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Abstract. In this contribution the Myhill-Nerode congruence rela-
tion on tree series is reviewed and a more detailed analysis of its prop-
erties is presented. It is shown that, if a tree series is deterministi-
cally recognizable over a zero-divisor free and commutative semiring,
then the Myhill-Nerode congruence relation has finite index. By [Bor-
chardt: Myhill-Nerode Theorem for Recognizable Tree Series. LNCS 2710.
Springer 2003] the converse holds for commutative semifields, but not in
general. In the second part, a slightly adapted version of the Myhill-
Nerode congruence relation is defined and a characterization is obtained
for all-accepting weighted tree automata over multiplicatively cancella-
tive and commutative semirings.

1 Introduction

By the Myhill-Nerode theorem, we know that for every regular string lan-
guage L, there exists a unique (up to isomorphism) minimal deterministic finite
string automaton that recognizes L. This result was extended to several devices
including finite tree automata (see the discussion in [1]), to weighted string au-
tomata [2] over (multiplicatively) cancellative semirings, and to weighted tree
automata [3] over semifields (see [4,5] for an introduction to semirings). For the
weighted devices, the minimal deterministic automaton is no longer unique up to
isomorphism. The structure of it is still unique but the distribution of the weights
on the transitions may vary. In [2] this is called unique up to pushing. Weighted
tree automata and transducers recently found promising applications (see [6]
for a survey) in natural language processing, where the size of the automata is
crucial and thus minimization essential.

Let us recall the Myhill-Nerode congruence of [7]. Two trees t and u are
equal in the Myhill-Nerode congruence ≡ψ for a given tree series ψ over the
semifield (A,+, ·, 0, 1), if there exist nonzero coefficients a, b ∈ A such that for
all contexts C we observe the equality a−1 · (ψ,C[t]) = b−1 · (ψ,C[u]). In this
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expression, the coefficients a and b can be understood as the weights of t and u,
respectively. Both sides of the previous equation can be understood as futures;
the futures ψt and ψu are given for every context C by (ψt, C) = a−1 · (ψ,C[t])
and (ψu, C) = b−1 · (ψ,C[u]). Roughly speaking, in ψt a context is assigned the
weight of C[t] in ψ with the weight of t cancelled out. In other words, trees
t and u are equal if and only if their futures ψt and ψu coincide.

The Myhill-Nerode congruence ≡ψ has two major applications: (i) it ex-
actly characterizes whether ψ is deterministically recognizable; i.e., ψ is deter-
ministically recognizable if and only if ≡ψ has finite index; and (ii) it presents
a minimal deterministic wta that recognizes the tree series ψ. In this contri-
bution, we consider the Myhill-Nerode relation for semirings which are not
necessarily semifields. We will show that, for all commutative and zero-divisor
free (i.e., a · b = 0 implies that 0 ∈ {a, b}) semirings, a deterministically recog-
nizable tree series ψ yields a Myhill-Nerode congruence ≡ψ with finite index.
Thus whenever ≡ψ has infinite index, then ψ is not deterministically recogniz-
able. This extends a result of [7] from commutative semifields to commutative
and zero-divisor free semirings. Secondly, we also consider the opposite direc-
tion with a particular focus on the minimal deterministic wta. We show how
all-accepting [8] wta over cancellative semirings are related to unweighted tree
automata. This connection can be used to minimize deterministic all-accepting
wta over commutative and cancellative semirings. A Myhill-Nerode theorem
for all-accepting wta over semifields is already presented in [8]. We contribute
an explicit minimization and an extension of the result to cancellative semirings.
Note that every cancellative semiring can be embedded into a semifield, but solv-
ing the problem in the semifield might yield a wta using coefficients that do not
exist in the cancellative semiring (e.g., for the natural numbers the resulting wta
might use fractions). It then remains open whether a wta using only coefficients
of the cancellative semiring exists.

Finally, we also investigate the construction of a minimal wta in the gen-
eral case (again over a cancellative semiring). To this end, we present a slightly
adapted Myhill-Nerode relation. However, one main point remains open: In
cancellative semirings (as opposed to semifields) the Myhill-Nerode congru-
ence relation is not always implementable. It remains an open problem to define
suitable properties on ψ and the underlying semiring A such that the refined
Myhill-Nerode congruence is implementable. We demonstrate the applicabil-
ity of the general approach by deriving such properties and thus a Myhill-
Nerode theorem for deterministic all-accepting weighted tree automata.

2 Preliminaries

We use N to represent the nonnegative integers. Further we denote {n ∈ N | 1 6 n
6 k} by [1, k]. A set Σ that is nonempty and finite is also called an alphabet. A
ranked alphabet is an alphabet Σ with a mapping rkΣ : Σ → N. We write Σk for
{σ ∈ Σ | rkΣ(σ) = k}. Given a ranked alphabet Σ, the set of Σ-trees, denoted
by TΣ , is inductively defined to be the smallest set T such that for every k ∈ N,
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σ ∈ Σk, and t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . We generally write α instead
of α() whenever α ∈ Σ0. Let � be a distinguished nullary symbol. A context C
is a tree from TΣ∪{�} such that the nullary symbol � occurs exactly once in C.
The set of all contexts over Σ is denoted by CΣ . Finally, we write C[t] for the
tree of TΣ that is obtained by replacing in the context C ∈ CΣ the unique
occurrence of � with the tree t ∈ TΣ .

