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Abstract

Synchronous tree substitution grammars (stsg) are a (formal) tree transformation model

that is used in the area of syntax-based machine translation. A competitor that is at least

as expressive as stsg is proposed and compared to stsg. The competitor is the extended

multi bottom-up tree transducer (mbot), which is the bottom-up analogue with the additional

feature that states have non-unary ranks. Unweighted mbot have already been investigated

with respect to their basic properties, but the particular properties of the constructions that are

required in the machine translation task are largely unknown. stsg and mbot are compared

with respect to binarization, regular restriction, and application. Particular attention is paid

to the complexity of the constructions.

1 Introduction

Machine translation is a subfield of natural language processing. Every machine

translation system uses a translation model, which is a formal model that describes

the translation process. Such systems can be hand-crafted (in rule-based translation

systems) or trained with the help of statistical processes. Automatically trainable

translation models are discussed in Brown et al. (1990). The ibm models of Brown

et al. (1993) are string-based in the sense that they base the translation decision

on the words and the surrounding context. In the field of syntax-based machine

translation, the translation models have access to the syntax (in the form of parse

trees) of the sentences. A good exposition to both fields is presented in Knight

(2007).

In this paper, we focus on syntax-based translation models, and in particular,

synchronous tree substitution grammars (stsg), or the (essentially) equally powerful

(linear and nondeleting) extended top-down tree transducers of Graehl, Knight and

May (2008). A good introduction to stsg, which originate from the syntax-directed
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translation schemes of Aho and Ullman (1972) [nowadays more commonly known

as synchronous context-free grammars] is presented in Chiang and Knight (2006).

Roughly speaking, an stsg has rules in which a nonterminal is replaced by two trees

containing terminal and nonterminal symbols. In addition, the nonterminals in the

two trees are linked and a rule is only applied to such linked nonterminals.

Several algorithms for stsg have been discussed in the literature. For example, we

can

• train them (Graehl et al. 2008),

• attempt to binarize them using the methods of Zhang et al. (2006) or Huang

et al. (2009) or DeNero, Pauls and Klein (2009), or

• parse them (DeNero et al. 2009).

However, some important algorithms are partial because it is known that the

construction is not possible in general. This is the case, for example, for binarization

and composition.

Alternative models have been explored in the literature. One such alternative is

the multi bottom-up tree transducer (mbot) of Arnold and Dauchet (1982), Lilin

(1981), and Engelfriet, Lilin and Maletti (2009), which essentially is the bottom-up

analogue of stsg with the additional feature that nonterminals can have an arbitrary

rank (the rank of a nonterminal of an stsg can be considered to be fixed to 1).

This model is more expressive than stsg, but offers good computational properties.

In this contribution, we will compare stsg and mbot with respect to some standard

algorithms. Generally, mbot offer algorithmic benefits over stsg, which can be

summarized as follows:

• Every stsg can be transformed into an equivalent mbot in linear time.

• mbot can be binarized in linear time whereas only partial binarizations (or

asynchronous binarizations) are possible for stsg.

• The input language of an mbot M can be regularly restricted in O(|M| · |P |3),
whereas the corresponding Bar-Hillel construction for an stsg M runs in

time O(|M| · |P |2rk(M)+5) where rk(M) is the maximal number of nonterminals

in a rule of the stsg M and P are the states of the restricting string automaton.

• The output language of an mbot M can be regularly restricted in time

O(|M| · |P |2rk(M)+2), whereas the corresponding Bar-Hillel construction for

an stsg M runs in time O(|M| · |P |2rk(M)+5).

Overall, we thus conclude that, from an algorithmic perspective, it would be beneficial

to work with mbot instead of stsg. However, the full power of mbot should

not be tapped because, in general, mbot are not symmetric and have the finite-

copying property (Engelfriet, Rozenberg and Slutzki 1980), which complicates the

algorithms for forward and backward application (see Section 6) and makes the

forward application partial. An implementation and experimental verification of

these advantages is in preparation.
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2 Preliminaries

The set of nonnegative integers is N, and we let [n] = {i ∈ N | 1 ≤ i ≤ n} for every

n ∈ N. An alphabet is a finite set Σ of symbols. The set of all strings over Σ is Σ∗,

of which the empty string is ε. Concatenation of strings is denoted by juxtaposition.

For each w ∈ Σ∗, the length |w| of w is the number of occurrences of symbols in w.

The ith letter in w with 1 ≤ i ≤ |w| is denoted by wi.

A commutative semiring (Hebisch and Weinert 1998; Golan 1999) is an algebraic

structure (A,+, ·, 0, 1) such that

• (A,+, 0) and (A, ·, 1) are commutative monoids, and

• the multiplication · distributes over finite sums (in particular, a · 0 = 0 = 0 · a
for every a ∈ A).

Examples of commutative semirings are

• the real number semiring (R,+, ·, 0, 1),

• the Boolean semiring ({0, 1},max,min, 0, 1), and

• the tropical semiring (N ∪ {∞},min,+,∞, 0).

In addition, every commutative field or ring is a commutative semiring.

In the rest of the paper, let (A,+, ·, 0, 1) be a commutative semiring. For every

mapping f : S → A, we let supp(f) = {s ∈ S | f(s) 	= 0} be the support of f. As

usual, we write
∑

s∈S f(s) for the sum of the elements f(s) for every s ∈ S provided

that supp(f) is finite. We also write
∏

s∈S f(s) for the product of the elements f(s)

for every s ∈ S provided that S is finite.

A weighted string automaton (wsa) (Schützenberger 1961; Eilenberg 1974) is a

system N = (P ,Γ, J, ν, G), where

• P and Γ are alphabets of states and input symbols, respectively,

• J, G : P → A assign initial and final weights, respectively, and

• ν : P × Γ × P → A assigns a weight to each transition.

Let w = γ1 · · · γk ∈ Γ∗ be an input string with γi ∈ Γ for every i ∈ [k]. Every

mapping r : [k + 1] → P is a run on w. The set of all runs on w is denoted

by RunN(w), and we write ri instead of r(i) for every r ∈ RunN(w) and i ∈ [k + 1].

The weight wtN(r) of the run r ∈ RunN(w) is
∏k

i=1 ν(ri, γi, ri+1). Finally, the semantics

of the wsa N assigns to w the weight

N(w) =
∑

r∈RunN (w)

J(r1) · wtN(r) · G(rk+1).

A good introduction to wsa can be found in Mohri (2009) or Sakarovitch (2009).

