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Abstract

Deterministic weighted tree automata (dwta) have found promising applications as language
models in Natural Language Processing. It is known that dwta over commutative semifields
can be effectively minimized. An efficient algorithm for minimizing them is presented. It is
polynomial-time given that all operations of the semifield including the computation of the in-
verses are polynomial. More precisely, if the operations can be performed in constant time,
then the algorithm constructs an equivalent minimal (with respect to the number of states) dwta
in time O(lmn) where l is the maximal rank of the input symbols, m is the number of (useful)
transitions, and n is the number of states of the input dwta.

Key words: weighted tree automaton, minimization, tree series, determinism, partition
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1. Introduction

Weighted tree automata (wta) [1, 2, 3, 4] are a joint generalization of weighted string au-
tomata [5] and tree automata [6, 7]. Weighted string automata have successfully been applied as
language models in Natural Language Processing due to their ability to easily incorporate n-gram
models. Several toolkits (e.g., C [8], F S [9], and OF [10]) enable language
engineers to rapidly prototype and develop language models because of the standardized imple-
mentation model and the consolidated algorithms made available by the toolkits.

In recent years, the trend toward more syntactical approaches in Natural Language Process-
ing [11] sparked renewed interest in tree-based devices. The weighted tree automaton is the
natural tree-based analogue of the weighted string automaton. First experiments with toolkits
(e.g., T [12]) implementing tree-based devices show that the situation is not as consoli-
dated here. In particular, many basic algorithms are missing in the weighted setting.

In general, a wta processes a given input tree stepwise using a locally specified transition
behavior. During this process transition weights are combined using the operations (addition and
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multiplication) of a semiring to form the weight associated with the input tree. Altogether, the
wta thus recognizes (or computes) a mapping ϕ : TΣ → A where TΣ is the set of all input trees
and A is the carrier set of the semiring. Such a mapping is also called a tree series, and if it can be
computed by a wta, then it is called recognizable. The deterministically recognizable tree series
are exactly those recognizable tree series that can be computed by deterministic wta (dwta).
Recognizable and deterministically recognizable tree series have been thoroughly investigated
(see [3, 13] and references provided therein). In fact, [4] and [14] show some recognizable tree
series that are also deterministically recognizable.

In this contribution, we consider dwta, in which the additive operation of the semiring is irrel-
evant. To the author’s knowledge, we propose the first polynomial-time minimization algorithm
(not counting [15]) for dwta over semifields. A M-N theorem for tree series recog-
nized by such automata is known [16]. However, it only asserts the existence of a unique, up to
slight changes of representation, minimal (with respect to the number of states) dwta recognizing
a given tree series. The construction of such a dwta, which is given in [16], is not effective, but
with the help of the pumping lemma of [17] a simple exponential-time algorithm, which given
a dwta constructs an equivalent minimal dwta, could easily be conceived. For (not necessarily
deterministic) wta over fields the situation is similar. In [1, 18] the existence of a unique, up to
slight changes of representation, minimal wta is proved. Moreover, [18] shows that minimization
is effective by providing the analogue to the pumping argument already mentioned above in this
more general setting. However, the trivially obtained algorithm is again exponential.

A [19] learning algorithms exist for both general [20] and deterministic [21, 22] wta. In
principle, those polynomial-time learning algorithms could also be used for minimization since
they produce minimal wta recognizing the taught tree series. However, this also requires us to
implement the oracle, which answers coefficient and equivalence queries. Although equivalence
is decidable in polynomial time in both cases [23, 17], a simple implementation would return
counterexamples of exponential size, which would again yield an exponential-time minimization
algorithm. Clearly, this can be avoided for dwta by the method presented in this contribution.

Finally, let us mention the minimization procedures [24, 25] for deterministic weighted string
automata. They rely on a weight normal-form obtained by a procedure called pushing. After this
normal form is obtained, the weight of a transition is treated as an input symbol and the automa-
ton is minimized as if it were unweighted. We do not follow this elegant approach here because
we might have to explore several distributions of the weight to the input states of a transition (in
a tree automaton a transition can have any number of input states whereas in a string automa-
ton it has exactly one) during pushing. It remains open whether there is an efficient heuristic
that prescribes how to distribute the weight such that we obtain a minimal dwta recognizing
the given series after the unweighted minimization. In fact, our minimization procedure works
by first running unweighted minimization (disregarding the weights) and then refining further
where transition weights do not match. Roughly speaking, we follow the program of [24, 25] in
reversed order.

Our minimization construction uses partition refinement as in the unweighted case [26]. We
first define the M-N relation on states of the input dwta. This definition, as well as the
M-N relation on tree series [16], will include a scaling factor and Algorithm 3 will
determine those scaling factors. In the refinement process (see Definition 14) we check for the
congruence property (as in the unweighted case) and the consistency of the weight placement on
the transitions. Overall, our algorithm runs in time O(lmn) where l is the maximal rank of the
input symbols, m is the number of transitions, and n is the number of states of the input dwta.
We thus improve the algorithm proposed in [15], which is reported to run in time O(lmn4).
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Apart from this Introduction, the paper comprises 4 sections. In Sect. 2 we recall stan-
dard notions and notation, and the main computational model: the deterministic weighted tree
automaton. We then present the theoretical foundations of minimization in Sect. 3. The mini-
mization algorithm is presented in Sect. 4. The final section presents a short example and some
experimental results.

2. Preliminaries

The set of nonnegative integers is N. Given l, u ∈ N we denote {i ∈ N | l ≤ i ≤ u} simply
by [l, u]. Let n ∈ N and Q a set. We write Qn for the n-fold C product of Q. The empty
tuple () ∈ Q0 is sometimes displayed as ε. We reserve the use of a special symbol � < Q. The
set of n-ary contexts over Q, denoted by Cn(Q), is

⋃
i+ j+1=n Qi × {�} × Q j. Given C ∈ Cn(Q) and

q ∈ Q we write C[q] to denote the tuple of Qn obtained from C by replacing � by q.
An equivalence relation ≡ on Q is a reflexive, symmetric, and transitive subset of Q2. Let

≡ and � be equivalence relations on Q. Then ≡ refines � if ≡ ⊆ �. The equivalence class (or
block) of q ∈ Q is [q]≡ = {p ∈ Q | p ≡ q}. Whenever ≡ is obvious from the context, we simply
omit it. The system (Q/≡) = {[q] | q ∈ Q} actually forms a partition of Q; i.e., a system Π of
subsets (also called blocks) of Q such that

⋃
P∈Π P = Q and P ∩ P′ = ∅ for every P, P′ ∈ Π with

P , P′. The number of blocks of (Q/≡) is denoted by index(≡). Let Π be any partition on Q and
F ⊆ Q. The equivalence relation ≡Π on Q is defined for every p, q ∈ Q by p ≡Π q if and only if
{p, q} ⊆ P for some block P ∈ Π. We say that Π saturates F if ≡Π is a refinement of ≡{F,Q\F}; i.e.,⋃

P∈Π′ P = F for some Π′ ⊆ Π. In the sequel, we do not distinguish between a partition Π and
the equivalence relation ≡Π.