Let ≡ and ∼= be equivalence relations on a set S. We write [s]≡ for the
equivalence class of s ∈ S and (S/≡) = {[s]≡ | s ∈ S} for the set of equivalence
classes. We drop the subscript from [s]≡ whenever it is clear from the context.
We say that ≡ is coarser than ∼= if ∼= ⊆ ≡. Now suppose that S = TΣ . We say
that ∼= is a congruence (on the term algebra TΣ) if for every k ∈ N, σ ∈ Σk, and
s1, . . . , sk, t1, . . . , tk ∈ TΣ with si ∼= ti also σ(s1, . . . , sk) ∼= σ(t1, . . . , tk).

A (commutative) semiring is an algebraic structure (A,+, ·, 0, 1) consisting
of two commutative monoids (A,+, 0) and (A, ·, 1) such that · distributes over +
and 0 is absorbing with respect to · . As usual we use

∑
i∈I ai for sums of fam-

ilies (ai)i∈I of ai ∈ A where for only finitely many i ∈ I we have ai 6= 0.
The semiring (A,+, ·, 0, 1) is called zero-sum free if for every a, b ∈ A the condi-
tion a+b = 0 implies that a = 0 = b. We call a semiring (A,+, ·, 0, 1) zero-divisor
free if a · b = 0 implies that a = 0 or b = 0. Moreover, A is called cancellative
if a · b = a · c implies b = c for every a, b, c ∈ A with a 6= 0. Generally, we write
a|b whenever there exists an element c ∈ A such that a · c = b. Note that in
a cancellative semiring such an element c, if any exists, is uniquely determined
unless a = 0 = b. In cancellative semirings, we thus write b/a for that uniquely
determined element c provided that (i) a|b and (ii) a 6= 0 or b 6= 0. Finally, a
semifield A = (A,+, ·, 0, 1) is a semiring such that for every a ∈ A \ {0} there
exists an element a−1 ∈ A such that a · a−1 = 1.

Let S be a set and (A,+, ·, 0, 1) be a semiring. A (formal) power series ψ is
a mapping ψ : S → A; the set of all such mappings is denoted by A〈〈S〉〉. Given
s ∈ S, we denote ψ(s) also by (ψ, s) and write the series as

∑
s∈S(ψ, s) s. The

support of ψ is supp(ψ) = {s ∈ S | (ψ, s) 6= 0}. The series with empty support
is denoted by 0̃. Power series ψ,ψ′ ∈ A〈〈S〉〉 are added componentwise and mul-
tiplied componentwise with a semiring element; i.e., (ψ+ψ′, s) = (ψ, s) + (ψ′, s)
and (a · ψ, s) = a · (ψ, s) for every s ∈ S and a ∈ A. In this paper, we only
consider power series in which the set S is a set of trees. Such power series are
also called tree series.

There is an abundance of (conceptionally) equivalent definitions of weighted
tree automata [9,10,11] for various restricted semirings. Here we will only con-
sider the general notion of [11,7]. A weighted tree automaton [7] (for short: wta)
is a tuple (Q,Σ,A, F, µ) where Q is a nonempty, finite set of states; Σ is a ranked
alphabet of input symbols; A = (A,+, ·, 0, 1) is a semiring; F : Q→ A is a final

weight assignment ; and µ = (µk)k∈N with µk : Σk → AQ
k×Q is a tree represen-

tation. The wta M is called (bottom-up) deterministic (respectively, (bottom-up)
complete), if for every k ∈ N, σ ∈ Σk, and q1, . . . , qk ∈ Q there exists at most
(respectively, at least) one q ∈ Q such that µk(σ)q1···qk,q 6= 0. The wta induces
a mapping hµ : TΣ → AQ that is defined for every k ∈ N, σ ∈ Σk, q ∈ Q, and
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t1, . . . , tk ∈ TΣ by

hµ(σ(t1, . . . , tk))q =
∑

q1,...,qk∈Q
µk(σ)q1···qk,q · hµ(t1)q1 · . . . · hµ(tk)qk .

The wta M recognizes the tree series S(M) ∈ A〈〈TΣ〉〉 given by

(S(M), t) =
∑
q∈Q

F (q) · hµ(t)q

for every tree t ∈ TΣ . A tree series ψ ∈ A〈〈TΣ〉〉 is called recognizable (re-
spectively, deterministically recognizable), if there exists a wta M (respectively,
deterministic wta M) such that S(M) = ψ. The sets of all recognizable and de-
terministically recognizable tree series are denoted by Arec〈〈TΣ〉〉 and Arec

det〈〈TΣ〉〉,
respectively.

3 Recognizable Yields Finite Index

In this section, we show that the Myhill-Nerode congruence given by [3,
Section 5] is necessarily of finite index for every deterministically recognizable
series over a zero-divisor free semiring. Thus we derive a necessary criterion for
a series ψ ∈ A〈〈TΣ〉〉 to be recognizable by some deterministic wta. Moreover,
we also obtain a lower bound on the number of states of any deterministic wta
that recognizes ψ. The development in this section closely follows [7, Chapter 7]
where the same statements are proved for semifields.

Let us start with the definition of the Myhill-Nerode relation for a tree
series ψ ∈ A〈〈TΣ〉〉. Intuitively, two trees t, u ∈ TΣ are related if they behave
equal in all contexts C ∈ CΣ (up to fixed factors). The factors can be imagined
to be the weights of the trees t and u.