A ranked alphabet Σ =
⋃

k∈N
Σk is an alphabet whose symbols have assigned

ranks. Contrary to some of the standard literature, we do not assume that each

symbol of a ranked alphabet has only one fixed rank. For every k ∈ N, the set Σk

contains all symbols of rank k. For a given set T , we let Σ(T ) = {σ(t1, . . . , tk) |
σ ∈ Σk, t1, . . . , tk ∈ T }. The set TΣ(V ) of Σ-trees indexed by a set V is the smallest

set T such that V ⊆ T and Σ(T ) ⊆ T . For every t ∈ TΣ(V ) and S ⊆ Σ ∪ V , let
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posS (t) ⊆ N
∗ be the set of positions labeled by elements of S . Formally, for every

v ∈ V , σ ∈ Σk , and t1, . . . , tk ∈ TΣ(V )

posS (v) =

{
{ε} if v ∈ S

∅ otherwise

posS (σ(t1, . . . , tk)) =

{
{ε} ∪ {iw | 1 ≤ i ≤ k, w ∈ posS (ti)} if σ ∈ S

{iw | 1 ≤ i ≤ k, w ∈ posS (ti)} otherwise.

Clearly, positions are lexicographically ordered. We denote this order simply by ≤.

Moreover, let |t|S = |posS (t)| be the number of occurrences of symbols of S in t. If

S = {s}, then we write poss(t) and |t|s instead of posS (t) and |t|S , respectively. The

positions pos(t) and the size |t| of t are posΣ∪V (t) and |t|Σ∪V , respectively. Moreover,

let var(t) = {v ∈ V | posv(t) 	= ∅}. A tree t ∈ TΣ(V ) is linear in V if |posv(t)| ≤ 1 for

every v ∈ V .

Let S ⊆ Σ0 ∪ V . The S-yield ydS (t) of a tree t ∈ TΣ(V ) is recursively defined as

follows:

ydS (s) =

{
s if s ∈ S

ε otherwise

ydS (σ(t1, . . . , tk)) = ydS (t1) · · · ydS (tk)

for every s ∈ Σ0 ∪ V , σ ∈ Σk with k ≥ 1, and t1, . . . , tk ∈ TΣ(V ). If S = Σ0 ∪ V , then

we simply write yd(t) instead of ydS (t).

Let � be a distinguished symbol that has only the rank 0. Let Δ be the ranked

alphabet such that Δ0 = Σ0 ∪ {�} and Δk = Σk for every k ≥ 1. A Σ-context c

indexed by V is a tree of TΔ(V ) such that |c|� = 1. The set of all Σ-contexts indexed

by V is CΣ(V ). The tree c[t] is obtained from c by replacing the symbol � by t. More

generally, t[u]w denotes the result of replacing the subtree at position w ∈ pos(t)

in t ∈ TΣ(V ) by the tree u ∈ TΣ(V ). In particular, c[t] = c[t]w where w is the

unique element in pos�(c). Finally, any mapping θ : V ′ → TΣ(V ) with V ′ ⊆ V is a

substitution. The application tθ of the substitution θ to a tree t ∈ TΣ(V ) is defined

by

vθ =

{
θ(v) if v ∈ V ′

v otherwise

σ(t1, . . . , tk)θ = σ(t1θ, . . . , tkθ)

for every v ∈ V , σ ∈ Σk , and t1, . . . , tk ∈ TΣ(V ). We often use elements of the fixed set

X = {x1, x2, . . . } of (formal) variables as substitution variables. If we write xi, then

we implicitly assume that i ≥ 1. A tree t ∈ TΣ(X) is k-normed if ydX(t) = x1 · · · xk .
Given t ∈ TΣ, we let

match(t) = {(l, x1θ, . . . , xkθ) | l ∈ TΣ(X) k-normed, θ : var(l) → TΣ, t = lθ},

which is finite.
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S

NP1 V NP2

0.5↔
S

V NP1 NP2

S

NP1 @

V NP2

0.5↔

S

V @

NP1 NP2

Fig. 1. stsg rule and the same rule with binarized trees where @ is an arbitrary symbol that

is introduced in the binarization process. We could (without harm) add another @-symbol to

represent the children of S in a list.

A weighted synchronous tree substitution grammar (stsg) (Chiang and Knight

2006) is a system M = (Q,Σ,Δ, I, R) where

• Q is an alphabet of nonterminals such that Q ∩ (Σ ∪ Δ) = ∅,

• Σ and Δ are ranked alphabets of input and output symbols, respectively,

• I : Q → A assigns initial weights, and

• R : TΣ(Q) ×Q×TΔ(Q) → A are weighted rules such that supp(R) is finite and

for every (t, q, u) ∈ supp(R)

— t and u are linear in Q,

— var(t) = var(u), and

— t /∈ Q or u /∈ Q.

In a rule (t, q, u) ∈ supp(R), the tree t is the left-hand side, q is the target state,

and u is the right-hand side. The first two restrictions on rules ensure that exactly

the same states occur in t and u. Moreover, no state is allowed to occur twice in

the left- or right-hand side. Intuitively, the links between the states are implicit

by the assumption that equal states in the left- and right-hand side are linked. A

sample stsg rule is displayed in Figure 1, where the nonterminals are slanted, and

we assume that the root terminal is also the nonterminal.

The distinction between nonterminals and terminals is uncommon for stsg (Chi-

ang 2005), but it increases the generative power. Our stsg are equivalent to the

(nondeleting and linear) extended top-down tree transducers of Graehl et al. (2008)

and Maletti et al. (2009). The size |(t, q, u)| of a rule (t, q, u) ∈ supp(R) is |t| + |u|,
and the size |M| of the stsg M is

∑
ρ∈supp(R)|ρ|. The stsg M is a weighted

synchronous context-free grammar (scfg) if t ∈ Σ(Q) and u ∈ Δ(Q) for every

rule (t, q, u) ∈ supp(R). Finally, M is a weighted tree substitution grammar (tsg) if

t = u for all rules (t, q, u) ∈ supp(R). A detailed exposition to stsg, scfg, and tsg

can be found in Chiang (2005), Berstel and Reutenauer (1982), or Fülöp and Vogler

(2009).

Let us proceed with the semantics of an stsg M = (Q,Σ,Δ, I, R). Equal nonter-

minals in t and u of a rule (t, q, u) ∈ supp(R) are linked. Those links need to be

remembered in sentential forms. Given t ∈ TΣ(Q), u ∈ TΔ(Q), and � : posQ(t) →
posQ(u), the triple (t, �, u) is a sentential form if

• � is a bijection and

• �(w) ∈ posq(u) for every q ∈ Q and w ∈ posq(t).
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In other words, � is a bijection that respects the nonterminals. Given two sentential

forms ξ = (t1, �1, u1) and ζ = (t2, �2, u2), we write ξ
a⇒M ζ if there is a rule

(t, q, u) ∈ supp(R) such that

• t1 = t1[q]w1
and u1 = u1[q]w2

,

• t2 = t1[t]w1
and u2 = u1[u]w2

,

• a = R(t, q, u), and

• �2 =
(
�1 \ {(w1, w2)}

)
∪ {(w1w

′, w2w
′′) | q ∈ Q,w′ ∈ posq(t), w

′′ ∈ posq(u)},

where w1 = min(posQ(t1)) and w2 = �1(w1). The selection of the minimal state-

labeled position in t1 ensures that we obtain a left-most derivation with respect

to the input side. A sequence D = (ξ0, . . . , ξk) of sentential forms is a derivation

if there exist a1, . . . , ak ∈ A such that ξi−1
ai⇒M ξi for every i ∈ [k]. Note that

if such weights a1, . . . , ak exist, then they are unique. Consequently, we define the

weight wtM(D) of the derivation D to be wtM(D) =
∏k

i=1 ai. Moreover, for every

q ∈ Q and sentential form ζ = (t, �, u) we let

D
q
M(ζ) = {D | D = (ξ0, . . . , ξk−1, ζ) is a derivation with ξ0 = (q, {(ε, ε)}, q)}.

