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Abstract

Unfortunately, the class of transformations computed by linear extended top-down tree trans-

ducers with regular look-ahead is not closed under composition. It is shown that the class of

transformations computed by certain linear bimorphisms coincides with the previously men-

tioned class. Moreover, it is demonstrated that every linear epsilon-free extended top-down tree

transducer with regular look-ahead can be implemented by a linear multi bottom-up tree trans-

ducer. The class of transformations computed by the latter device is shown to be closed under

composition, and to be included in the composition of the class of transformations computed

by top-down tree transducers with itself. More precisely, it constitutes the composition closure

of the class of transformations computed by �nite-copying top-down tree transducers.
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1. Introduction

The top-down tree transducer (tdtt) was introduced in [1,2] and intensively studied
thereafter (see [3,4] for a survey). It was originally motivated from natural language pro-
cessing [5] and syntax-directed semantics [6], but was later successfully applied to prob-
lems as diverse as: functional programming [7], analysis of cryptographic protocols [8],
and decidability of the �rst-order theory of ground rewriting [9].
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In particular, compositions of tdtt are considered in [10,11]. In this paper we study
compositions of extended tdtt, which were introduced in [12{14] and subsequently led to
several improvements [15] in machine translation (see [16] for a survey). In fact, [16] men-
tions that closure under composition is a desirable property of any class of transforma-
tions with applications in natural language processing. However, nondeleting and linear
extended tdtt as well as linear extended tdtt with regular look-ahead [17] compute classes
of transformations that are not closed under composition [13,18,19]. In essence, this re-
quires us to consider either slightly more restricted classes or slightly larger classes. In
this paper, we will follow a combination of both approaches; we �rst restrict ourselves to
extended tdtt without epsilon rules and then slightly generalize.
An extended tdtt essentially is a tdtt whose left-hand sides of rules o�er not only

shallow patterns of the form �(x1; : : : ; xk) for some k-ary symbol �, but allow arbitrary
patterns (without repeated variables) as left-hand sides. In this paper we will mostly
consider linear extended tdtt, in which the right-hand side of a rule may not contain
several occurrences of the same variable. Two example rules are shown in Fig. 1. The
semantics of extended tdtt is given by term rewriting. An instance of the left-hand side
of a rule is replaced by the appropriately instantiated right-hand side of that rule. We
start this rewriting process with q(t) where q is an initial state and t is the input tree.
An extended tdtt may thus transform an input tree t into an output tree u if there exists
an initial state q such that q(t) can be rewritten to u.
It is shown in [20] that synchronized tree substitution grammars [21] are as power-

ful (up to relabeling) as bimorphisms (see survey [22]) of type (LC;LC). As a variation
of this, we show that nondeleting and linear extended tdtt are exactly as powerful as
bimorphisms of type (LC;LC). These two results are in fact straightforward generaliza-
tions of a similar result in [13] for a subclass of such extended tdtt and bimorphisms of
type (LCE;LCE). We also show that linear extended tdtt with regular look-ahead are as
powerful as bimorphisms of type (LC;L). It was proved in [18, Section 3.4] that no class
of bimorphisms that contains all bimorphisms of type (LCE;LCE) computes a class of
transformations that is closed under composition. Consequently, nondeleting and linear
extended tdtt, synchronized tree substitution grammars, and linear extended tdtt with
regular look-ahead compute nonclosed classes.
In this paper we approach the issue by �rst restricting ourselves to extended tdtt with-

out epsilon rules [equivalently, bimorphisms of types (LCE;LC) and (LCE;L)]. Second,
we recall a bottom-up device: the multi bottom-up tree transducer [23{25] (mbutt). We
show that linear epsilon-free extended tdtt can be simulated by linear mbutt. We also
show that the class of transformations computed by linear mbutt is closed under com-
position. This is rather unexpected because linear mbutt can reproduce certain forms
of top-down copying [10]. Finally, we discuss how to implement mbutt in a top-down
fashion, alas not as linear extended tdtt as this would be impossible in general because
every linear extended tdtt preserves recognizability [3,4], whereas some linear mbutt do
not. Speci�cally, the class of transformations computed by linear mbutt coincides with
the composition closure of �nite-copying tdtt [26] (which in turn equals the class of com-
positions of a �nite-copying tdtt and a single-use tdtt [27{29,7,30]). Thus, we do not
solve the problem as originally posed but, for the epsilon-free case, present a suitable
superclass of transformations that enjoys the much required closure under composition.
As a side result we obtain that every linear mbutt is equivalent to a nondeleting and
linear one.
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Fig. 1. Illustration of extended top-down tree transducer rules.