Definition 1 (see [7, Chapter 7]). Let ψ ∈ A〈〈TΣ〉〉. We define ≡ψ ⊆ TΣ×TΣ
for every t, u ∈ TΣ by t ≡ψ u if and only if there exist a, b ∈ A \ {0} such that
for every C ∈ CΣ we observe a · (ψ,C[t]) = b · (ψ,C[u]).

The relation ≡ψ is equivalent to the Myhill-Nerode relation presented
in [3, Section 5] provided that the semiring is a semifield. Our first lemma states
that ≡ψ is indeed an equivalence relation, and moreover, a congruence whenever
the underlying semiring is zero-divisor free.

Lemma 2 (cf. [7, Lemma 7.1.2(ii)]). Let A be a zero-divisor free semiring
and ψ ∈ A〈〈TΣ〉〉. Then ≡ψ is a congruence.

Proof. The proof follows the proof of [7, Lemma 7.1.2(ii)], where it is proved for
semifields. ut

We presented a congruence which is uniquely determined by ψ. First we show
that every deterministic and complete wta M = (Q,Σ,A, F, µ) also induces
a congruence relation. For the development of this we need some additional
notions. The fta underlying M (see [12,13] for a detailed introduction to finite
tree automata; for short: fta) is defined as B(M) = (Q,Σ, δ, F ′) where
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– q ∈ δσ(q1, . . . , qk) iff µk(σ)q1···qk,q 6= 0 for every k ∈ N, σ ∈ Σk, and
q, q1, . . . , qk ∈ Q; and

– q ∈ F ′ iff Fq 6= 0 for every q ∈ Q.

We note that the fta underlying a deterministic and complete wta is deter-
ministic and complete. Now let M be a deterministic and complete wta and
B(M) = (Q,Σ, δ, F ′) be the fta underlying M . We define the map RM : TΣ → Q
for every t ∈ TΣ by RM (t) = q where q ∈ Q is the unique state such that
q ∈ δ(t). Existence and uniqueness are guaranteed by completeness and deter-
minism of B(M), respectively. We denote ker(RM ) by ≡M . The following lemma
follows the traditional unweighted approach.

Lemma 3. Let M be a deterministic and complete wta over Σ. Then ≡M is a
congruence with finite index.

Having two congruences, namely ≡M and ≡S(M), let us try to relate them.
In fact, it turns out that ≡S(M) is coarser than ≡M for every deterministic and
complete wta M over a zero-divisor free semiring. This shows that we need at
least as many states as there are equivalence classes in ≡ψ to recognize ψ with
some deterministic and complete wta.

Theorem 4. Let A be a zero-divisor free semiring, and let M be deterministic
and complete wta over A. Then ≡S(M) is coarser than ≡M .

Proof. Let M = (Q,Σ,A, F, µ), and let t, u ∈ TΣ be such that t ≡M u; that
is RM (t) = RM (u). Let p = RM (t). Thus, also RM (C[t]) = RM (C[u]). Let
a = hµ(u)RM (u) and b = hµ(t)RM (t). We claim that for every context C ∈ CΣ

a · (S(M), C[t]) = b · (S(M), C[u]) .

Let us distinguish two cases for q = RM (C[t]). First, let us suppose that Fq = 0.
Then the displayed equation holds because (S(M), C[t]) = 0 = (S(M), C[u]). In
the remainder suppose that Fq 6= 0. Clearly, since t ≡M u also C[t] ≡M C[u]
because ≡M is a congruence by Lemma 3. Thus

a · (S(M), C[t]) = hµ(u)p · Fq · hµ(C[t])q = hµ(u)p · Fq · hµ(C)pq · hµ(t)p

= hµ(t)p · Fq · hµ(C[u])q = b · (S(M), C[u])

where hµ(C[t])q = hµ(C)pq · hµ(t)p can be proved in a straightforward manner.
Consequently, ≡S(M) is coarser than ≡M . ut

As already argued this theorem admits an important corollary, which shows
a lower bound on the number of states of any deterministic and complete wta
that recognizes a certain series.

Corollary 5. Let A be a zero-divisor free semiring and ψ ∈ A〈〈TΣ〉〉. Every
deterministic and complete wta M over A with S(M) = ψ has at least index(≡ψ)
states.



Myhill-Nerode Theorem for Recognizable Tree Series Revisited 111

Proof. Let M = (Q,Σ,A, F, µ). By Theorem 4, we have that ≡ψ is coarser
than ≡M . Thus card(Q) ≥ index(≡M ) ≥ index(≡ψ). ut

Let us show that the statement does not hold, if we consider arbitrary semi-
rings. Essentially, if the semiring admits zero-divisors, then it can store informa-
tion in the weight.

Example 6. Let Z4 = ({0, 1, 2, 3},+, ·, 0, 1) where + and · are the usual addition
and multiplication, respectively, modulo 4. Clearly, 2 · 2 = 0 and thus Z4 is not
zero-divisor free. Let Σ = {σ(2), α(0), β(0)}. We consider the series ψ ∈ Z4〈〈TΣ〉〉
which is defined for every t ∈ TΣ by

(ψ, t) =


1 if |t|α = 0

2 if |t|α = 1

0 otherwise.

Let M = ({?}, Σ,Z4, F, µ) with F? = 1 and

µ0(α)? = 2 µ0(β)? = 1 µ2(σ)??,? = 1 .