Note that the set D
q
M(ζ) is finite because each derivation step creates an input or

an output symbol by the final condition on rules in the definition of stsg. The

q-weight Mq(ζ) assigned by the stsg M to ζ is Mq(ζ) =
∑

D∈Dq
M (ζ) wtM(D) and

M(t, u) =
∑

q∈Q I(q) · Mq(t, ∅, u) for every t ∈ TΣ and u ∈ TΔ.

For a tsg M = (Q,Σ,Σ, F, R), we will simply write R(q → t) instead of R(t, q, t)

for every q ∈ Q and t ∈ TΣ(Q). Moreover, we write Mq(t) and M(t) instead of

Mq(t, ∅, t) and M(t, t) for every q ∈ Q and t ∈ TΣ. Finally, we drop the linearity

requirement for tsg; i.e., t need not be linear in Q for a rule (q → t) ∈ supp(R).

A mapping ϕ : TΣ → A is recognizable (Fülöp and Vogler 2009) if there exists a

tsg N such that ϕ = N. The following proposition is well-known (Alexandrakis and

Bozapalidis 1987).

Proposition 1

For every tsg there exists an equivalent tsg that is also a scfg.

While the derivation semantics of an stsg M = (Q,Σ,Δ, I, R) is very instructive,

it is difficult to handle in formal proofs. We observe the following equality:

Mq(t, ∅, u) =
∑

(t′ ,q,u′)∈supp(R)
θ : var(t′)→TΣ , t=t′θ

θ′ : var(u′)→TΔ , u=u′θ′

R(t′, q, u′) ·
∏

p∈var(t′)
Mp(pθ, ∅, pθ′)

for every q ∈ Q, t ∈ TΣ, and u ∈ TΔ. Note that we will write Mq(t, ∅, u) instead

of Mq(t, u) if t ∈ TΣ. This equality can also be used as a recursive definition

of Mq(t, u) because the recursive calls Mp(pθ, pθ
′) are made to smaller trees (i.e.,

|pθ| ≤ |t| and |pθ′| ≤ |u| and one of these inequalities is strict) since t′ /∈ Q or u′ /∈ Q.

Let us prove this equality. Note that we essentially separate the first derivation step,
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which is typical for top-down devices.

Mq(t, u) =
∑

D∈Dq
M (t,∅,u)

wtM(D)

=
∑

D=(ξ0 ,...,ξk) derivation
ξ0=(q,{(ε,ε)},q), ξk=(t,∅,u)

wtM(D)

=
∑

(q,{(ε,ε)},q)
a1⇒Mξ1

a2⇒M ···
ak⇒M (t,∅,u)

k∏
i=1

ai

=
∑

(t′ ,q,u′)∈supp(R)

(q,{(ε,ε)},q)
a1⇒M (t′ ,�,u′)

a2⇒M ···
ak⇒M (t,∅,u)

R(t′, q, u′) ·
k∏

i=2

ai

=
∑

(t′ ,q,u′)∈supp(R)
θ : var(t′)→TΣ , t=t′θ

θ′ : var(u′)→TΔ , u=u′θ′

∀qi∈var(t′) : (qi,({ε,ε)},qi)
ai1⇒M ···

aiki⇒M (qiθ,∅,qiθ′)

R(t′, q, u′) ·
∏

qi∈var(t′)

⎛
⎝ ki∏

j=1

aij

⎞
⎠

=
∑

(t′ ,q,u′)∈supp(R)
θ : var(t′)→TΣ , t=t′θ

θ′ : var(u′)→TΔ , u=u′θ′

R(t′, q, u′) ·
∏

p∈var(t′)
Mp(pθ, pθ

′).

3 Multi bottom-up tree transducers

We already mentioned in the Introduction that we want to compare stsg to another

model that we propose as an alternative. The alternative is the weighted (linear and

nondeleting) multi bottom-up tree transducer, which has been introduced by Arnold

and Dauchet (1982) and Lilin (1981). A more detailed (and English) presentation

is Engelfriet et al. (2009). Let us quickly recall the formal definition, which we extend

with weights. Recall that X = {x1, x2, . . . }.

Definition 2

A weighted multi bottom-up tree transducer (mbot) is a system (Q,Σ,Δ, F, R) where

• Q, Σ, and Δ are ranked alphabets of states, input symbols, and output

symbols, respectively,

• F : Q1 → A assigns final weights to unary states Q1, and

• R : TΣ(Q(X)) × Q(TΔ(X)) → A are weighted rules such that supp(R) is finite

and for every (l, r) ∈ supp(R)

— l and r are linear in X,

— var(l) = var(r), and

— l /∈ Q(X) or r /∈ Q(X).

The components l and r of a rule (l, r) ∈ supp(R) are called left- and right-hand

side, respectively. Although we will not use a linking structure for mbot, the links



228 A. Maletti

S

NP

x1

V

x2

NP

x3

0.5→

S

S

x2 x1 x3

S

NP

x1

@

V

x2

NP

x3

0.5→

S

S

x2 @

x1 x3

Fig. 2. mbot rule (states are slanted) and the same rule with binarized trees where @ is an

arbitrary symbol that is introduced in the binarization process.

can be imagined between equal variables of X (not between the symbols of Q)

in the left- and right-hand side of a rule. Figure 2 displays example rules of an

mbot. Roughly speaking, an mbot is a weighted (linear and nondeleting) extended

bottom-up tree transducer (Engelfriet, Fülöp and Vogler 2002; Engelfriet, Lilin and

Maletti 2009), in which the states of Q can have ranks different from 1. To keep the

presentation simple, we assume that final states have rank 1 (hence the final weight

assignment F is of type F : Q1 → A). The size |(l, r)| of a rule (l, r) ∈ supp(R) is

|l| + |r|, and the size |M| of the mbot M is
∑

ρ∈supp(R)|ρ|.
The final condition on the rules in Definition 2 ensures that derivations are finite

because each step will consume an input symbol or generate an output symbol.

We continue with the rewrite semantics for the mbot M = (Q,Σ,Δ, F, R). Again, we

define left-most derivations only.