An alphabet is a finite and nonempty set of symbols. A ranked alphabet (Σ, rk) is an alpha-
bet Σ and a mapping rk : Σ → N. Whenever rk is clear from the context, we simply drop it. The
subset of n-ary symbols of Σ is Σn = {σ ∈ Σ | rk(σ) = n}. The set TΣ(Q) of Σ-trees indexed by Q
is inductively defined to be the smallest set such that Q ⊆ TΣ(Q) and σ(t1, . . . , tn) ∈ TΣ(Q) for
every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q). We write TΣ for TΣ(∅). The mapping var : TΣ(Q) → P(Q),
where P(Q) is the power set of Q, is inductively defined by var(q) = {q} for every q ∈ Q and
var(σ(t1, . . . , tn)) =

⋃n
i=1 var(ti) for every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q). For every P ⊆ Q,

we use varP(t) as a shorthand for var(t) ∩ P. Moreover, we use |t|q to denote the number of
occurrences of q ∈ Q in t ∈ TΣ(Q). We define the height and size of a tree with the help of
the mappings ht, size : TΣ(Q) → N inductively for every q ∈ Q by ht(q) = size(q) = 1 and
ht(σ(t1, . . . , tn)) = 1 + max{ht(ti) | i ∈ [1, n]} and size(σ(t1, . . . , tn)) = 1 +

∑n
i=1 size(ti) for every

σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q). Note that max ∅ = 0. The set pos(t) ⊆ N∗ of positions in t is
inductively defined by pos(t) = {ε} for every t ∈ Q and

pos(σ(t1, . . . , tn)) = {ε} ∪

n⋃
i=1

{iw | w ∈ pos(ti)}

for every σ ∈ Σn and t1, . . . , tn ∈ TΣ(Q). For every w ∈ pos(t) we denote the label of t at w by t(w)
and the subtree at w by t|w. Finally, posΓ(t) = {w ∈ pos(t) | t(w) ∈ Γ} for every Γ ⊆ Σ ∪ Q.

The set CΣ(Q) of Σ-contexts indexed by Q is defined as the smallest set such that � ∈ CΣ(Q)
and σ(t1, . . . , ti−1,C, ti+1, . . . , tn) ∈ CΣ(Q) for every σ ∈ Σn with n ≥ 1, index i ∈ [1, n],
t1, . . . , tn ∈ TΣ(Q), and C ∈ CΣ(Q). We write CΣ for CΣ(∅). Note that CΣ(Q) ⊆ TΣ(Q ∪ {�}).
Next we recall substitution. Let V be an alphabet (possibly containing �), v1, . . . , vn ∈ V be pair-
wise distinct, and t1, . . . , tn ∈ TΣ(V). Then we denote by t[vi ← ti | 1 ≤ i ≤ n] the tree obtained
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from t by replacing every occurrence of vi by ti for every i ∈ [1, n]. We abbreviate C[� ← t]
simply by C[t] for every C ∈ CΣ(Q) and t ∈ TΣ(V).

A (commutative) semiring is a tuple A = (A,+, ·, 0, 1) such that (A,+, 0) and (A, ·, 1) are
commutative monoids; a · 0 = 0 = 0 · a for every a ∈ A; and · distributes over + from both sides.
The semiring A is a semifield if for every a ∈ A \ {0} there exists a−1 ∈ A such that a · a−1 = 1.
A tree series is a mapping ϕ : T → A where T ⊆ TΣ(Q). The set of all such tree series is denoted
by A〈〈T 〉〉. For every ϕ ∈ A〈〈T 〉〉 and t ∈ T , the coefficient ϕ(t) is usually denoted by (ϕ, t).

Next, let us recall Σ-algebras and congruences. A Σ-algebra (S , f ) consists of a carrier set S
and f = ( fσ)σ∈Σ such that fσ : S n → S for every σ ∈ Σn. The term Σ-algebra is given by (TΣ,Σ)
where Σ = (σ)σ∈Σ with σ(t1, . . . , tn) = σ(t1, . . . , tn) for every σ ∈ Σn and t1, . . . , tn ∈ TΣ. In
the sequel, we will drop the overlining. Let ≡ be an equivalence relation on S . Then ≡ is a
congruence of (S , f ) if for every σ ∈ Σn and s1, . . . , sn, t1, . . . , tn ∈ S such that si ≡ ti for every
i ∈ [1, n] we also have fσ(s1, . . . , sn) ≡ fσ(t1, . . . , tn).

A weighted tree automaton [1, 2, 3, 4] (for short: wta) is a tuple M = (Q,Σ,A, µ, ν) such that
(i) Q is an alphabet of states; (ii) Σ is a ranked alphabet; (iii)A = (A,+, ·, 0, 1) is a (commutative)
semiring; (iv) µ = (µn)n≥0 with µn : Σn → AQn×Q; and (v) ν ∈ AQ is a final weight vector. Then
(AQ, (µσ)σ∈Σ) becomes a Σ-algebra where

µσ(v1, . . . , vk)q =
∑

q1,...,qn∈Q

µn(σ)(q1,...,qn),q ·

n∏
i=1

(vi)qi

for every σ ∈ Σn, q ∈ Q, and v1, . . . , vk ∈ AQ. The semantics of M is the tree series ϕM ∈ A〈〈TΣ〉〉

given by (ϕM , t) =
∑

q∈Q hµ(t)q · νq (or simply the scalar product hµ(t) · ν) where hµ : TΣ → AQ

is the initial homomorphism [from (TΣ,Σ) to (AQ, (µσ)σ∈Σ)]. The wta M is said to recognize ϕM

and two wta are equivalent if they recognize the same tree series.
The wta M is deterministic and total [4] if for every σ ∈ Σn and w ∈ Qn there exists exactly

one q ∈ Q such that µn(σ)w,q , 0. In a deterministic wta the additive operation of the semiring
is irrelevant [4]. We will exclusively deal with deterministic and total wta (dwta) over semifields
from now on. We could have equivalently defined dwta over a (commutative) group, but we
chose to follow the presentation usually found in the literature. To simplify the notation, we will
use the following representation: M = (Q,Σ,A, δ, c, ν) with δ = (δσ)σ∈Σ and c = (cσ)σ∈Σ such
that (Q, δ) is a Σ-algebra and cσ : Qn → A \ {0} for every σ ∈ Σn. In particular, δσ(w) = q and
cσ(w) = µn(σ)w,q if and only if µn(σ)w,q , 0 for every σ ∈ Σn, q ∈ Q, and w ∈ Qn. The initial
homomorphism from (TΣ(Q),Σ) to (Q, δ) that extends the identity on Q is also denoted by δ. A
state q ∈ Q is useful if there exists t ∈ TΣ such that δ(t) = q. A state that is not useful is called
useless. The dwta M is said to have no useless states if all states of Q are useful. Note that
any dwta can be converted in linear time (in the number of transitions) into an equivalent dwta
without useless states. Finally, a state q ∈ Q is live if νδ(C[q]) , 0 for some context C ∈ CΣ(Q).
Such a context is called a sign of life of q. If no sign of life of q exists, then q is dead.

Due to the semifield restriction, c can similarly be extended to c : TΣ(Q)→ A\{0} by c(q) = 1
for every q ∈ Q and c(σ(t1, . . . , tn)) = cσ(δ(t1), . . . , δ(tn)) ·

∏n
i=1 c(ti) for every σ ∈ Σn and

t1, . . . , tn ∈ TΣ(Q). It is then easy to show that (ϕM , t) = c(t) · νδ(t) for every t ∈ TΣ. In fact, we
extend ϕM to a tree series of A〈〈TΣ(Q)〉〉 by defining (ϕM , t) = c(t) · νδ(t) for every t ∈ TΣ(Q). The
following property, which will be used without explicit mention in the sequel, follows immedi-
ately.

4



Notation Explanation
A = (A,+, ·, 0, 1) Commutative semifield
M = (Q,Σ,A, δ, c, ν) Input dwta without useless states
F ⊆ Q Final states of M
D ⊆ Q Dead states of M
ϕ = ϕM Tree series recognized by M
≡ϕ ⊆ TΣ × TΣ M-N relation on trees
≡ ⊆ Q × Q M-N relation on states
� ⊆ Q × Q Coarsest congruence on (Q, δ) that saturates F
ap,q ∈ A \ {0} Scaling factor relating the states p and q
r : P(Q)→ Q Representative mapping
sol(q) Sign of life of state q ∈ Q \ D
l Maximal rank of an input symbol of Σ

m Number of transitions of M
n Number of states of M

Table 1: Notation employed.