It can easily be checked that S(M) = ψ. Let us suppose that still ≡ψ is coarser
than ≡M . Since card(Q) = 1 this means that t ≡ψ u for all t, u ∈ TΣ . We
consider the trees σ(α, α) and β. By definition, we should have that there exist
a, b ∈ [1, 3] such that for every C ∈ CΣ

a · (ψ,C[σ(α, α)]) = b · (ψ,C[β]) .

Now consider the context C = �. Thus a · 0 = b · 1 and thus b = 0. However,
b ∈ [1, 3] which is the desired contradiction. Thus σ(α, α) 6≡ψ β and ≡ψ is not
coarser than ≡M .

Finally, let us conclude this section with an application of Corollary 5. We
can envision at least two uses of Corollary 5. It can be used to show that some
wta is minimal (or almost so), and it can be used to show that some tree se-
ries ψ is not recognizable. The standard examples for the latter use concerns
the tree series size and height over the natural numbers and the arctic semi-
ring (N ∪ {−∞},max,+,−∞, 0), respectively (see discussion at [7, Examples
7.3.2 and 8.1.8]). We demonstrate the application of Corollary 5 on another
example.

Example 7. Let Σ be a ranked alphabet such that Σ = Σ2 ∪ Σ0. We use the
tropical semiring T = (N ∪ {∞},min,+,∞, 0). It is easily checked that T is
zero-divisor free (and cancellative), but not a semifield. We define the mapping
zigzag : TΣ → N for every α ∈ Σ0 and σ, δ ∈ Σ2 and t1, t2, t3 ∈ TΣ by

zigzag(α) = 1

zigzag(σ(α, t1)) = 2
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zigzag(σ(δ(t1, t2), t3)) = 2 + zigzag(t2) .

It is straightforward to show that zigzag ∈ T rec〈〈TΣ〉〉. In fact, zigzag can be
recognized by a top-down deterministic wta [7, Section 4.2] with only 2 states.
But can zigzag be recognized by a (bottom-up) deterministic wta over Σ and T ?
We use Corollary 5 to show that no deterministic wta recognizes zigzag. Clearly,
this is achieved by proving that ≡zigzag has infinite index. Let t, u ∈ TΣ . Suppose
that t ≡zigzag u. Then there exist a, b ∈ N such that for every context C ∈ CΣ

a+ (zigzag, C[t]) = b+ (zigzag, C[u]) .

Now consider the contexts C1 = � and C2 = σ(α,�). We obtain the equations

a+ zigzag(t) = b+ zigzag(u)

a+ 2 = b+ 2

From the second equality we can conclude that a = b and zigzag(t) = zigzag(u).
Hence ker(zigzag) is coarser than ≡zigzag. However, ker(zigzag) has infinite index,
which shows that also ≡zigzag has infinite index, and thus, by Corollary 5, no
deterministic wta can recognize zigzag.

4 Finite Index Yields Recognizable

In this section we investigate whether the lower bound established in the previ-
ous section can be achieved. Certainly, [7, Theorem 7.4.1] shows that for every
ψ ∈ Arec

det〈〈TΣ〉〉 (with A a semifield) there exists a deterministic and complete
wta over A with exactly index(≡ψ) states so that S(M) = ψ. In this section
we investigate this issue for deterministic all-accepting wta over cancellative
semirings. The principal approach can also be extended to deterministic wta
over certain cancellative semirings. Let us illustrate the problem in the semiring
(N,+, ·, 0, 1) that is not a semifield but cancellative.

Consider the series ψ : TΣ → N with Σ = {γ(1), α(0)} and

(ψ, γn(α)) =


2 if n = 0

3 if n = 1

4 otherwise.

It is easily checked that α 6≡ψ γ(α) 6≡ψ γn(α) 6≡ψ α for every n > 1 as well as
γm(α) ≡ψ γn(α) for every m > 1 and n > 1. Thus, index(≡ψ) = 3. However, it
can be shown that there exists no deterministic all-accepting [8] wta M such that
S(M) = ψ. On the other hand, it is surprisingly easy to construct a deterministic
wta M such that S(M) = ψ. In fact, M can be constructed such that it has
3 states.



Myhill-Nerode Theorem for Recognizable Tree Series Revisited 113

4.1 Minimization of Deterministic All-Accepting wta

Let us discuss the problem for deterministic all-accepting wta [8, Section 3.2].
It is known that for every deterministic all-accepting wta M over a semifield
there exists a unique (up to isomorphism) minimal deterministic and complete
all-accepting wta that recognises S(M) [8, Lemma 3.8]. We plan to extend this
result to cancellative semirings. Now let us formally introduce the all-accepting
property. We say that the wta M = (Q,Σ,A, F, µ) is all-accepting [8] if F (q) = 1
for all q ∈ Q. We abbreviate all-accepting wta simply to aa-wta.

Let M be a deterministic aa-wta M . The tree series S(M) recognised by M
is subtree-closed [8, Section 3.1]; that is, for every tree t with (S(M), t) 6= 0 also
(S(M), u) 6= 0 for every subtree u of t. We repeat [8, Observation 3.1] for ease
of reference.

Proposition 8 (see [8, Observation 3.1]). Let M be a deterministic aa-wta.
Then S(M) is subtree-closed.