Definition 3

Let c ∈ CΣ(Q(TΔ)) and θ : X → TΔ such that w < w′ for every w ∈ pos�(c) and

w′ ∈ posQ(c). Then c[lθ]
a⇒M c[rθ] if R(l, r) = a. A sequence D = (ξ0, . . . , ξk) of

ξi ∈ TΣ(Q(TΔ)) is a derivation if there are a1, . . . , ak ∈ A such that ξ0
a1⇒M · · · ak⇒M ξk .

Note that such weights a1, . . . , ak are unique. The weight wtM(D) of the derivation D

is wtM(D) =
∏k

i=1 ai. Moreover, for every ξ, ζ ∈ TΣ(Q(TΔ)), we let

DM(ξ, ζ) = {D | D = (ξ0, . . . , ξk) is a derivation with ξ0 = ξ and ξk = ζ}.

Note that the set DM(ξ, ζ) is finite. For every t ∈ TΣ, and r′ ∈ Q(TΔ), let

M(t, r′) =
∑

D∈DM (t,r′) wtM(D). The weight M(t, u) assigned by the mbot M is

M(t, u) =
∑

q∈Q1
F(q) · M(t, q(u)) for every t ∈ TΣ and u ∈ TΔ.

Note that the condition on the context c in Definition 3 ensures that the derivation

is left-most. The rules of Figure 3 are applied in a derivation in Figure 4. The first

displayed derivation step uses the context S(NP (t1),�) and any substitution θ such

that θ(x2) = t2 and θ(x3) = t3.

Again, the derivation semantics is very instructive, but difficult to handle in proofs.

To overcome this problem, we observe the following equality:

M(t, ξ) =
∑

(l,r)∈supp(R)
(l′ ,t1 ,...,tn)∈match(t)

θ : var(l′)→Q(X), l=l′θ
θ′ : var(r)→TΔ , ξ=rθ′

R(l, r) ·
n∏

i=1

M(ti, xiθθ
′)
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S

NP

x1

U

x2 x3

0.5→

S

S

x2 @

x1 x3

@

V

x2

NP

x3

1→
U

x2 x3

Fig. 3. Sample mbot rules in one-symbol normal form (see Definition 5; in essence each rule

contains exactly one input or output symbol). The states of Q are slanted.

S

NP

t1

@

V

t2

NP

t3

1⇒M

S

NP

t1

U

t2 t3

0.5⇒M

S

S

t2 @

t1 t3

Fig. 4. Derivation using the mbot rules of Figure 3.

for every t ∈ TΣ and ξ ∈ Q(TΔ). Again, this equation also yields a recursive definition

of M(t, ξ) because the recursive calls are made to smaller input or output trees.

Again, let us prove this equality, so that we have a solid base for the following

proofs. For every t ∈ TΣ and ξ ∈ Q(TΔ),

M(t, ξ) =
∑

D∈DM (t,ξ)

wtM(D)

=
∑

t
a1⇒Mξ1

a2⇒M ···
ak⇒Mξ

k∏
i=1

ai

=
∑

(l,r)∈supp(R)
θ′ : var(r)→TΔ

t
a1⇒M ···

ak−1⇒Mlθ′ ak⇒Mrθ′=ξ

R(l, r) ·
k−1∏
i=1

ai

=
∑

(l,r)∈supp(R)
(l′ ,t1 ,...,tn)∈match(t)

θ : var(l′)→Q(X), l=l′θ
θ′ : var(r)→TΔ , ξ=rθ′

R(l, r) ·
n∏

i=1

M(ti, xiθθ
′).

This proof is similar to the corresponding proof for stsg, but here we separated the

last derivation step, which is common for bottom-up devices.

It is argued by Chiang (2005), Knight (2007), and Graehl et al. (2008) that

stsg (and extended top-down tree transducers) have sufficient power for syntax-

based machine translation. mbot should be at least as powerful as stsg, we first

demonstrate how each stsg can be encoded as an mbot.

Theorem 4

For every stsg M, we can construct an equivalent mbot in time O(|M|).
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Proof

Let M = (Q,Σ,Δ, I, R) be an stsg. Then we construct the mbot M ′ = (Q′,Σ,Δ, I, R′)

with Q′
1 = Q and Q′

k = ∅ for every k 	= 1 and for every (t, q, u) ∈ supp(R) we let

R′(l, r) = R(t, q, u) where

• var(t) = {q1, . . . , qk},
• θq1···qk : var(t) → Q′(X) and θ′

q1···qk : var(u) → X with θq1···qk (qi) = qi(xi) and

θ′
q1···qk (qi) = xi for every i ∈ [k], and

• l = tθq1···qk and r = q(uθ′
q1···qk ).

Clearly, M ′ can be constructed in time O(|M|). To prove the correctness of the

construction, we have to prove the statement Mq(t
′, u′) = M ′(t′, q(u′)) for every q ∈ Q,

t′ ∈ TΣ, and u′ ∈ TΔ.

Mq(t
′, u′) =

∑
(t,q,u)∈supp(R)

θ : var(t)→TΣ , t
′=tθ

θ′ : var(u)→TΔ , u
′=uθ′

R(t, q, u) ·
∏

p∈var(t)
Mp(pθ, pθ

′)

=
∑

(t,q,u)∈supp(R), (l,r)∈supp(R′)
var(t)={q1 ,...,qk}

θ : var(t)→TΣ , t
′=tθ

θ′ : var(u)→TΔ , u
′=uθ′

l=tθq1 ···qk , r=q(uθ′
q1 ···qk )

R′(l, r) ·
∏

p∈var(t)
M ′(pθ, p(pθ′))

=
∑

(l,r)∈supp(R′)
(l′ ,t1 ,...,tn)∈match(t′)

θ : var(l′)→Q(X), l=l′θ
θ′ : var(r)→TΔ , q(u

′)=rθ′

R′(l, r) ·
n∏

i=1

M ′(ti, xiθθ
′)

= M ′(t′, q(u′)).

With this auxiliary statement, the main statement is now easy to prove for every

t ∈ TΣ and u ∈ TΔ.

M(t, u) =
∑
q∈Q

I(q) · Mq(t, u) =
∑
q∈Q

I(q) · M ′(t, q(u)) = M ′(t, u)

stsg rules and their corresponding mbot rules according to the construction in the

proof of Theorem 4 are displayed in Figures 1 and 2.

4 Binarization

Binarization is an important tool for efficiency reasons in nondeterministic devices.

This is based on the simple and powerful observation (Wang, Knight and Marcu

2007) that instead of making 5 choices from a space of n in one instant (represented

by n5 rules), we can sometimes make them one-by-one (represented by only

5n rules). The best-known example of this approach is the binarization of context-

free grammars [see Chomsky normal form in Hopcroft and Ullman (1979)]. An

stsg M = (Q,Σ,Δ, I, R) is binarized if |t|Q ≤ 2 for every (t, q, u) ∈ supp(R). The

benefits of binarized stsg are presented in Zhang et al. (2006) and Wang et al.