Lemma 1 (cf. [16, Theorem 1]). We have (ϕM , t) = 0 if and only if νδ(t) = 0 for every t ∈ TΣ(Q).
Moreover, c(t[qi ← ti | 1 ≤ i ≤ n]) = c(t) ·

∏n
i=1 c(ti)|t|qi for all pairwise distinct q1, . . . , qn ∈ Q

and t1, . . . , tn ∈ TΣ(Q) such that δ(ti) = qi for every i ∈ [1, n].

3. The M-N relation

In this section, we recall the theoretical foundations for the minimization of dwta. It is
heavily inspired by [18, 16] and can be skipped on first reading. We present the definition of the
M-N relation on states of a dwta, the principal results showing that this relation allows
the construction of a minimal equivalent dwta, and simple supportive algorithms to compute, for
example, the set of dead states.

We first recall the theoretical foundations and prove the main properties. Second, we present
the foundational algorithms and analyze their complexity. Table 1 shows the notation we use
throughout the rest of the paper. Note that some notions mentioned in Table 1 will be introduced
(or exactly defined) only later in the paper.

3.1. Theoretical foundation

Let us first recall the M-N congruence relation [16, page 153] for a tree series.
This section mostly follows the development of [16]. From now on, let A = (A,+, ·, 0, 1) be a
commutative semifield and M = (Q,Σ,A, δ, c, ν) be a dwta without useless states. Finally, let
F = {q ∈ Q | νq , 0} be the set of final states, D be the set of dead states, and ϕ = ϕM .

The index of the M-N congruence relation for a tree series determines whether it
is deterministically recognizable or not [16, Theorem 2]. More precisely, the index is finite if and
only if the tree series is deterministically recognizable. Moreover, it permits the construction of
a minimal dwta that recognizes the tree series. For a thorough introduction of this relation, we
refer the reader to [16, 13].
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Definition 2 (see [16, page 153]). The M-N relation ≡ϕ ⊆ TΣ×TΣ is defined for every
t, u ∈ TΣ by t ≡ϕ u if and only if there exists an element a ∈ A\{0} such that (ϕ,C[t]) = a·(ϕ,C[u])
for every C ∈ CΣ.

Clearly, ϕ is deterministically recognizable because we are given a dwta M that recognizes ϕ.
In order to use that additional knowledge, we define the M-N relation on Q and then
show that it shares many of the properties of the M-N relation ≡ϕ.

Definition 3 (M-N relation). The M-N relation ≡ ⊆ Q × Q is defined
for every p, q ∈ Q by p ≡ q if and only if there exists an element a ∈ A \ {0} such that
(ϕ,C[p]) = a · (ϕ,C[q]) for every C ∈ CΣ(Q). We denote such an element by ap,q.

In comparison to Definition 2, we demand the property also for contexts of CΣ(Q) instead of
just CΣ. It is shown in [15] that the relations defined by these two versions of Definition 3 actually
coincide. The main benefits of the version in Definition 3 are that (i) it avoids an exponential
blow-up (the one also mentioned in [27]) and (ii) it is consistent with our definition of signs of
life.

Let us investigate the M-N relation in more detail. We immediately note that
(i) all dead states are equivalent, (ii) no dead state is equivalent to a live one, and (iii) the scaling
factor ap,q is uniquely determined whenever p is live. Let us call the last statement (†) for later
reference. Next we show that ≡ is also a congruence.

Lemma 4 (cf. [16, Lemma 5]). The relation ≡ is a congruence on (Q, δ).

P. Let us prove that ≡ is an equivalence relation. Reflexivity and symmetry are trivial. For
transitivity, let p, q, r ∈ Q be such that p ≡ q and q ≡ r. Then ap,r = ap,q · aq,r , 0 provides
evidence that p ≡ r. Note that for live p the above equality provides a way to compute the unique
scaling factor. We use this fact in Sect. 4.

Now, let us proceed with the congruence property. Let σ ∈ Σk and p1, . . . , pk, q1, . . . , qk ∈ Q
be such that pi ≡ qi for every i ∈ [1, k]. For every C ∈ CΣ(Q)

(ϕ,C[δσ(p1, . . . , pk)]) · cσ(p1, . . . , pk) =

k∏
i=1

api,qi · (ϕ,C[δσ(q1, . . . , qk)]) · cσ(q1, . . . , qk) , (1)

which is shown as follows (recall that we use Lemma 1 without explicit mention):

(ϕ,C[δσ(p1, . . . , pk)]) · cσ(p1, . . . , pk) = (ϕ,C[σ(�, p2, . . . , pk)] [p1])
= ap1,q1 · (ϕ,C[σ(�, p2, . . . , pk)] [q1]) = ap1,q1 · (ϕ,C[σ(q1,�, p3, . . . , pk)] [p2])
= · · ·

=

k∏
i=1

api,qi · (ϕ,C[σ(q1, . . . , qk)]) =

k∏
i=1

api,qi · (ϕ,C[δσ(q1, . . . , qk)]) · cσ(q1, . . . , qk) .

Hence δσ(p1, . . . , pk) ≡ δσ(q1, . . . , qk). Consequently, ≡ is a congruence on (Q, δ). �

Now let us show that we can use ≡ to minimize M. We first present how to construct the
quotient dwta M/≡ and then prove that the dwta obtained in this way still recognizes ϕ. Finally,
we verify that M/≡ is minimal. Let us begin with the construction of M/≡. To avoid well-
definedness issues, we fix a representative mapping r : P(Q) → Q, i.e., a mapping such that
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r(P) ∈ P for every nonempty P ⊆ Q. For example, if Q ⊆ N then r(P) = min P is a representative
mapping. Formally, our construction depends not only on M and ≡, but also on r.

Roughly speaking, we collapse equivalent states in M to just the representative of their block.
Then we compute solely on those representatives. Note that this approach is slightly different
from the one of [15]. We chose this style of presentation because it is immediately clear that
M/≡ is well-defined (cf. [16]) in contrast to the unweighted case [6]. On the other hand, our
construction is dependent of the selection of r, but this allows us to improve the efficiency of the
minimization algorithm.

Definition 5 (cf. [16, Definition 4]). Let M/≡ be the dwta (Q/≡,Σ,A, δ′, c′, ν′) such that for
every σ ∈ Σk, B1, . . . , Bk ∈ (Q/≡), and q = δσ(r(B1), . . . , r(Bk))

• δ′σ(B1, . . . , Bk) = [q],

• c′σ(B1, . . . , Bk) = cσ(r(B1), . . . , r(Bk)) · aq,r([q]), and

• ν′B = νr(B) for every B ∈ (Q/≡).

Note that the state q is not necessarily the representative of its block, so we multiply with the
correct scaling factor in the second item. Moreover, it is obvious that M/≡ has index(≡) states.
Let us proceed by showing that M/≡ recognizes ϕ.

Lemma 6 (cf. [16, Lemma 12]). The dwta M/≡ recognizes ϕ.

P. Let (M/≡) = (Q/≡,Σ,A, δ′, c′, ν′). First we prove that δ′(t) = [δ(t)] for every t ∈ TΣ. Let
us call this statement (‡). Let t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ. Moreover, let
qi = δ(ti) for every i ∈ [1, k]. Then with the help of the induction hypothesis we conclude

δ′(t) = δ′σ(δ′(t1), . . . , δ′(tk)) I.H.
= δ′σ([q1], . . . , [qk]) = [δσ(r([q1]), . . . , r([qk]))]

and [δσ(q1, . . . , qk)] = δ′(t) since ≡ is a congruence on (Q, δ) by Lemma 4. Thus, δ′(t) = [δ(t)].
Next we need to relate cσ(q1, . . . , qk) to cσ(r([q1]), . . . , r([qk])) if q = δσ(q1, . . . , qk) is live.

