
conclude some dependencies, which we depict in Fig. 11. Clearly, the shown
dependencies are not strictly input hierarchical. However, they are input hierar-
chical and strictly output hierarchical. Consequently, the inverse dependencies
are strictly input hierarchical and output hierarchical, but not strictly output
hierarchical. In the same manner as for xtop, we can conclude the following
statement.

Lemma 24. The inverse dependencies depicted in Fig. 11 are not compatible
with the dependencies computed by any mbot.

Theorem 25 (see [39, Ex. 4.5]). The inverse of the tree transformation il-
lustrated in Fig. 11 cannot be computed by any mbot.

5 Synchronous Tree-Sequence Substitution Grammar

In this final section before the summary, we recall the synchronous tree-sequence
substitution grammar (stssg), which was introduced in [40,51,52,45]. We keep
the presentation terse because most mechanisms have been explained on the
previous models.
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γ
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γ

ε

Fig. 11. Some dependencies of the tree transformation of Ex. 23.

Definition 26 (see [45, Sect. 2]). A synchronous tree-sequence substitution
grammar ( stssg) is a system (Q,Σ,∆, I,R) where

– Q is a doubly ranked alphabet,
– Σ and ∆ are ranked alphabets of input and output symbols, respectively,
– I ⊆ Q1,1 is a subset of initial states, all of which are doubly unary, and
– R ⊆ TΣ(Q)∗ × Q × T∆(Q)∗ is a finite set of rules such that rk(q) = (m,n)

for every (l1 · · · lm, q, r1 · · · rn) ∈ R.

For the rest of this section, let M = (Q,Σ,∆, I,R) be an stssg. Clearly,
any mbot is an stssg, and moreover, any inverse transformation computed by
an mbot can be implemented by an stssg. The ranks rk(q) of a state q ∈ Q
coincide with numbers |l| and |r| of trees in the left- and right-hand side of all
rules (l, q, r) ∈ R. As before all initial states are doubly unary (i.e., have exactly
one input and exactly one output tree). In this way, we again obtain a relation
between input and output trees. As before, we call l and r of a rule (l, q, r) ∈ R
the left- and right-hand side, respectively. In accordance, we sometimes write

l
q

— r instead of (l, q, r).

Definition 27. Let l
q

— r ∈ R be a rule, and let v1, . . . , vm, w1, . . . , wn ∈ IN∗,
v = v1 · · · vm, and w = w1 · · ·wn where rk(q) = (m,n). The rule’s link structure

linksv,w(l
q

— r) ∈ L is

linksv,w(l
q

— r) =
⋃
p∈Q

m⋃
j=1

n⋃
i=1

{(vjv′j , wiw′i) | v′j ∈ posp(lj), w
′
i ∈ posp(ri)} .

As before, the semantics is presented using synchronous substitution. This
time several states can be replaced in both the input and the output side of a
sentential form.
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Definition 28 (see [45, Sect. 2]). Given two sentential forms 〈ξ,D, ζ〉 and

〈ξ′, D′, ζ ′〉, we write 〈ξ,D, ζ〉 ⇒M 〈ξ′, D′, ζ ′〉 if there exists a rule l
q

— r ∈ R,
input positions v1, . . . , vm ∈ posq(ξ), and output positions w1, . . . , wn ∈ posq(ζ)
such that

– rk(q) = (m,n),
– ξ′ = ξ[l]v and ζ ′ = ζ[r]w, where v = v1 · · · vm with v1 @ · · · @ vm and

w = w1 · · ·wn with w1 @ · · · @ wn,
– the positions are linked; i.e.,

{w1, . . . , wn} =

m⋃
j=1

{w | (vj , w) ∈ D}

{v1, . . . , vm} =

n⋃
i=1

{v | (v, wi) ∈ D} ,

– D′ = D ∪ linksv,w(l
q

— r).

As usual ⇒∗M is the reflexive and transitive closure of ⇒M . The stssg M com-
putes the dependencies dep(M) ⊆ TΣ × L× T∆, which are given by

dep(M) = {〈t,D, u〉 ∈ TΣ × L× T∆ | ∃q ∈ I : 〈q, {(ε, ε)}, q〉 ⇒∗M 〈t,D, u〉} .

Moreover, the stssg M computes the relation M ⊆ TΣ × T∆, which is given by
M = {(t, u) | (t,D, u) ∈ dep(M)}, and links(M) = {D | (t,D, u) ∈ dep(M)}.

Example 29. It can easily be verified that M−1sort2 (i.e., the inverse of Msort2 in
which left- and right-hand side are exchanged) of Ex. 23 is an stssg.

Lemma 30. The set links(M) computed by an stssg M is hierarchical with
bounded distance.

A final example will use this knowledge about the type of dependencies that
are computable by an stssg to show a tree transformation that cannot be com-
puted by any stssg.

Example 31 (see [39, Ex. 4.5] and [40]). The composition of the tree transfor-
mations Msort and M−1sort2 is

{(α`(βm(γn(ε))), γn(βm(α`(ε)))) | `,m, n ∈ IN} ,

which is shown in Fig. 12.

Figure 12 already shows some evident dependencies, and we easily notice
that they are crossing. Consequently, no stssg dependency is compatible with
this dependence because they are all hierarchical by Lemma 30.

Lemma 32. The dependencies depicted in Fig. 12 are not compatible with the
dependencies computed by any stssg.

Theorem 33 (see [39, Ex. 4.5]). The tree transformation illustrated in Fig. 12
cannot be computed by any stssg.
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Fig. 12. Some dependencies of the tree transformation of Ex. 31.

6 Summary

We present the essential findings in the table below. It additionally contains the
synchronous tree-adjoining grammar (stag) [44,42,43], which has none of our
hierarchy properties.

input side output side
xtop strictly hierarchical strictly hierarchical
mbot hierarchical strictly hierarchical
stssg hierarchical hierarchical
stag — —
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20. Fülöp, Z.: On attributed tree transducers. Acta Cybernet. 5(3), 261–279 (1981)
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