2. Preliminaries

We use N to denote the set of natural numbers including 0. Let X = fx1; x2; : : : g be
a �xed set of variables, and for every k 2 N let Xk = fxi j 1 6 i 6 kg. Since we need
the restriction 1 6 i 6 k often, we abbreviate fi j 1 6 i 6 kg by [k]. Alphabets and
ranked alphabets are de�ned as usual. We use �(k) to denote the set of k-ary symbols
of a ranked alphabet � and write rk� for the rank function associated to �. The set
of �-trees indexed by a set V is denoted by T�(V ). We generally assume that all used
ranked alphabets draw their symbols from a common ranked alphabet (i.e., a symbol is
assigned only one rank). Thus, if V � T�(X), then we can view elements of T�(V ) also
as elements of T�[�(X).
Let V � X. The set of variables occurring in a tree t 2 T�(V ) is denoted by var(t). We

call t nondeleting (respectively, linear) in V if every v 2 V occurs at least (respectively,
at most) once in t. Let � � � [ X. The mapping preorder� : T�(X) ! �� is de�ned
as follows: preorder�(x) is x if x 2 � and " otherwise for every x 2 X (where " is the
empty string), and

preorder�(�(t1; : : : ; tk)) =

(
� preorder�(t1) � � � preorder�(tk) if � 2 �

preorder�(t1) � � � preorder�(tk) otherwise

for every � 2 �(k) and t1; : : : ; tk 2 T�(X). The set pos(t) denotes the set of positions (or
nodes) of t and is de�ned as usual. For every w 2 pos(t) we write t(w) for the symbol
that occurs at position w in t. By tjw we denote the subtree of t that is rooted at w, and
by t[u]w we denote the tree obtained from t by replacing the subtree rooted at w by u.
Moreover, pos�(t) = fw 2 pos(t) j t(w) 2 �g and pos�(t) = posf�g(t) for every � 2 �[X.
Any � : V ! T�(X) is a substitution. It extends to a mapping � : T�(V ) ! T�(X) by
�(t1; : : : ; tk)� = �(t1�; : : : ; tk�) for every � 2 �(k) and t1; : : : ; tk 2 T�(V ) [note that we
prefer the post-�x notation with substitutions]. Given � 2 �(k) and L1; : : : ; Lk � T�(X)
we write �(L1; : : : ; Lk) for the set f�(t1; : : : ; tk) j t1 2 L1; : : : ; tk 2 Lkg and �(L1) for
the set [

�2�

�(L1; : : : ; L1) :

For a mapping f : A ! B and a set C � A, we write f(C) to denote ff(c) j c 2 Cg.
The powerset of A, i.e., the set of all subsets of A, is denoted by P(A). Finally, we
write ; for function composition provided that the types are compatible, i.e., given
f : A ! B and g : B ! C the expression f ; g denotes the function from A to C such
that (f ; g)(a) = g(f(a)) for every a 2 A.
Any subset of T� is a tree language [4]. A (top-down) tree automaton [4] is a tuple

N = (Q;�; I; �) where Q is a �nite set, � is a ranked alphabet, I � Q, and � = (�k)k2N
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where �k � Q��(k)�Qk. A run of N on an input tree t 2 T� is a mapping d : pos(t)! Q
such that (d(w); t(w); d(w1); : : : ; d(wk)) 2 �k for every w 2 pos(t) with t(w) 2 �(k). For
every q 2 Q we denote by L(N)q the set of trees t in T� for which there exists a run d
of N on t with d(") = q. The tree language recognized by N is L(N) =