To this end, let p = δσ(r([q1]), . . . , r([qk])). Reconsidering (1) [see proof of Lemma 4] and
remark (†) on page 6, which shows that aq,p is uniquely determined whenever q is live, we obtain

aq,p · cσ(q1, . . . , qk) =

k∏
i=1

aqi,r([qi]) · cσ(r([q1]), . . . , r([qk])) . (2)

Now, we are ready to prove (§) c′(t) = c(t) · aq,r([q]) if q is live. By the induction hypothesis,
which is applicable because q1, . . . , qk are clearly live if q is live, we obtain

c′(t)
(‡)
= c′σ([q1], . . . , [qk]) ·

k∏
i=1

c′(ti)
I.H.
= c′σ([q1], . . . , [qk]) ·

k∏
i=1

(
c(ti) · aqi,r([qi])

)
=

k∏
i=1

aqi,r([qi]) · cσ(r([q1]), . . . , r([qk])) · ap,r([p]) ·

k∏
i=1

c(ti)

(2)
= aq,p · cσ(q1, . . . , qk) · ap,r([p]) ·

k∏
i=1

c(ti) = c(t) · aq,r([q])
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because [p] = [q] by Lemma 4, which completes the induction.
It remains to prove that (ϕ(M/≡), t) = (ϕ, t). We distinguish two cases. First, suppose that q

is not final. Then clearly, (ϕ, t) = νq = 0. By (‡) we have δ′(t) = [q]. In addition, ν′[q] = νr([q])
by Definition 5. Since q ≡ r([q]) we have νr([q]) = 0 and hence (ϕ(M/≡), t) = ν′[q] = 0. Second,
suppose that q is final and thus live. Then

(ϕ(M/≡), t) = c′(t) · ν′[q]
(§)
= c(t) · aq,r([q]) · νr([q]) = c(t) · νq = (ϕ, t)

by Definition 3 (for q ≡ r([q]) and C = �). Thus, M/≡ recognizes ϕ. �

We have seen that ≡ allows us to construct a dwta recognizing ϕ. We still need to show that
the dwta obtained in this way is minimal. To this end, we prove that the indices of ≡ and ≡ϕ
coincide. The latter coincides with the number of states of a minimal dwta recognizing ϕ by [16,
Theorem 2]. Since M/≡ has index(≡) states, this proves the minimality.

Lemma 7 (Minimality). index(≡) = index(≡ϕ).

P. Let t, u ∈ TΣ be such that t ≡ϕ u. Then there exists an element a ∈ A \ {0} such that
(ϕ,C[t]) = a · (ϕ,C[u]) for every C ∈ CΣ. We reason as follows:

c(t) · (ϕ,C[δ(t)]) = (ϕ,C[t]) = a · (ϕ,C[u]) = a · c(u) · (ϕ,C[δ(u)]) .

Since a · c(t)−1 · c(u) does not depend on C, we obtain δ(t) ≡ δ(u). Since M has no useless
states, δ : TΣ → Q is surjective and thus index(≡) ≤ index(≡ϕ). We already proved that M/≡
recognizes ϕ in Lemma 6. By [16, Theorem 2] every dwta that recognizes ϕ has at least index(≡ϕ)
states. Consequently, index(≡) ≥ index(≡ϕ), which proves the statement. �

Theorem 8. The dwta M/≡ is a minimal dwta recognizing ϕ.

P. The theorem follows from Lemma 6, Lemma 7, and [16, Theorem 2], which shows that
index(≡ϕ) coincides with the number of states of a minimal dwta recognizing ϕ. �

Finally, we recall another important congruence on (Q, δ), which is used to minimize in
the unweighted case. It is the coarsest congruence � on (Q, δ) that saturates F. Its use for
minimization of unweighted tree automata is shown in [6, Theorem II.6.10] (roughly speaking, it
plays the role of our ≡ in the unweighted setting). Moreover, it is known [28, Theorem 27] that it
can be computed in O(lm log n) where l is the maximal rank of an input symbol, m is the number
of transitions, and n is the number of states of the input automaton. The following lemma shows
that equivalent states share their signs of life in any equivalence relation that refines �.

Lemma 9. Let ∼ be an equivalence on Q such that ∼ refines �. Then every sign of life of p is
also a sign of life of q for every p ∼ q.

P. Let p ∼ q and C ∈ CΣ(Q) be a sign of life of p. Clearly, p � q since ∼ refines �. Since �
is a congruence on (Q, δ) we conclude δ(C[p]) � δ(C[q]). We observe that δ(C[p]) ∈ F because
C is a sign of life of p. This yields δ(C[q]) ∈ F since � saturates F. Consequently, C is a sign of
life of q. �
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3.2. Algorithm
Let us cover some fundamental algorithms here. First, we show a standard reachability al-

gorithm that computes the set of live states (and thus also the dead states). Along the way we
also compute a sign of life for every live state. We present complexity results for this algorithm
and for the construction of Definition 5, which defines the quotient dwta. For the complexity
analysis, we make the following assumptions:

• All operations of the semifield (we only need multiplication and calculation of inverses)
can be performed in constant time. This might be an unrealistic assumption, but it simpli-
fies the complexity analysis and is typically true for the fixed-precision arithmetic imple-
mented on stock hardware.

• We assume that the input is encoded properly (e.g., constant space is needed to store a
state, an input symbol, etc.).

Let us also present exact definitions for the maximal rank l of an input symbol, the number m of
transitions of M that lead into a live state, and the number n of states of M.

l = max{k | Σk , ∅} m = card{(σ, q1, . . . , qk) | δσ(q1, . . . , qk) < D} n = card(Q)

Note that m ≥ n since each state is useful. We present the algorithms detailed enough to easily
verify the time complexity claims. For versions of the algorithms without implementation details
we refer the reader to [15]. Simple set operations and maps are assumed to be implemented in
an efficient manner.

Let us begin with the algorithm that computes the signs of life (see Algorithm 1). It imple-
ments a simple reachability algorithm. We start with the final states, for which we store the sign
of life �. We then explore co-reachable states by checking which states could lead to a currently
explored state. For each state that we explore, we store a sign of life as evidence that the state is
live. Moreover, we also group the explored states by the height of their stored signs of life. Our
implementation is such that the signs of life are of minimal height, so that this grouping can be
used to derive an initial partition for our minimization problem. Strictly speaking, this part would
not be necessary as the simple partition {F,Q \ F} would be sufficient for our purposes (also for
the complexity results), but practical experiments have shown that it can lead to sufficiently large
improvements in the run-time of the minimization algorithm, so we chose to present it.

Algorithm 1 returns an initial partition Π, a mapping sol that assigns signs of life to each
live state, and the set D of dead states. Some remarks are necessary. First, it is essential that T
(in Algorithm 1) is handled as a FIFO queue, where we append at the end and remove from the
beginning. This guarantees that the height of the constructed signs of life is minimal. Second,
the signs of life are encoded using a linked list. N denotes the empty list and AF adds
its first parameter in front of all elements of the list in its second parameter (and returns a pointer
to the resulting list). The elements in the linked list are triples (w, σ, i) where w ∈ Qk, σ ∈ Σk,
and i ∈ [1, k]. Roughly speaking, an element is a transition (w, σ) and a subtree marker i. The
sign of life is stored as a list of transitions in reversed order. Since dwta work bottom-up this
representation is both space-efficient and easy to process by the dwta. Let us show how to recover
the sign of life. The empty list translates into the trivial context �. Suppose that the representation
consists of (w, σ, i) and a rest list, which yields the context C. Then the context represented by
the full list is obtained as C[σ(w1, . . . ,wi−1,�,wi+1, . . . ,wk)].