(2007), which in addition, also present linear-time algorithms for the binarization
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of binarizable stsg. It should be mentioned that those algorithms are presented

for tree-to-string devices (in which the right-hand side of an stsg rule is a string;

for example, the yield of our right-hand sides), but they can easily be generalized

to our tree-to-tree devices. However, not all (tree-to-tree or tree-to-string) stsg are

binarizable. More precisely, binarizable (tree-to-tree) stsg cannot even handle simple

rotations, which severely limits their expressive power.

Binarization consists of two steps: (i) binarization of the involved trees (using

the auxiliary symbol @; see Figure 1) and (ii) binarization of the derivations of

the processing device (e.g., tree automata, tree transducers, stsg, or mbot). Let us

formalize binarization of trees next. Let t ∈ TΣ(V ) and @ /∈ Σ ∪ V be a new binary

symbol. Then bin(t) is recursively defined as follows:

bin(v) = v

bin(σ(t1, . . . , tk)) =

{
σ(bin(t1), . . . , bin(tk)) if k ≤ 2

σ(t1,@(t2, . . . ,@(tk−1, tk) . . .)) otherwise

for every v ∈ V , σ ∈ Σk , and t1, . . . , tk ∈ TΣ(V ). In fact, there are several ways

to binarize trees, but to keep the presentation simple, we will always assume the

presented form.

We show that the benefits of binarization can be reaped for all weighted tree

transformations computable by stsg. We have already demonstrated that every stsg

can be transformed into an equivalent mbot in linear time. Next, we show that

mbot can be efficiently binarized. The mbot M = (Q,Σ,Δ, F, R) is (input) binarized

if |l|Q ≤ 2 for every (l, r) ∈ supp(R).

Definition 5

The mbot M = (Q,Σ,Δ, F, R) is in one-symbol normal form if |l|Σ + |r|Δ = 1 for every

(l, r) ∈ supp(R).

Figure 3 presents some mbot rules in one-symbol normal form. Given an input

ranked alphabet Σ such that Σk = ∅ for every k ≥ 3 (i.e., there are at most binary

input symbols), every mbot M in one-symbol normal form is (input) binarized.

Every unweighted mbot can be transformed into one-symbol normal form in linear

time (Raoult 1993; Engelfriet et al. 2009) in the size of the mbot. This procedure

can easily be extended to the weighted case, which we show in the next theorem.

Theorem 6

For every mbot M an equivalent mbot in one-symbol normal form can be constructed

in time O(|M|).

Proof

Let M = (Q,Σ,Δ, F, R). The proof will have two stages. First, we ensure that

|l|Σ ≤ 1 for every rule (l, r) ∈ supp(R). The same construction for the output side

can then be used to also ensure that |r|Δ ≤ 1 for every (l, r) ∈ supp(R). Since they

are essentially the same constructions, we will only cover the former (the input

side). We decompose rules (l, r) ∈ supp(R) with more than one input symbol in the

left-hand side l into several rules using essentially the construction in Lemma 14
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and Theorem 15 of Engelfriet et al. (2009), which in turn is (a variation of) the

construction in Proposition II.B.5 of Lilin (1978).

Let (l, r) ∈ supp(R) with |l|Σ ≥ 2. Then l = σ(l1, . . . , lk) for some σ ∈ Σk and

l1, . . . , lk ∈ TΣ(Q(X)). For every i ∈ [k], let var(li) = {xi1, . . . , xini} and qi /∈ Q be a

new state of rank ni. Moreover, let

l′i =

{
li if li ∈ Q(X)

qi(xi1, . . . , xini ) otherwise.

We construct the mbot M ′ = (Q′,Σ,Δ, F ′, R′) such that

• Q′ = Q ∪ {q1, . . . , qk},
• F ′(q) = F(q) for every q ∈ Q1 and F ′(qi) = 0 for every i ∈ [k] with ni = 1,

• for every (l′, r′) ∈ supp(R)

R′(l′, r′) =

{
0 if (l′, r′) = (l, r)

R(l′, r′) otherwise,

• R′(li, l
′
i ) = 1 for every i ∈ [k] such that li /∈ Q(X), and

• R′(σ(l′1, . . . , l
′
k), r) = R(l, r).

It is straightforward to prove that M ′ and M are equivalent. This can easily be

proved using the derivation semantics because every derivation that uses the rule (l, r)

of M can be simulated by several rules of M ′. Moreover, since the states q1, . . . , qk
do not have any other rules any derivation in M ′ will simulate the effect of the

rule (l, r). Let m = max{|l|Σ | (l, r) ∈ supp(R)}. Clearly, M ′ will have one less rule

with m input symbols than M. Hence, repeated application of the above construction

eventually yields an equivalent mbot M ′′ = (Q′′,Σ,Δ, F ′′, R′′) such that |l|Σ ≤ 1 for

every (l, r) ∈ supp(R′′). Moreover, the process clearly terminates in time O(|M|).

In Figures 1 and 2 we show rules and their corresponding rules in binarized

form (i.e., with binarized trees in the rules). It is known (Aho and Ullman 1972)

that, in general, stsg (or scfg or extended top-down tree transducers) cannot be

binarized. In Figure 3 we illustrate the binarization construction in the proof of

Theorem 6 on the rule of Figure 2. How the decomposed rules combine into the

original rule is demonstrated in Figure 4, which also shows two example derivation

steps. In the next section, we show one benefit of the binarization on the Bar-Hillel

construction.

Corollary 7 (of Theorem 6)

For every stsg M an equivalent, binarized mbot can be constructed in O(|M|).

Finally, let us shortly discuss why we call ‘binarized’ also ‘input binarized’. In

a binarized mbot each rule concerns at most two input subtrees. Note that the

variables of X in rules represent output trees. Consequently, we can call the mbot

M = (Q,Σ,Δ, F, R) output binarized if |r|X ≤ 2 for all (l, r) ∈ supp(R). We already

mentioned that stsg cannot be binarized and these problems translate into output

binarization. More specifically, binarizable stsg (Zhang et al. 2006; Wang et al.

2007) can be transformed into output-binarized mbot, but in general, mbot cannot

be output-binarized.
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5 Input and output restriction

A standard operation for tree transformations (and tree languages alike) is regular

restriction. For transformations this operation can be applied to the input or output

side. These constructions are used in parsing, integration of a language model,

and the computation of certain metrics [see Nederhof and Satta (2003), Nederhof

and Satta (2008), or Satta (2010) for a detailed account]. In addition, together

with domain and range constructions (see Section 6), they can be used to prove

preservation of recognizability. The construction is generally known as Bar-Hillel

construction [see Bar-Hillel, Perles and Shamir (1964) for the original construction

on context-free grammars] if the restricting language is presented by a wsa.