In order to avoid several cases, we assume that 0/0 = 0 (i.e., we allow to
cancel 0 from 0) for the rest of the paper. First we begin with two conditions
which are necessary for a series ψ ∈ A〈〈TΣ〉〉 to be recognizable by a deterministic
aa-wta. The first condition checks whether the weight of a tree can be obtained
from the weights of the subtrees and the second condition checks whether finitely
many coefficients are sufficient. We say that ψ is implementable if

– ((ψ, t1) · . . . · (ψ, tk))|(ψ, σ(t1, . . . , tk)) for every k ∈ N, σ ∈ Σk, and all trees
t1, . . . , tk ∈ TΣ ; and

– for every k ∈ N the following set Ck(ψ) is finite.

Ck(ψ) =
{ (ψ, σ(t1, . . . , tk))

(ψ, t1) · . . . · (ψ, tk)

∣∣∣ σ ∈ Σk, t1, . . . , tk ∈ TΣ}
Proposition 9. Let M be a deterministic aa-wta over a cancellative semiring.
Then S(M) is implementable.

Proof. The proof is standard and hence omitted. ut

This shows that a series that is not implementable cannot be recognized by
any deterministic aa-wta. In fact, this is the reason why the series ψ given at the
beginning of Section 4 cannot be recognized by any deterministic aa-wta. Now
we will show that the notion of recognizability by deterministic aa-wta over
cancellative semirings is closely related to classical unweighted recognizability
(as induced by fta). In fact, the weights of the deterministic aa-wta are uniquely
determined so that they can also be included in the input ranked alphabet.

Definition 10. Let ψ ∈ A〈〈TΣ〉〉 be implementable over the cancellative semi-
ring A. We define the ranked alphabet ∆ by ∆k = Σk × Ck(ψ) for every k ∈ N.
Moreover, let ·|1 : T∆ → TΣ be the mapping that replaces every node label of the
form 〈σ, c〉 in the input tree simply by a node with label σ. Finally, we define the
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tree language L(ψ) ⊆ T∆ as the smallest language L such that for every k ∈ N,
σ ∈ Σk, and u1, . . . , uk ∈ L with ti = ui|1 for every i ∈ [1, k]〈
σ,

(ψ, σ(t1, . . . , tk))

(ψ, t1) · . . . · (ψ, tk)

〉
(u1, . . . , uk) ∈ L ⇐⇒ σ(t1, . . . , tk) ∈ supp(ψ) .

Theorem 11. Let ψ ∈ A〈〈TΣ〉〉 with A a cancellative semiring. Then ψ is rec-
ognizable by some deterministic aa-wta if and only if ψ is implementable and
L(ψ) is recognizable.

Proof. Let M = (Q,Σ,A, F, µ) be a deterministic aa-wta and M ′ = (Q,∆, δ,Q)
be a deterministic fta. We call M and M ′ related if

µk(σ)q1···qk,q = c ⇐⇒
(
〈σ, c〉(q1, . . . , qk)→ q

)
∈ δ

µk(σ)q1···qk,q = 0 ⇐⇒ ∀c ∈ A :
(
〈σ, c〉(q1, . . . , qk)→ q

)
/∈ δ

for every k ∈ N, σ ∈ Σk, c ∈ Ck(ψ) \ {0}, and q, q1, . . . , qk ∈ Q.
Now suppose that M and M ′ are related. We claim that L(M ′) = L(S(M));

the proof of this statement is omitted. Finally, let us now turn to the main
statement. First let us suppose that a deterministic aa-wta M = (Q,Σ,A, F, µ)
such that S(M) = ψ exists. By Proposition 9 it follows that ψ is implementable.
Clearly, we can construct a deterministic fta M ′ such that M and M ′ are related.
By the claimed property, we then have L(M ′) = L(S(M)) = L(ψ), which proves
that L(ψ) is recognizable.

For the remaining direction, let ψ be implementable and, without loss of
generality, let M ′ = (Q,∆, δ, F ′) be a deterministic fta such that L(M ′) = L(ψ)
and every state is reachable and co-reachable. It follows from the implementabil-
ity condition that ψ is subtree-closed. With this in mind, we necessarily have
F ′ = Q because any reachable state in Q \ F ′ would not be co-reachable. More-
over, for every k ∈ N, σ ∈ Σk, and q, q1, . . . , qk ∈ Q there exists at most one
c ∈ C such that 〈σ, c〉(q1, . . . , qk) → q ∈ δ because every state is final and
L(M ′) = L(ψ). Finally, no tree in L(ψ) can contain a node 〈σ, 0〉 for some σ ∈ Σ.
This is due to the fact that 0 = (ψ, σ(t1, . . . , tk))/((ψ, t1) · . . . · (ψ, tk)) only if
(ψ, σ(t1, . . . , tk)) = 0 by zero-divisor freeness of A and subtree-closedness of ψ.
Thus, any reachable state that can recognize a tree of which one node is 〈σ, 0〉
is not co-reachable. Consequently, there exists no such state and hence no tran-
sition which processes 〈σ, 0〉. For the given fta M we can easily construct a re-
lated deterministic aa-wta and the previously proved statements guarantee that
L(S(M)) = L(M ′) = L(ψ). One final observation yields that L : A〈〈TΣ〉〉 → T∆
is injective. Thus L(S(M)) = L(ψ) yields that S(M) = ψ. ut

The theorem admits a very important corollary. Namely, it can be observed
that every minimal deterministic aa-wta M recognizing a given tree series ψ
yields a minimal deterministic fta recognizing L(ψ). In the opposite direction,
every minimal deterministic fta recognizing L(ψ) where ψ is implementable,
yields a minimal deterministic aa-wta recognizing ψ.
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Corollary 12 (of Theorem 11). Let A be a cancellative semiring. For ev-
ery deterministic aa-wta M there exists a unique (up to isomorphism) minimal
deterministic aa-wta recognizing S(M).