For the run-time complexity consider the graph consisting of the states as nodes and for every
transition q = δσ(q1, . . . , qk) there is a edge (q, qi) for every i ∈ [1, k]. Then a breadth-first search
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Algorithm 1 CSL: Compute signs of life and initial partition.
for all q ∈ F do

2: sol(q)← N // final states have sign of life �

D← Q \ F // set of potentially dead states; final states are not dead
4: P← F // current block; initially the final states

h← 0 // current height of signs of life; initially 0
6: Π← ∅ // initial partition; initially empty

T ← new FQ // initialize empty FIFO queue T of transitions
8: A(T, {(w, σ, δσ(w), 1) | δσ(w) ∈ F}) // append to T the transitions leading to F

while T is not empty do
10: (w, σ, q, j)← RH(T ) // get first element in T

if h , j then
12: Π← Π ∪ {P} // add current block to initial partition

P← ∅ // reset current block
14: h← j // increase current height of signs of life

for all 1 ≤ i ≤ |w| do
16: if wi ∈ D then

sol(wi)← AF((w, σ, i), sol(q)) // we found a sign of life of wi

18: P← P ∪ {wi} // add wi to current block
D← D \ {wi} // wi is explored and not dead

20: A(T, {(u, γ,wi, j + 1) | δγ(u) = wi}) // append transitions leading to wi

if D , ∅ then
22: Π← Π ∪ {D} // finally add block of dead states

return (Π, sol,D)

algorithm finds the states reachable from the final states. Since m ≤ n, its time complexity is
O(lm) because there are at most lm edges. Fortunately, the computation of the signs of life on the
side does not increase the asymptotical time complexity.

Lemma 10. Algorithm 1 runs in time O(lm).

P. Clearly, lines 1–7 run in time O(m). Supposing an efficient representation of δ, line 8 also
runs in time O(m). The while-loop in lines 9–20 can be executed at most m times. Lines 10–14
execute in O(1) time. The loop in lines 15–20 executes at most l times (for each iteration of the
surrounding while-loop) and each such iteration except for line 20 takes at O(1) time. Finally, let
us consider line 20 globally. Obviously, each transition can be added at most once to T , hence
line 20 runs in overall time O(m). Putting the pieces together, we obtain that Algorithm 1 runs in
time O(lm). �

Theorem 11. Let (Π, sol,D) be the result of running Algorithm 1. Then

(i) ≡ refines Π and F ∈ Π,
(ii) D is the set of all dead states.

(iii) sol(q) = � for every q ∈ F, and
(iv) sol(q) represents a sign of life of q comprising at most n transitions for every q ∈ Q \ D.

10



P. The facts that F ∈ Π and sol(q) = � for every q ∈ F are obvious. Note that in any
element (w, σ, q, j) of T , the integer j is one larger than the length of sol(q). Thus, it is clear
that all elements of P have equally long lists representing their signs of life. Moreover, all states
with signs of life represented by lists of a certain length will eventually be collected in P (in
Algorithm 1). From this and the minimality of the signs of life, we can conclude that Π groups
states by their minimal number of transitions in a sign of life. Finally, suppose that p ≡ q and
let C ∈ CΣ(Q) be a sign of life of p. Then C is a sign of life of q by Definition 3, and thus ≡
refines Π.

Concerning (iii), final states trivially have sign of life � (see line 2 of Algorithm 1). If
sol(q) is a sign of life of q and δσ(w) = q, then sol(q)[σ(w1, . . . ,wi−1,�,wi+1, . . . ,wk)] is a sign
of life of wi for every i ∈ [1, k]. This proves (iv). Finally, the algorithm trivially explores all
co-reachable states and thus D is the set of dead states. �

From now on, we fix sol and D to those returned by Algorithm 1; i.e., D is the set of dead
states and sol assigns to each live state a sign of life with the additional properties mentioned in
Theorem 11. We end this section with a complexity analysis of the quotient dwta construction
of Definition 5. We assume that the representative mapping r is implemented such that r(P) can
be computed in constant time for every nonempty P ⊆ Q. Moreover, we assume in the next
statement that an efficient representation of ≡ is available.

Lemma 12. Supposing that the scaling factors aq,r([q]) are available for all q ∈ Q, the construc-
tion of M/≡ can be implemented to run in time O(lm).

P. The proof is straightforward and omitted. �

4. Minimization

4.1. Theoretical foundation

In this section, we develop the theoretical underpinnings for the refinement procedure that
we use in the next section for our minimization algorithm. We show that it eventually yields the
M-N relation ≡ and thus, by Theorem 8, allows us to construct a minimal dwta that is
equivalent to M.

Our approach basically follows the development of [15], but there are some major changes.
Let us highlight them: (i) We avoid pairwise comparison in the refinement step and instead com-
pare states only to the representative of their block. This saves roughly a factor n. (ii) We avoid
refining the current partition in two places (in [15] it could be refined in the main refinement
step and in the computation of the scaling factors). This avoids a stark overestimation of the
number of refinement steps, which essentially saves another factor n in the complexity analy-
sis. (iii) To avoid refinements in the computation of the scaling factors, we need to make sure
that our partition refines �. Fortunately, this can easily be achieved with the known algorithm
for the unweighted case. Finally, (iv) we slightly relax the conditions placed on the scaling
factors, which makes them easier to compute after the main refinement step. This also yields
roughly an improvement by a factor n. Overall, we managed to improve the run-time complexity
from O(lmn4) as reported in [15] to just O(lmn). In addition, we do not use the main data struc-
ture (called stage) of [15] because two components of it never changed and avoiding it allows
us to easily separate the theoretical development from the implementation (at the cost of some
additional proof obligations).
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Let us start with the data structure used to compute the scaling factors. A scaling map holds
the scaling factor for each state to its representative with respect to a partition. Once we refined
to ≡, the scaling map stores exactly the scaling factors required for Lemma 12.

Definition 13 (Scaling map). Let Π be a partition of Q and f : Q → A a mapping. We say that
f is a scaling map for Π if

(i) νq = f (q) · νp where p = r([q]≡Π
) for every q ∈ F,

(ii) f (q) = 1 for every q ∈ D, and
(iii) for every B ∈ Π there exists C ∈ CΣ(Q) such that (ϕ,C[q]) = f (q) · (ϕ,C[r(B)]) and C is a

sign of life of q for every live q ∈ B.

Note that f : Q → A \ {0} whenever f is a scaling map. In contrast to [15] we only demand
the existence of a sign of life in condition (iii) of Definition 13, whereas in [15] this sign of life
was fixed to sol(r(B)).

The principal approach of the minimization algorithm in the next section is partition re-
finement as, for example, in the classical minimization algorithm for minimizing unweighted
deterministic tree automata [26]. We successively refine an initial partition until ≡ is reached.
Let us proceed with the definition of a single refinement step.

Definition 14 (Refinement). Let Π be a partition of Q and f : Q → A be a scaling map for Π.
The refinement R(Π, f ) is the partition

Π′ =
(⋃

B∈Π

{block(B), B \ block(B)}
)
\ {∅}

where block(B) contains all q ∈ B for which, for every σ ∈ Σk and C ∈ Ck(Q) such that δσ(C[q])
is live, the following two conditions hold.

(i) δσ(C[q]) ≡Π δσ(C[r(B)])
(ii) f (q)−1 · cσ(C[q]) · f (δσ(C[q])) = cσ(C[r(B)]) · f (δσ(C[r(B)]))

In the classical unweighted case, only the congruence property (condition (i) in Definition 14)
is used to refine. The additional constraint basically restricts the weights on the transitions
whereas the congruence property only restricts the presence/absence of transitions. Compared
to [15] we replaced the pairwise tests by conditions that relate a state and the representative of
its block. The following lemma shows that R refines in the desired manner. In particular,
whenever ≡ is a refinement of ≡Π, then ≡ is also a refinement of ≡Π′ where Π′ = R(Π, f ).
Thus, if we start with a suitable partition, then we only refine to the level of ≡ and never beyond.

Lemma 15 (Lower bound of refinement). Let Π be a partition of Q such that ≡ refines Π,
which in turn refines �. Moreover, let f : Q→ A be a scaling map for Π and Π′ = R(Π, f ).
Then ≡ refines Π′, which in turn refines Π.