Since stsg are symmetric, only one construction is needed for them. Let us

formally define the input product. Given an stsg M = (Q,Σ,Δ, I, R) and a wsa N

with states P , the input product is an stsg M ′ such that

M ′(t, u) = M(t, u) · N(yd(t))

for every t ∈ TΣ and u ∈ TΔ. The construction of M ′ is called Bar-Hillel construc-

tion for M and N. The rank of an stsg rule (t, q, u) ∈ supp(R) is rk(t, q, u) = |t|Q. The

maximal rank rk(M) = maxρ∈supp(R) rk(ρ) of a rule of M enters as an exponent into

the time complexity O(|M| · |P |2rk(M)+5) of the Bar-Hillel construction (Maletti and

Satta 2010). Since binarization is not possible in general, the maximal rank rk(M)

cannot be limited to 2. In contrast, binarization is possible for mbot with only linear

overhead, so we investigate whether we can exploit this advantage in a Bar-Hillel

construction for mbot.

We start with a classical product construction for the input side. Given an mbot

M = (Q,Σ,Δ, F, R) in one-symbol normal form such that the symbols in Σ ∪ Δ have

rank at most 2 and a tsg N = (P ,Σ,Σ, I, R′) that is also a scfg (see Proposition 1),

we want to construct an mbot M ′ such that M ′(t, u) = M(t, u) ·N(t) for every t ∈ TΣ

and u ∈ TΔ. In other words, each input tree should be rescored according to N;

in the unweighted case this yields that the translation of M is filtered to the set of

input trees accepted by N.

We occasionally use the angled parentheses ‘〈’ and ‘〉’ instead of the standard

parentheses.

Definition 8

The input product Prod(N,M) is the mbot

Prod(N,M) = (P × Q,Σ,Δ, F ′′, R′′)

such that

• F ′′(〈p, q〉) = I(p) · F(q) for every p ∈ P and q ∈ Q1,

• for every rule (l, r) ∈ supp(R) with l = q(xi1 , . . . , xik ) and r = q′(r1, . . . , rn)

where q ∈ Qk , q
′ ∈ Qn, and r1, . . . , rn ∈ TΔ(X), and for every p ∈ P , let

R′′(〈p, q〉(xi1 , . . . , xik ), 〈p, q′〉(r1, . . . , rn)) = R(l, r),

• for every (l, r) ∈ supp(R) with

l = σ(q1(xi1 , . . . , xin1 ), . . . , qk(xink−1+1
, . . . , xin ))
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and r = q(xj1 , . . . , xjn ) where σ ∈ Σk , q, q1, . . . , qk ∈ Q, and for every p, p1, . . . , pk
∈ P , let

— l′ = σ(〈p1, q1〉(xi1 , . . . , xin1 ), . . . , 〈pk, qk〉(xink−1+1
, . . . , xin )),

— r′ = 〈p, q〉(xj1 , . . . , xjn ), and

— R′′(l′, r′) = R(l, r) · R′(p → σ(p1, . . . , pk)).

The first type of rule constructed in the second item does not involve an input

symbol. Thus, the nonterminal p of N is just forwarded to the new state in the

right-hand side. Since no step with respect to the tsg N is made, the weight is taken

from the rule of M. The second type of rule constructed in the third item uses a rule

of R with the input symbol σ and a rule of R′ that also contains σ. Both rules are

executed in parallel in the resulting rule and its weight is the product of the weights

of the original rules. Overall, this is a classical product construction, which is similar

to other product constructions such as Borchardt (2004).

Theorem 9

For every stsg M = (Q,Σ,Δ, F, R) in one-symbol normal form and tsg N =

(P ,Σ,Σ, I, R′) that is also an scfg, we have

Prod(N,M)(t, u) = M(t, u) · N(t)

for every t ∈ TΣ and u ∈ TΔ.

Proof

Let M ′′ = Prod(N,M) = (P × Q,Σ,Δ, F ′′, R′′). We first prove that

M ′′(t, 〈p, q〉(u1, . . . , un)) = M(t, q(u1, . . . , un)) · Np(t)

for every p ∈ P , q ∈ Qn, t ∈ TΣ, and u1, . . . , un ∈ TΔ. Let ξ = 〈p, q〉(u1, . . . , un) and

t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ.

M ′′(t, ξ) =
∑

(l,r)∈supp(R′′)
(l′ ,t′1 ,...,t

′
m)∈match(t)

θ : var(l′)→(P×Q)(X), l=l′θ
θ′ : var(r)→TΔ , ξ=rθ′

R′′(l, r) ·
m∏
i=1

M ′′(t′i, xiθθ
′)

=
∑

(l,r)∈supp(R′′)
l=〈p′ ,q′〉(xj1 ,...,xjm )

θ′ : var(r)→TΔ , ξ=rθ′

R′′(l, r) · M ′′(t, lθ′)

+
∑

(l,r)∈supp(R′′)
l=σ(〈p1 ,q1〉(···),...,〈pk,qk〉(···))

θ′ : var(r)→TΔ , ξ=rθ′

R′′(l, r) ·
k∏

i=1

M ′′(ti, 〈pi, qi〉(· · ·)θ′)

=
∑

(l,r)∈supp(R), l∈Q(X)
θ′ : var(r)→TΔ

rθ′=q(u1 ,...,un)

R(l, r) · M(t, lθ′) · Np(t)
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+
∑

(l,r)∈supp(R)
l=σ(q1(···),...,qk(···))

p1 ,...,pk∈P
θ′ : var(r)→TΔ

rθ′=q(u1 ,...,un)

R(l, r) · R′(p → σ(p1, . . . , pk)) ·
k∏

i=1

M(ti, qi(· · ·)θ′) · Npi (ti)

=
∑

(l,r)∈supp(R), l∈Q(X)
θ′ : var(r)→TΔ

rθ′=q(u1 ,...,un)

R(l, r) · M(t, lθ′) · Np(t)

+
∑

(l,r)∈supp(R)
l=σ(q1(···),...,qk(···))
θ′ : var(r)→TΔ

rθ′=q(u1 ,...,un)

R(l, r) ·
k∏

i=1

M(ti, qi(· · ·)θ′) · Np(t)

=
∑

(l,r)∈supp(R)
(l′ ,t′1 ,...,t

′
m)∈match(t)

θ : var(l′)→Q(X), l=l′θ
θ′ : var(r)→TΔ

rθ′=q(u1 ,...,un)

R(l, r) ·
m∏
i=1

M(t′i, xiθθ
′) · Np(t)

= M(t, q(u1, . . . , un)) · Np(t)

Now we can complete the proof as follows. For every t ∈ TΣ and u ∈ TΔ

M ′′(t, u) =
∑

〈p,q〉∈P×Q1

F ′′(〈p, q〉) · M ′′(t, 〈p, q〉(u))

=
∑

p∈P ,q∈Q1

I(p) · F(q) · M(t, q(u)) · Np(t) = M(t, u) · N(t).