Let us shortly describe a minimization procedure. Let M be a deterministic
aa-wta. Then S(M) is implementable and by the proof of Theorem 11 we can
obtain a deterministic fta N recognizing L(S(M)). Then we minimize N to
obtain the unique minimal deterministic fta N ′ recognizing L(S(M)). Finally,
we can construct a deterministic aa-wta M ′ recognizing S(M) again using the
notion of relatedness from the proof of Theorem 11.

We can imagine that the established relation between aa-wta and fta can
also be exploited in the learning task of [8]. There the underlying semiring is a
semifield (and hence cancellative).

4.2 A Myhill-Nerode Congruence for Cancellative Semirings

In this section we consider general deterministic wta over certain cancellative
semirings. The main problem is the implementability condition; it is crucial to
the condition given in the previous section that the series is subtree-closed. In
the general setting, subtree-closedness cannot be assumed.

A more careful analysis shows that the implementation of ≡ψ [3,7] uses in-
verses in an essential manner. Here we present a more refined version of the
Myhill-Nerode congruence. Let ψ ∈ A〈〈TΣ〉〉. Let ∼=ψ ⊆ TΣ × TΣ be defined
for every t, u ∈ TΣ by t ∼=ψ u if and only if there exist a, b ∈ A \ {0} such that
for every C ∈ CΣ there exists a d ∈ A with

(ψ,C[t]) = d · a and (ψ,C[u]) = d · b .

This relation has several drawbacks as we will see next (it is, in general, no
equivalence relation), however, we can already see that ≡ψ is coarser than ∼=ψ.

Lemma 13. Let ψ ∈ A〈〈TΣ〉〉. In general, ≡ψ is coarser than ∼=ψ. If A is a
semifield, then ≡ψ and ∼=ψ coincide.

Proof. Let A = (A,+, ·, 0, 1). Moreover, let t, u ∈ TΣ such that t ∼=ψ u. Thus
there exist a, b ∈ A\{0} such that for every context C ∈ CΣ there exists a d ∈ A
with

(ψ,C[t]) = d · a and (ψ,C[u]) = d · b .

Thus we also have that b · (ψ,C[t]) = a · (ψ,C[u]), and consequently, t ≡ψ u.
For the second statement, suppose that A is a semifield and t ≡ψ u. Thus there
exist a, b ∈ A \ {0} such that for every C ∈ CΣ

a · (ψ,C[t]) = b · (ψ,C[u]) .

Hence (ψ,C[t]) = (ψ,C[u]) · (a−1 · b) and (ψ,C[u]) = (ψ,C[t]) · (b−1 · a). Clearly,
a−1 · b and b−1 · a are both nonzero, and consequently, t ∼=ψ u. ut
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Now let us investigate when ∼=ψ is actually a congruence. A similar anal-
ysis was already done in [2] for weighted automata over strings. However, we
slightly adapted the notions of greedy factorization and minimal residue (cf. [2,
Section 4]).

Lemma 14. The relation ∼=ψ is reflexive for every ψ ∈ A〈〈TΣ〉〉.

Proof. Let t ∈ TΣ . We need to prove that there exists an a ∈ A \ {0} such that
for every C ∈ CΣ there exists d ∈ A with (ψ,C[t]) = d · a. To this end, we let
a = 1 and d = (ψ,C[t]). ut

Clearly, ∼=ψ is symmetric, so it remains to investigate transitivity. For this,
we need an additional property. The semiring A allows greedy factorization if
for every a, b ∈ A there exist a′, b′ ∈ A such that for every c, d ∈ A there exists
an e ∈ A such that a · c = b · d 6= 0 implies c = a′ · e and d = b′ · e. A similar
property was already defined in [2].

Intuitively, the property demands that when a and b are divisors of a common
element h, then there should be elements a′ and b′, that depend only on a and b
and not on h, such that when cancelling a and a′ from h we obtain the same
element as we would obtain by cancelling b and b′. In this sense it represents
a confluency property. It does not matter whether we first cancel a or b; we
can later find elements a′ and b′, which depend solely on the cancelled elements
a and b, that we can cancel to obtain a common element.

In semifields the property is trivially fulfilled because if we set a′ = b and
b′ = a and e = c · b−1 then a · c = b ·d 6= 0 implies c = b · c · b−1 and d = a · c · b−1.
The first part of the conclusion is trivial and the second part is given by the
hypothesis.

Let us try to give another example in order to explain the property. Sup-
pose that A is a cancellative semiring with the additional property that a least
common multiple (lcm) is defined for every two elements (e.g., the semiring of
natural numbers fulfils these restrictions). We can then set a′ = lcm(a, b)/a
and b′ = lcm(a, b)/b and e = (a · c)/ lcm(a, b) provided that a · c = b · d
otherwise set e = 1. Since the semiring is cancellative and a| lcm(a, b) and
b| lcm(a, b) and lcm(a, b)|a · c (because a|a · c and b|a · c), the elements a′, b′,
and e are uniquely determined. We thus obtain that a · c = b · d 6= 0 implies that
c = (lcm(a, b)/a) ·((a ·c)/ lcm(a, b)) and d = (lcm(a, b)/b) ·((a ·c)/ lcm(a, b)). The
first part of the conclusion is again trivial and the second part yields b ·d = a · c,
which holds by the hypothesis.