P. It is obvious from Definition 14 that Π′ refines Π. Let q1, q2 ∈ Q be such that q1 ≡ q2,
let B ∈ Π be such that q1, q2 ∈ B, and let p = r(B). Moreover, let σ ∈ Σk and C ∈ Ck(Q)
be such that δσ(C[q1]) is live. Since ≡ refines Π and δσ(C[q1]) ≡ δσ(C[q2]) by Lemma 4, we
conclude δσ(C[q1]) ≡Π δσ(C[q2]). Consequently, condition (i) in Definition 14 is either true for
both q1 and q2 or false for both.
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Let q′1 = δσ(C[q1]) and q′2 = δσ(C[q2]). Moreover, let p′ = r([q′1]≡Π
) be the representative of

the block of q′1 in Π, which is the same as the one of q′2 since q′1 ≡Π q′2. A standard calculation
using (2) on page 7 yields cσ(C[q1]) · aq′1,q

′
2

= cσ(C[q2]) · aq1,q2 . By remark (†) on page 6 every
sign of life of q1 (resp., q′1) determines aq1,q2 (resp., aq′1,q

′
2
). Since q1 ≡Π p ≡Π q2 and Π refines �,

all Π-equivalent states share their signs of life by Lemma 9. Since f is a scaling map for Π, there
exist C′,C′′ ∈ CΣ(Q) such that

(i) C′ is a sign of life of q1 and q2,
(ii) C′′ is a sign of life of q′1 and q′2, and

(iii) the following equations hold:

(ϕ,C′[q1]) = f (q1) · (ϕ,C′[p]) (ϕ,C′′[q′1]) = f (q′1) · (ϕ,C′′[p′])
(ϕ,C′[q2]) = f (q2) · (ϕ,C′[p]) (ϕ,C′′[q′2]) = f (q′2) · (ϕ,C′′[p′]) .

Hence, C′ determines aq1,q2 and C′′ determines aq′1,q
′
2
. In addition, C′ determines aq2,p and C′′

determines aq′2,p
′ . We obtain

cσ(C[q1]) ·
(ϕ,C′′[q′1])
(ϕ,C′′[q′2])

= cσ(C[q2]) ·
(ϕ,C′[q1])
(ϕ,C′[q2])

.

Multiplying both sides by a = (ϕ,C′[p]) · (ϕ,C′′[p′])−1 and exchanging some terms, we obtain

(ϕ,C′[p])
(ϕ,C′[q1])

· cσ(C[q1]) ·
(ϕ,C′′[q′1])
(ϕ,C′′[p′])

=
(ϕ,C′[p])
(ϕ,C′[q2])

· cσ(C[q2]) ·
(ϕ,C′′[q′2])
(ϕ,C′′[p′])

.

Now we can apply the equations of (iii) to obtain

f (q1)−1 · cσ(C[q1]) · f (q′1) = f (q2)−1 · cσ(C[q2]) · f (q′2) ,

which shows that also condition (ii) in Definition 14 is either true for both q1 and q2 or false for
both. Consequently, q1 ≡Π′ q2. �

In the minimization algorithm we iteratively refine a given partition until no further refine-
ment is possible (i.e., R(Π, f ) = Π). Let us investigate the properties of such a partition. We
show that, given a suitable partition with which to start the refinement process, the fixpoint of the
refinement procedure (we assume that suitable scaling maps are supplied) refines the M-
N relation, which together with Lemma 15 proves that the fixpoint is ≡. In addition, we
show that the scaling map then supplies the required scaling factors (see Lemma 12).

Lemma 16 (Upper bound of refinement). Let Π be a partition of Q that saturates F, and let
f : Q→ A be a scaling map for Π. If Π = R(Π, f ), then

(i) Π refines ≡, and
(ii) for every live q ∈ Q we have f (q) = aq,p where p = r([q]≡Π

).

P. If Π = R(Π, f ), then block(B) = B for every B ∈ Π since block(B) , ∅ for every
nonempty B ⊆ Q. This immediately yields that Π is a congruence of (Q, δ) that saturates F. Next,
we prove that (ϕ,C[q]) = f (q) · (ϕ,C[p]) for every live q ∈ Q, C ∈ CΣ(Q), and p = r([q]≡Π

). Let
t = C[q], u = C[p], q′ = δ(t), and p′ = δ(u). Finally, let v ∈ pos�(C). Note that the statement
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is trivially true if q′ < F because Π is a congruence that saturates F and hence p′ < F. Let
Pref(v) = {w | ∃w′ , ε : v = ww′} be the set of strict prefixes of v. Then we claim that

νq′ ·
∏

w∈Pref(v)

ct(w)(δ(t|w1), . . . , δ(t|wk)) = νp′ · f (q) ·
∏

w∈Pref(v)

cu(w)(δ(u|w1), . . . , δ(u|wk)) . (3)

Now we will use the run-semantics of dwta (see [13, Definition 4.1.12] for a detailed exposition).
In [13, Lemma 4.1.13] it is proved that (ϕ,C[q]) = νq′ ·

∏
w∈posΣ(t) ct(w)(δ(t|w1), . . . , δ(t|wk)). Thus,

we compute

(ϕ,C[q]) = νq′ ·
∏

w∈posΣ(t)

ct(w)(δ(t|w1), . . . , δ(t|wk))

= νq′ ·
∏

w∈posΣ(t)\Pref(v)

ct(w)(δ(t|w1), . . . , δ(t|wk)) ·
∏

w∈Pref(v)

ct(w)(δ(t|w1), . . . , δ(t|wk)) .

Note that t(w) = u(w) and t|wi = u|wi for every i ∈ [1, k], t(w) ∈ Σk, and position w ∈ posΣ(t) such
that w < Pref(v). Finally, posΣ(t) = posΣ(u). Using (3) we thus obtain

νq′ ·
∏

w∈posΣ(t)\Pref(v)

ct(w)(δ(t|w1), . . . , δ(t|wk)) ·
∏

w∈Pref(v)

ct(w)(δ(t|w1), . . . , δ(t|wk))

= νp′ · f (q) ·
∏

w∈posΣ(u)\Pref(v)

cu(w)(δ(u|w1), . . . , δ(u|wk)) ·
∏

w∈Pref(v)

cu(w)(δ(t|w1), . . . , δ(t|wk))

= f (q) · (ϕ,C[p]) .

It remains to prove (3). For every w ∈ Pref(v), let iw ∈ N be such that wiw ∈ Pref(v) or wiw = v.
Moreover, let q′′ = r([q′]≡Π

). Since q′ ∈ F, we have νq′ = f (q′) · νq′′ and thus

νq′ · f (q)−1 ·
∏

w∈Pref(v)

ct(w)(δ(t|w1), . . . , δ(t|wk))

= νq′′ · f (q)−1 ·
∏

w∈Pref(v)

ct(w)(δ(t|w1), . . . , δ(t|wk)) · f (q′)

= νq′′ ·
∏

w∈Pref(v)

f (δ(t|wiw ))−1 ·
∏

w∈Pref(v)

ct(w)(δ(t|w1), . . . , δ(t|wk)) ·
∏

w∈Pref(v)

f (δ(t|w))

= νq′′ ·
∏

w∈Pref(v)

(
f (δ(t|wiw ))−1 · ct(w)(δ(t|w1), . . . , δ(t|wk)) · f (δ(t|w))

)
.

Since q′ ≡Π p′ and δ(t|wiw ) ≡Π δ(u|wiw ) we can use condition (ii) in Definition 14. We continue
with

νq′′ ·
∏

w∈Pref(v)

(
f (δ(t|wiw ))−1 · ct(w)(δ(t|w1), . . . , δ(t|wk)) · f (δ(t|w))

)
= νq′′ ·

∏
w∈Pref(v)

(
f (δ(u|wiw ))−1 · cu(w)(δ(u|w1), . . . , δ(u|wk)) · f (δ(u|w))

)
= νp′ · f (p)−1 ·

∏
w∈Pref(v)

cu(w)(δ(u|w1), . . . , δ(u|wk)) .
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Note that p is a representative and hence f (p) = 1. This finally yields

νp′ · f (p)−1 ·
∏

w∈Pref(v)

cu(w)(δ(u|w1), . . . , δ(u|wk))

= νp′ ·
∏

w∈Pref(v)

cu(w)(δ(u|w1), . . . , δ(u|wk)) .