Finally, let us discuss the time complexity. The mbot Prod(N,M) can be obtained

in time O(|M| · |N|). Furthermore, it is known [see, for example, Maletti and Satta

(2009)] that for every wsa N with states P , we can construct a tsg N ′ that is also

a scfg, which has size O(|Σ| · |P |3), such that N ′(t) = N(yd(t)) for every t ∈ TΣ. The

main idea of this well-known construction is illustrated in Figure 5.

Corollary 10 (of Theorem 9)

For every mbot M = (Q,Σ,Δ, F, R) and every wsa N = (P ,Γ, I, ν, G), an mbot M ′

can be constructed in time O(|M| · |P |3) such that M ′(t, u) = M(t, u) · N(yd(t)) for

every t ∈ TΣ and u ∈ TΔ.

Thus, our Bar-Hillel construction has the well-known (parsing) complexity

O(|M| · |P |3). Compared to the time complexity O(|M| · |P |2rk(M)+5) of the Bar-

Hillel construction for an stsg M, a huge efficiency gain is achieved by binarization

(and one-symbol normal form). In fact, if the original stsg M is binarizable (i.e.,

rk(M) = 2), then the Bar-Hillel construction can still run in time O(|M| · |P |6+3),

which is due to the fact that several symbols can occur in each rule. This can be

explained on the left illustration of Figure 5. If several symbols are present in the tree

represented by a triangle in the illustration, then the arrows need no longer indicate

identity. Consequently, all indicated state positions could hold different states, which
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s1 s3

s1 s2 s2 s3

σ

〈s1,s3〉→σ(〈s1,s2〉,〈s2,s3〉)

s1 s2

s1 s2

σ

〈s1,s2〉→σ(〈s1,s2〉)

s1 γ s2

τ(s1, γ, s2)

〈s1,s2〉τ(s1,γ,s2)→ γ

Fig. 5. Constructing a tsg from a wsa.

yields the factor O(|P |6). Since we also have to run the wsa N on several symbols,

we obtain a processing factor O(|P |3). The latter factor is a pure processing factor, so

the size of the output stsg would be bound by O(|M| · |P |6). Only if a normal form

analogous to one-symbol normal form can be achieved for M, then the complexity

reduces to O(|M| · |P |3). Consequently, the stsg M should be transformed into an

equivalent mbot in one-symbol normal form, which can be achieved in linear time

(see Corollary 7), and the Bar-Hillel construction should be performed on this

mbot.

Since mbot are not symmetric, a special construction is needed for the output

side. We will see that we cannot obtain a similar efficiency improvement in this case.

To simplify the presentation, we assume without loss of generality that the variables

occur in order in l (i.e., l is k-normed) for every rule (l, r) ∈ supp(R).

Definition 11

The output product Prod(M,N) is the mbot

Prod(M,N) = (Q(P ),Σ,Δ, F ′′, R′′),

where

• F ′′(q〈p〉) = I(p) · F(q) for every p ∈ P and q ∈ Q1,

• for every rule (l, r) ∈ supp(R) with l = q(xj1 , . . . , xjk ) and

r = q′(xi1 , . . . , xij , δ(xij+1
, . . . , xim ), xim+1

, . . . , xin ),

where q ∈ Qk , q
′ ∈ Qn and δ ∈ Δm−j , and for every p, p1, . . . , pk ∈ P , let

— l′ = q〈p1, . . . , pk〉(xj1 , . . . , xjk ),
— r′′ = δ(xij+1

, . . . , xim ),

— r′ = q′〈pi1 , . . . , pij , p, pim+1
, . . . , pin〉(xi1 , . . . , xij , r′′, xim+1

, . . . , xin ), and

— R′′(l′, r′) = R(l, r) · R′(p → δ(pij+1
, . . . , pim )),
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• for all (l, r) ∈ supp(R) with l = σ(q1(xi1 , . . . , xij1 ), . . . , qk(xijk−1+1
, . . . , xin )) and

r = q(xn1
, . . . , xnm ) where σ ∈ Σk , q, q1, . . . , qk ∈ Q, and p1, . . . , pn ∈ P , let

— j = jk−1 + 1,

— l′ = σ(q1〈pi1 , . . . , pij1 〉(xi1 , . . . , xij1 ), . . . , qk〈pij , . . . , pin〉(xij , . . . , xin )),
— r′ = q〈pn1

, . . . , pnm〉(xn1
, . . . , xnm ), and

— R′′(l′, r′) = R(l, r).

Since the first type of rule constructed in the second item involves an output

symbol, we perform steps with respect to M and N. The second type of rule does

not contain an output symbol, and thus, the nonterminals of N are just forwarded

to the right-hand side.

Theorem 12

For every mbot M = (Q,Σ,Δ, F, R) in one-symbol normal form and tsg N =

(P ,Δ,Δ, I, R′) that is also an scfg, we have

Prod(M,N)(t, u) = M(t, u) · N(u)

for every t ∈ TΣ and u ∈ TΔ.

Proof

The proof is similar to the proof of Theorem 9.

The Bar-Hillel construction for the output side of an mbot M with a wsa N

with states P can be obtained in time O(|M| · |P |2rk(M)+2) where rk(M) is the maximal

number of variables of X in a rule of M. Compared to the time complexity O(|M| ·
|P |2rk(M)+5) of the Bar-Hillel construction for an stsg M, the efficiency gain is

minimal and only due to the fact that at most one output symbol needs to be

processed in the Bar-Hillel construction for mbot (because the mbot can be

assumed to be in one-symbol normal form). A similar normal form cannot, in

general, be obtained for stsg, and thus, an additional evaluation effort O(|P |3)
occurs, which represents the time complexity of running the wsa N on the output

symbols present in a rule. It was already mentioned that if the stsg M is binarizable,

then we can obtain an equivalent output-binarized mbot. In this case, the problem is

symmetric and the results for the input product apply also for the output product.

6 Forward and backward application

Finally, we want to apply a weighted tree transformation not just to a single input

or output tree, but rather to a set of (potentially weighted) input or output trees.

Let M be an mbot or an stsg. Forward application aims to compute a tsg of

output trees under M given a tsg of input trees. Conversely, backward application

aims to compute a tsg of input trees given a tsg of output trees. Formally, let

N = (P ,Σ,Σ, I, R′) and N ′ = (P ′,Δ,Δ, I ′, R′′) be tsg. Then the forward application

M〈N〉 and the backward application M−1〈N ′〉 are

M〈N〉(u) =
∑
t∈TΣ

M(t, u) · N(t)

M−1〈N ′〉(t) =
∑
u∈TΔ

M(t, u) · N ′(u)
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for every t ∈ TΣ and u ∈ TΔ. Note that the sums in the above equations might be

infinite. We will later address this issue by additional restrictions, which will ensure

that the sums are finite.