Lemma 15. Let A be a zero-divisor free semiring that allows greedy factoriza-
tion. Then ∼=ψ is transitive for every ψ ∈ A〈〈TΣ〉〉.

Thus we successfully showed that ∼=ψ is an equivalence relation. The only
remaining step is to show that ∼=ψ is even a congruence. Fortunately, this is
rather easy.

Lemma 16. Let A be a zero-divisor free semiring that allows greedy factoriza-
tion. Then ∼=ψ is a congruence for every ψ ∈ A〈〈TΣ〉〉.
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Now let us proceed with the implementation of the congruence by some
deterministic and complete wta. We prepare this by presenting conditions that
imply that we can successfully implement a congruence. We chose to rephrase
Conditions (MN1) and (MN2) from [7] in order to improve readability. In essence,
we can already see the automaton in that modified definition of Conditions
(MN1) and (MN2).

Definition 17. Let ∼= ⊆ TΣ × TΣ be a congruence and ψ ∈ A〈〈TΣ〉〉. We say
that ∼= respects ψ if there exists a mapping F : (TΣ/∼=) → A and a mapping
c : TΣ → A \ {0} such that

– (ψ, t) = F ([t]) · c(t) for every t ∈ TΣ; and
– for every k ∈ N, σ ∈ Σk, and T1, . . . , Tk ∈ (TΣ/∼=) there exists an a ∈ A,

denoted by bσ(T1, . . . , Tk), such that

c(σ(t1, . . . , tk)) = a · c(t1) · . . . · c(tk)

for every ti ∈ Ti with i ∈ [1, k].

Next we state that every series ψ ∈ A〈〈TΣ〉〉 that is respected by some con-
gruence with finite index can be recognized by a deterministic wta. Thus, the
previous definition establishes sufficient conditions so that the congruence is im-
plementable.

Lemma 18. Let ψ ∈ A〈〈TΣ〉〉. Moreover, let ∼= be a congruence with finite index
that respects ψ. Then ψ ∈ Arec

det〈〈TΣ〉〉.

Proof. Since ∼= respects ψ, there exist F : (TΣ/∼=) → A, c : TΣ → A \ {0}, and
bσ : (TΣ/∼=)k → A for every k ∈ N and σ ∈ Σk such that the conditions of
Definition 17 hold. We construct the wta M∼= = ((TΣ/∼=), Σ,A, F, µ) where

µk(σ)[t1]···[tk],[σ(t1,...,tk)] = bσ([t1], . . . , [tk])

for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ and the remaining entries in µ are 0.
Clearly, M∼= is deterministic. The proof of S(M) = ψ is straightforward. ut

In fact, the “respects” property is necessary and sufficient, which can be seen
in the next theorem.

Theorem 19. Let A be a zero-divisor free semiring, and let ψ ∈ A〈〈TΣ〉〉. The
following are equivalent:

1. There exists a congruence relation with finite index that respects ψ.
2. ψ is deterministically recognizable.

Proof. The implication 1 to 2 is proved in Lemma 18. It remains to show that
2 implies 1. Let M = (Q,Σ,A, F, µ) be a deterministic and complete wta such
that S(M) = ψ. Clearly, ≡M is a congruence with finite index by Lemma 3.

Finally, it remains to show that ≡M respects ψ. Let G : (TΣ/∼=) → A and
c : TΣ → A \ {0} be defined by G([t]) = FRM (t) and c(t) = hµ(t)RM (t) for every
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t ∈ TΣ . It is easily verified that both mappings are well-defined. First we need
to prove that (ψ, t) = G([t]) · c(t) for every t ∈ TΣ .

G([t]) · c(t) = FRM (t) · hµ(t)RM (t) = (S(M), t) = (ψ, t)

because M is deterministic. We observe that for every k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ TΣ

c(σ(t1, . . . , tk))

= hµ(σ(t1, . . . , tk))RM (σ(t1,...,tk))

= µk(σ)RM (t1)···RM (tk),RM (σ(t1,...,tk)) · hµ(t1)RM (t1) · . . . · hµ(tk)RM (tk)

= µk(σ)RM (t1)···RM (tk),RM (σ(t1,...,tk)) · c(t1) · . . . · c(tk)

which proves that ≡M respects ψ. ut

In analogy to Theorem 4 we can show that ∼=S(M) is coarser than ≡M for
every deterministic and complete wta over a zero-divisor free semiring. Thus, the
only remaining question is whether ∼=ψ respects ψ. If this would be true and ∼=ψ

would have finite index, then ∼=ψ would be implementable and thus a minimal
deterministic and complete wta would be found.

Open problem: Find suitable conditions on ψ and A so that ∼=ψ respects ψ!

4.3 A Myhill-Nerode Theorem for All-Accepting wta

In this section we show how we can use the approach of the previous section to
derive a Myhill-Nerode theorem for deterministic aa-wta.

Let ψ ∈ A〈〈TΣ〉〉 be a tree series over the cancellative semiring A. We de-
fine 'ψ ⊆ TΣ × TΣ by t 'ψ u if and only if there exist a, b ∈ A \ {0} such that
for every C ∈ CΣ there exists a d ∈ A with

(ψ,C[t]) = d · a and (ψ,C[u]) = d · b and d ∈ {0, 1} if C = � .