By remark (†) on page 6, the scaling factor aq,p is unique for all live q, and hence aq,p = f (q),
which proves (ii). Moreover, (ϕ,C[p]) = f (p)· f (q)−1 ·(ϕ,C[q]) for every C ∈ CΣ(Q) and p, q ∈ Q
such that p ≡Π q. Thus, ≡Π is a refinement of ≡, which proves (i). �

This means that, given an initial partition that fulfills the restrictions of Lemmata 15 and 16,
the fixpoint is exactly the M-N relation because we proved it to be a lower and upper
bound in Lemmata 15 and 16, respectively.

Theorem 17. Let Π0 be the partition that induces �. For every i ∈ N, let fi : Q→ A be a scaling
map for Πi and Πi+1 = R(Πi, fi). Then Π j is the M-N relation for every j ∈ N
such that Π j+1 = Π j.

P. We proved in Lemma 4 that ≡ is a congruence on (Q, δ). Moreover, ≡ clearly saturates F.
Hence ≡ refines �. Now we can apply Lemma 15 to prove that ≡ refines Π j for every j ∈ N.
Moreover, Π j refines ≡ for every j ∈ N such that Π j+1 = Π j by Lemma 16. �

So we showed that iteration of the refinement indeed yields the M-N relation and
the required scaling factors (see Lemmata 12 and 16). However, we need a scaling map for every
partition produced during the refinement steps. An initial scaling map can easily be computed
(as in [15]) using the signs of life sol that we already computed, but for efficiency reasons the
later scaling maps are computed in a simpler way. In the setup of [15] this was not possible, but
our definition of scaling maps (see Definition 13) allows us to use any sign of life. We exploit
this in the next lemma, where we show how to update the scaling map after a refinement step.

Lemma 18 (Scaling map update). Let Π be a partition of Q that saturates F. Moreover, let
f : Q → A be a scaling map for Π and Π′ = R(Π, f ). Then the mapping g : Q → A with
g(q) = f (q) · f (r([q]≡Π′

))−1 for every q ∈ Q is a scaling map for Π′.

P. By Definition 13 we need to prove that

(i) νq = f (q) · f (p)−1 · νp where p = r([q]≡Π′
) for every q ∈ F,

(ii) g(q) = 1 for every q ∈ D.
(iii) for every B ∈ Π′ there exists C ∈ CΣ(Q) such that (ϕ,C[q]) = f (q) · f (r(B))−1 · (ϕ,C[r(B)])

and C is a sign of life of q for every live q ∈ B.

Let us start with condition (i). Let q ∈ F, p = r([q]≡Π
), and p′ = r([q]≡Π′

). We observe that

f (q) · f (p′)−1 · νp′ = νq · ν
−1
p · ν

−1
p′ · νp · νp′ = νq

since q ≡Π p ≡Π p′ and thus {q, p, p′} ⊆ F (because ≡Π saturates F). Condition (ii) trivially
holds because r([q]≡Π′

) is dead whenever q is dead.
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Algorithm 2 Minimization of dwta M.
(Π, sol,D)← CSL // see Algorithm 1; complexity: O(lm)

2: Π← RC(Π) // refine to coarsest congruence; complexity: O(lm log n)
f ← CSM(Π) // see Algorithm 3; complexity: O(n2)

4: repeat
Π′ ← Π // store old partition

6: Π← R(Π, f ) // see Algorithm 4; complexity: O(lm)
f ← USM(Π, f ) // see Algorithm 5; complexity: O(n)

8: until Π′ = Π

return M/≡Π // see Definition 5; complexity O(lm)

Finally, let us consider condition (iii). Let B ∈ Π′ and let S ∈ Π be such that B ⊆ S . By
Definition 13 let C ∈ CΣ(Q) be such that (ϕ,C[q]) = f (q) · (ϕ,C[r(S )]) and C is a sign of life
of q for every live q ∈ S . Since r(B) ∈ S

(ϕ,C[q]) = f (q) · (ϕ,C[r(S )]) = f (q) · f (r(B))−1 · (ϕ,C[r(B)])

for every live q ∈ B, which proves the statement. �

4.2. Algorithm

In this section, we finally present the minimization algorithm and its auxiliary procedures. In
addition, we analyze their complexity. Let us start with the principal structure of the minimiza-
tion algorithm. We already remarked that we iteratively refine an initial partition until we reach
a fixpoint. The general approach is shown in Algorithm 2. Note that M, sol, and D are treated as
global variables in our algorithms to simplify the presentation. The variables sol and D are set
once and then retain their value without further changes. The procedure RC(Π) returns
the coarsest congruence on (Q, δ) that refines Π. It is known [28] that it can be implemented to
run in time O(lm log n).

Our approach is quite the opposite of the approach of [24, 25]. Their approach first handles
the transition weights and then uses RC to derive the final partition. Here we apply
RC directly to the initial partition computed by Algorithm 1. This guarantees that all
equivalent states share signs of life by Lemma 9. Then we compute the initial scaling map using
the already computed signs of life. After that we iteratively refine and update the scaling map
until a fixpoint is reached. By Theorem 17 we know that this fixpoint is ≡.

Let us proceed in order of occurrence in Algorithm 2. Next we show in Algorithm 3 how to
compute the initial scaling map. In this algorithm we use the computed signs of life. Note that
sol and D refer, as usual, to the signs of life and the set of dead states, respectively, as computed
by Algorithm 1.

Lemma 19. For every partition Π of Q such that ≡ refines Π and Π refines �, Algorithm 3 can
be implemented to run in time O(n2) and returns a scaling map f for Π.

P. Since ≡ refines Π and Π refines �, the set D of dead states is a block in Π. Thus,
each state is handled exactly once (either in line 4 or 6 of Algorithm 3). Recall that we as-
sume that r(P) can be computed in constant time for every P ⊆ Q. Thus, only the computa-
tions (ϕ, sol(q)[q]) and (ϕ, sol(q)[p]) in lines 2 and 4, respectively, remain. By Theorem 11(iv),
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Algorithm 3 CSM(Π): Compute scaling map.
Require: partition Π of Q

for all P ∈ Π such that P ∩ D = ∅ do
2: let q = r(P) and a = (ϕ, sol(q)[q])−1 // compute representative and weight

for all p ∈ P do
4: f (p)← a · (ϕ, sol(q)[p]) // compute scaling factor

for all q ∈ D do
6: f (q)← 1 // dead states have scaling factor 1

return f

sol(q) consists of at most n transitions and since M is a dwta we can compute (ϕ, sol(q)[q]) and
(ϕ, sol(q)[p]) in time O(n). This yields that Algorithm 3 runs in time O(n2).

For the correctness we should establish conditions (i)–(iii) of Definition 13. Condition (ii)
is trivially fulfilled by lines 5–6. Since no block of Π apart from D itself intersects with D, for
every P ∈ Π and live p ∈ P, line 4 enforces

(ϕ, sol(r(P))[p]) = f (p) · (ϕ, sol(r(P))[r(P)]) .

Thus, condition (iii) is fulfilled if we show that sol(r(P)) is a sign of life of q for every q ∈ P.
By Theorem 11(iv), sol(r(P)) is a sign of life of r(P). Consequently, sol(r(P)) is a sign of life
of q by Lemma 9 because r(P) ≡Π q for every q ∈ P. Moreover, sol(q) = � for every q ∈ F by
Theorem 11(iii), which shows condition (i) in a straightforward manner. �

Definition 14 already gives a concise description of the refinement process. Let us never-
theless present pseudo-code for the procedure to make the complexity analysis easier. In Al-
gorithm 4 we present an implementation of the procedure outlined in Definition 14. Note that
essentially all transitions are checked in Definition 14 and in the algorithm we make this fact
apparent.

Lemma 20. Algorithm 4 implements R(Π, f ) and runs in time O(lm).