In general, forward and backward application can be reduced to range and

domain, respectively, with the help of the product constructions of the previous

section. Formally, the range ranM and the domain domM of the transformation

computed by M are

ranM(u) =
∑
t∈TΣ

M(t, u) and domM(t) =
∑
u∈TΔ

M(t, u)

for every t ∈ TΣ and u ∈ TΔ. Again, those sums might be infinite. Let M be an

mbot. The relation between the two notions is

M〈N〉(u) =
∑
t∈TΣ

M(t, u) · N(t) =
∑
t∈TΣ

M ′(t, u) = ranM ′ (u)

M−1〈N ′〉(t) =
∑
u∈TΔ

M(t, u) · N ′(u) =
∑
u∈TΔ

M ′′(t, u) = domM ′′ (t)

for every t ∈ TΣ and u ∈ TΔ where M ′ = Prod(N,M) and M ′′ = Prod(M,N ′). The

same relation also holds for an stsg M.

Let us first discuss stsg. Let M = (Q,Σ,Δ, I, R) be an stsg. It is input ε-free

(respectively, output ε-free) if t /∈ Q (respectively, u /∈ Q) for every (t, q, u) ∈ supp(R).

It is known (Fülöp, Maletti and Vogler 2010) that the forward application M〈N〉
(respectively, the backward application M−1〈N ′〉) can be represented by a tsg if M is

output ε-free (respectively, input ε-free). In other words, stsg preserve recognizability

under forward and backward application in all reasonable cases.

Unfortunately, the range of an mbot is not necessarily representable by a tsg,

which is not due to well-definedness problems (infinite sums) but rather the finite-

copying property (Engelfriet et al. 1980) of mbot. Because of this copying property

the range might not be recognizable. Consequently, forward application suffers

from the same problem, which yields that mbot do not preserve recognizability

under forward application. In analogy to the definition for stsg, let the mbot

M = (Q,Σ,Δ, F, R) be input ε-free if l /∈ Q(X) for every (l, r) ∈ supp(R). For such

mbot we will now discuss the domain (and backward application).

Definition 13

Let M = (Q,Σ,Δ, F, R) be an input ε-free mbot such that Qi ∩ Qj = ∅ for all i 	= j.

In other words, we assume without loss of generality that each state has a unique

rank. We construct the tsg N = (Q,Σ,Σ, I, R′) such that

• I(q) = F(q) for every q ∈ Q1 and I(q) = 0 for all q ∈ Q \ Q1,

• for every t ∈ TΣ(Q)

R′(q → t) =
∑

(l,r)∈supp(R)
cut(l)=t

r=q(r1 ,...,rk)

R(l, r)

where cut(l) ∈ TΣ(Q) is tree obtained from l ∈ TΣ(Q(X)) by deleting the

nodes labeled by an element of X.



An alternative to synchronous tree substitution grammars 239

Theorem 14

Let M be an input ε-free mbot and N be the tsg as in Definition 13. Then domM = N.

Proof

We need to prove that
∑

u1 ,...,uk∈TΔ
M(t, q(u1, . . . , uk)) = Nq(t) for every q ∈ Qk and

t ∈ TΣ.

∑
u1 ,...,uk∈TΔ

M(t, q(u1, . . . , uk)) =
∑

u1 ,...,uk∈TΔ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
(l,r)∈supp(R)

(l′ ,t1 ,...,tm)∈match(t)
θ : var(l′)→Q(X), l=l′θ

θ′ : var(r)→TΔ

q(u1 ,...,uk)=rθ′

R(l, r) ·
m∏
i=1

M(ti, xiθθ
′)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
∑

(l,r)∈supp(R)
(l′ ,t1 ,...,tm)∈match(t)

θ : var(l′)→Q(X), l=l′θ
r=q(r1 ,...,rk)

∀i∈[m] : θi : var(xiθ)→TΔ

R(l, r) ·
m∏
i=1

M(ti, xiθθi)

=
∑

(l,r)∈supp(R)
(l′ ,t1 ,...,tm)∈match(t)

θ : var(l′)→Q(X), l=l′θ
r=q(r1 ,...,rk)

R(l, r) ·
m∏
i=1

⎛
⎝ ∑

θi : var(xiθ)→TΔ

M(ti, xiθθi)

⎞
⎠

=
∑

(l,r)∈supp(R)
(l′ ,t1 ,...,tm)∈match(t)

θ : var(l′)→Q(X), l=l′θ
r=q(r1 ,...,rk)
xiθ∈{qi}(X)

R(l, r) ·
m∏
i=1

Nqi (ti)

=
∑

(l,r)∈supp(R)
(l′ ,t1 ,...,tm)∈match(t)

θ : var(l′)→Q
cut(l)=l′θ
r=q(r1 ,...,rk)

R(l, r) ·
m∏
i=1

Nxiθ(ti)

=
∑

(l′ ,t1 ,...,tm)∈match(t)
θ : var(l′)→Q

R′(q → l′θ) ·
m∏
i=1

Nxiθ(ti)

= Nq(t)

Then

domM(t) =
∑
u∈TΔ

M(t, u) =
∑
q∈Q1

(
F(q) ·

∑
u∈TΔ

M(t, q(u))

)

=
∑
q∈Q1

I(q) · Nq(t) =
∑
q∈Q

I(q) · Nq(t) = N(t)

for every t ∈ TΣ, which proves the statement.
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Consequently, every input ε-free mbot preserves recognizability under backward

application, which is essentially the same statement as for stsg. However, the

situation is entirely different for forward application. stsg preserve recognizability

under forward application, but mbot do not necessarily.

Conclusion

We have shown that mbot have significant advantages over stsg since each stsg can

be transformed into an equivalent mbot in linear time and the obtained mbot can be

binarized and transformed into one-symbol normal form (also in linear time). The

input and output product algorithms for mbot have a better asymptotic runtime

complexity than their counterparts for stsg. This is illustrated in the following table:

stsg binarizable stsg mbot

input: O(|M| · |P |2rk(M)+5) O(|M| · |P |9) O(|M| · |P |3)
output: O(|M| · |P |2rk(M)+5) O(|M| · |P |9) O(|M| · |P |2rk(M)+2)

where |M| is the size of the tree transformation device (stsg or mbot) and |P | is

the number of states of the restricting wsa. We add that the output product for an

mbot corresponding to a binarizable stsg can be constructed in time O(|M| · |P |6).
An implementation of mbot and the experimental verification of these theoretical

advantages remains future work.

In the final section, we showed that the additional power of mbot should be

used carefully. The range of an mbot is, in general, not recognizable, which yields

that forward application does not preserve recognizability. This is due to the finite-

copying feature that mbot can employ. This feature is not present in mbot that have

been obtained from stsg (i.e., that are equivalent to an stsg).
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