Lemma 20. If ψ is implementable and A allows greedy factorization, then 'ψ
is a congruence.

Proof. Simply reconsider the proofs of Lemmata 14, 15, and 16. ut

Let us consider the open problem for deterministic aa-wta over cancellative
semirings.

Theorem 21. Let ψ ∈ A〈〈TΣ〉〉 be implementable with A a cancellative semiring
that allows greedy factorization. Then 'ψ respects ψ.

Proof. By Lemma 20, 'ψ is a congruence. Thus we need to show that there exist
mappings F : (TΣ/'ψ) → A and c : TΣ → A \ {0} such that the conditions of
Definition 17 are met. For every t ∈ TΣ let

F ([t]) =

{
1 if t ∈ supp(ψ)

0 otherwise
and c(t) =

{
(ψ, t) if t ∈ supp(ψ)

1 otherwise.
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We first verify that F is well-defined. Let t 'ψ u. We need to prove that
t ∈ supp(ψ) if and only if u ∈ supp(ψ). Since t 'ψ u there exist a, b ∈ A \ {0}
such that for every context C ∈ CΣ there exists d ∈ A with

(ψ,C[t]) = d · a and (ψ,C[u]) = d · b and d ∈ {0, 1} if C = � .

Now consider the context C = �. Thus (ψ, t) = d · a and (ψ, u) = d · b with
d ∈ {0, 1}. Depending on d either (i) (ψ, t) = 0 = (ψ, u) or (ii) t, u ∈ supp(ψ),
which proves that F is well-defined. It remains to verify the properties of Defi-
nition 17. First, for every t ∈ TΣ

F ([t]) · c(t) =

{
1 · (ψ, t) if t ∈ supp(ψ)

0 otherwise
= (ψ, t) .

Second, let k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ . We need to show that there exists
a bσ([t1], . . . , [tk]) such that c(σ(t1, . . . , tk)) = bσ([t1], . . . , [tk]) · c(t1) · . . . · c(tk).
Since ψ is implementable, we can define

bσ([t1], . . . , [tk]) = (ψ, σ(t1, . . . , tk))/((ψ, t1) · . . . · (ψ, tk)) .

We should first verify that this is independent of the representatives. Thus, let
u1, . . . , uk ∈ TΣ be such that ti 'ψ ui for every i ∈ [1, k]. Then there exist
ai, bi ∈ A \ {0} such that for every context C ∈ CΣ there exists di ∈ A with

(ψ,C[ti]) = di · ai and (ψ,C[ui]) = di · bi and di ∈ {0, 1} if C = �

for every i ∈ [1, k]. Now if (ψ, ti) = 0 then also (ψ,C[t]) = 0 because ψ is imple-
mentable. The same argument holds for ui and C[ui]. Suppose that there exist
i ∈ [1, k] such that (ψ, ti) = 0. Then (ψ, σ(t1, . . . , tk))/((ψ, t1) · . . . · (ψ, tk)) = 0
and since (ψ, ui) = 0 by ti 'ψ ui also (ψ, σ(u1, . . . , uk))/((ψ, u1)·. . .·(ψ, uk)) = 0.
Now suppose that (ψ, ti) 6= 0 for every i ∈ [1, k]. It is immediately clear that
ai = (ψ, ti) and bi = (ψ, ui) by considering the context �. Consequently,

(ψ, σ(t1, . . . , tk))/
( k∏
i=1

(ψ, ti)
)

= (ψ, σ(u1, t2, . . . , tk))/
(

(ψ, u1) ·
k∏
i=2

(ψ, ti)
)

(via σ(�, t2, . . . , tk))

= · · · = (ψ, σ(u1, . . . , uk−1, tk))/
(k−1∏
i=1

(ψ, ui) · (ψ, tk)
)

= (ψ, σ(u1, . . . , uk))/
( k∏
i=1

(ψ, ui)
)

(via σ(u1, . . . , uk−1,�))

ut

Let us now derive a Myhill-Nerode theorem for deterministic aa-wta. In [8]
such a theorem is shown for the case that the underlying semiring is a semifield.
We extend this result to certain cancellative semirings.
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Corollary 22. Let ψ ∈ A〈〈TΣ〉〉 be implementable with A a cancellative semiring
that allows greedy factorization. The following are equivalent:

1. 'ψ has finite index.
2. There exists a congruence with finite index that respects ψ.
3. ψ is deterministically recognizable.
4. ψ is recognized by some deterministic aa-wta M .

Proof. 1 → 2 was shown in Theorem 21. The equivalence of 2 and 3 is due to
Theorem 19. Moreover, we already remarked that 'ψ is coarser than ≡M , which
shows 4→ 1. It remains to show 3→ 4. This can be shown by a straightforward
construction that normalizes the final weights to 1. In general, this is only possi-
ble in a semifield, but due to the implementability of ψ, it can also be performed
in the cancellative semiring A. ut

Clearly, the above corollary shows that the tree series that can be recog-
nized by deterministic aa-wta are exactly the implementable tree series that can
be recognized by deterministic wta. Moreover, it can be shown that the deter-
ministic aa-wta that can be constructed from the deterministic wta using the
final weight normalization mentioned in the proof of Corollary 22 is indeed the
minimal deterministic aa-wta recognizing ψ.
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