P. We leave correctness as an exercise to the reader. For the time complexity, we observe
that the loop in lines 2–11 is executed at most m times. In addition, the inner loop in lines 5–11
runs at most l times per iteration of the outer loop. Using suitable representations, the remaining
operations in lines 1–11 can be made to run in constant time, so that we need O(lm) for lines 1–
12. The loop in lines 13–16 runs at most n times and since n ≤ m, we obtain the overall time
complexity O(lm). �

Finally, we present the easy algorithm for the update of the scaling map. Lemma 18 already
reveals how to compute the update instead of recomputing the scaling map using CSF,
which was used in [15]. The reuse of the old scaling map to compute the new one yields a
performance gain of a factor n (cf. Lemma 19).

Lemma 21. Algorithm 5 runs in time O(n).

P. The proof is straightforward and omitted. �

Theorem 22. Algorithm 2 returns a minimal dwta recognizing ϕ and runs in time O(lmn).
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Algorithm 4 R(Π, f ): Refine partition.
Require: partition Π of Q and scaling map f for Π

S ← ∅ // collect all split states in S
2: for all σ ∈ Σk and q1, . . . , qk ∈ Q such that δσ(q1, . . . , qk) < D do

q← δσ(q1, . . . , qk) // get target state
4: a← cσ(q1, . . . , qk) // get transition weight

for all i ∈ [1, k] do
6: p← δσ(q1, . . . , qi−1, r([qi]), qi+1, . . . , qk) // get target state using representative

if q .Π p then
8: S ← S ∪ {qi} // violation of condition (i) of Definition 14; split state

b← cσ(q1, . . . , qi−1, r([qi]), qi+1, . . . , qk) // get transition weight using representative
10: if f (qi)−1 · a · f (q) , b · f (p) then

S ← S ∪ {qi} // violation of condition (ii) of Definition 14; split state
12: Π′ ← ∅ // output partition

for all P ∈ Π do
14: Π′ ← Π ∪ {P \ S } // take out split states from current block

if P \ S , P then
16: Π′ ← Π′ ∪ {P ∩ S } // if states were split, add split states as new block

return Π′

P. By Theorem 11, the partition Π in line 1 is such that ≡ refines Π, which saturates F.
Since ≡ is a congruence on (Q, δ) by Lemma 4, the partition Π in line 2 still has the properties
that ≡ refines it and that it saturates F. Moreover, it clearly refines � because � is the coarsest
congruence on (Q, δ). Thus, we meet the requirements for Lemma 19 and f in line 3 is a scaling
map for Π.

By repeated applications of Lemmata 15 and 18 we can easily show that every Π in lines 2–
9 is a partition such that ≡ refines Π and Π refines �. Moreover, every Π in lines 5–9 is a
refinement of Π′ by Lemma 15. This yields that the loop in lines 4–8 can be executed at most
n times. Finally, by Lemma 16 we have that Π coincides with ≡ in line 9 and thus by Theorem 8
the algorithm returns a minimal dwta recognizing ϕ.

The comments in Algorithm 2 list the complexity of the subalgorithms. Those complexi-
ties are known or were proved in Theorem 11 and Lemmata 19, 20, 21, and 12. We already
remarked that the loop in lines 4–8 can be entered at most n times. The contents of the loop
runs in time O(lm) because m ≥ n. This immediately yields that the overall algorithm runs in
time O(lmn). �

5. A small example

Let us rediscuss the example of [15] using our new minimization algorithm. We use the field
(R,+, ·, 0, 1) and the ranked alphabet

Σ = {σ,Alice,Bob, loves, hates, ugly, nice,mean} ,

of which σ is binary and all other symbols are nullary. We abbreviate the multi-letter symbols
by their first letter (e.g., Alice by just A). As states we use

Q = {NP,VB,ADJ,VP,NN,S,⊥}
18



Algorithm 5 USM(Π, f ): Update scaling map.
Require: partition Π of Q and map f : Q→ A \ {0}

for all P ∈ Π do
2: a← f (r(P))−1 // get old scaling factor of representative of block P

for all p ∈ P do
4: f ′(p)← f (p) · a // compute new scaling factor

return f ′

of which only S is final (with νS = 1). We order the states in the same sequence as given in the
previous display and we use the representative mapping r, which for every nonempty P ⊆ Q,
returns the smallest state in P with respect to that order. Transitions and transition weights are
given as follows:

δσ(NN,VP) = S δσ(NP,VP) = S δσ(VB,NN) = VP δσ(VB,NP) = VP
cσ(NN,VP) = 0.5 cσ(NP,VP) = 0.5 cσ(VB,NN) = 0.5 cσ(VB,NP) = 0.5

δσ(ADJ,NN) = NP δσ(ADJ,NP) = NP
cσ(ADJ,NN) = 0.5 cσ(ADJ,NP) = 0.5

and

δA() = NN δB() = NN δl() = VB δh() = VB δu() = ADJ δn() = ADJ δm() = ADJ
cA() = 0.5 cB() = 0.5 cl() = 0.5 ch() = 0.5 cu() = 0.33 cn() = 0.33 cm() = 0.33 .

For all remaining combinations (x, y) we set δσ(x, y) = ⊥ and cσ(x, y) = 1. Now, we have
completely specified our input dwta M, which has no useless states.

Next, we compute signs of life according to Algorithm 1. It may return (Π, sol, {⊥}) where
Π = {{S }, {VP,NP,NN}, {ADJ,VB}, {⊥}} and the signs of life are

sol(S) = � sol(NP) = σ(�,VP) sol(ADJ) = σ(σ(�,NN),VP)
sol(VP) = σ(NN,�) sol(NN) = σ(�,VP) sol(VB) = σ(NN, σ(�,NN)) .

Then we call RC(Π), which returns

Π′ = {{S}, {VP}, {NP,NN}, {ADJ}, {VB}, {⊥}}

because the sign of life of NN is not a sign of life of VP and analogously for ADJ and VB. The
subsequent call CSM(Π′) returns the scaling map f with f (q) = 1 for all live states q.

Finally, we refine this partition, but NP and NN are not split. Thus, we construct the dwta
(M/≡Π′ ) = (Q′,Σ,R, δ′, c′, ν′) with

Q′ = {NP,VB,ADJ,VP,S,⊥} ,

of which only S is final with ν′S = 1. Transitions and transition weights are given as follows:

δ′σ(NP,VP) = S δ′σ(VB,NP) = VP δ′σ(ADJ,NP) = NP
c′σ(NP,VP) = 0.5 c′σ(VB,NP) = 0.5 c′σ(ADJ,NP) = 0.5
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and

δ′A() = NP δB() = NP δ′l() = VB δh() = VB δ′u() = ADJ δ′n() = ADJ δ′m() = ADJ
c′A() = 0.5 c′B() = 0.5 c′l() = 0.5 c′h() = 0.5 c′u() = 0.33 c′n() = 0.33 c′m() = 0.33 .

For all remaining combinations (x, y) we have δ′σ(x, y) = ⊥ and c′σ(x, y) = 1.

Conclusion and open problems

We presented the first efficient minimization algorithm for deterministic weighted tree au-
tomata over semifields. If we suppose that the semifield operations can be performed in constant
time, then the algorithm runs in time O(lmn). In fact, our algorithm works equally well for dwta
with final states (i.e., νq ∈ {0, 1} for every q ∈ Q) because it then returns a minimal equiva-
lent dwta with final states. This contrasts the situation encountered with the pushing strategy
of [24, 25], which, in general, needs final weights.

Finally, let us mention some open problems. Can a H-like strategy [29] improve
the presented algorithm to run in time O(lm log n)? The author doubts that the presented ap-
proach yields to this method, however the approach of [24, 25] for deterministic weighted string
automata might. This could lead to an algorithm that outperforms our algorithm. Finally, the
theoretical foundation for minimization of (even nondeterministic) wta over fields has been laid
in [1, 18], but an efficient algorithm and a detailed complexity analysis are still missing.
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