S
q2I L(N)q. Any

tree language L � T� that is recognized by some tree automaton is called recognizable
and we denote the set of all such tree languages by Rec(�).
Finally, let us recall the bimorphism approach to tree transformations [13,22]. Suppose

that ' : � ! T�(X) is such that '(�) 2 T�(Xk) for every � 2 �(k). Such a mapping
extends uniquely to a (tree) homomorphism ' : T� ! T� by '(�(t1; : : : ; tk)) = '(�)�
where �(xi) = '(ti) for every i 2 [k]. A homomorphism ' is called nondeleting (re-
spectively, linear), if '(�) is nondeleting (respectively, linear) in Xk for every � 2 �(k).
It is nonerasing if '(�) =2 X for every � 2 �. A bimorphism just consists of a rec-
ognizable tree language and two homomorphisms. Let �, �, and � be ranked alpha-
bets. A bimorphism is a triple B = (';L;  ) where (i) ' : T� ! T� is the input ho-
momorphism, (ii) L � T� is the recognizable tree language (control language), and
(iii)  : T� ! T� is the output homomorphism. The tree transformation computed
by B is kBk = f('(s);  (s)) 2 T� � T� j s 2 Lg. We call the bimorphism B linear
if ' and  are linear. The class of tree transformations computable by bimorphisms is
denoted by B(w1; w2) where w1 and w2 list the restrictions on the input- and output-
homomorphism, respectively. The restrictions are abbreviated `L' for \linear", `C' for
\nondeleting" (complete), and `E' for \nonerasing". Thus, e.g., B(LCE;L) denotes the
class of transformations computable by linear bimorphisms with a nondeleting and non-
erasing input homomorphism.

3. Extended Top-down Tree Transducer

In this section, we quickly recall the notion of an extended top-down tree transducer
(transducteur g�en�eralis�e descendant) from [12{14]. Essentially, an extended top-down tree
transducer has rules in which the left-hand side may contain arbitrary, not just shallow,
patterns. Since we will also need regular look-ahead [17], we immediately introduce the
extended top-down tree transducer with regular look-ahead of [19].
De�nition 1 An extended (top-down) tree transducer with regular look-ahead (xttR)
is a tuple (Q;�;�; I; R; c) such that
{ Q is a ranked alphabet (the states) such that Q = Q(1) and Q \ (� [�) = ;;
{ � and � are ranked alphabets (the input and output symbols);
{ I � Q (the initial states);
{ R � Q(T�(X)) � T�(Q(X)) is a �nite set (the rules) such that l is linear in X and
var(r) � var(l) for every (l; r) 2 R; and

{ c : R! Rec(�) (the look-ahead).
Without loss of generality we commonly assume that for every rule (l; r) 2 R there

exists k 2 N such that preorderX(l) = x1 � � �xk. Moreover, we commonly write l ! r
instead of (l; r) when handling rules in order to save parentheses. Let us de�ne some
properties of xttR next. Note that we de�ne \deterministic" only for top-down tree
transducers [1,2] with regular look-ahead [17].
De�nition 2 The xttR (Q;�;�; I; R; c) is
{ an extended (top-down) tree transducer (xtt) if c(l! r) = T� for every l! r 2 R.
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{ a top-down tree transducer with regular look-ahead(tdttR) if R � Q(�(X))�T�(Q(X))
{ a top-down tree transducer (tdtt), if it is an xtt and a tdttR.
{ nondeleting (respectively, linear) if r is nondeleting (respectively, linear) in var(l) for

every l! r 2 R.
{ epsilon-free [respectively, nonerasing] if l =2 Q(X) [respectively, r =2 Q(X)] for every
l! r 2 R.

Finally, a tdttR (Q;�;�; I; R; c) is deterministic if card(I) = 1 and for every l 2 Q(�(X))
and t 2 T� there exist at most one � : var(l) ! X and r such that l� ! r 2 R and
t 2 c(l� ! r).
We drop the look-ahead component from the tuple for all xtt. The semantics of xttR is

given by a straightforward term rewriting. We identify an instance of the left-hand side
in a sentential form, verify that the look-ahead is satis�ed, and replace this instance by
a correspondingly (according to the rules) instantiated right-hand side.
De�nition 3 Let M = (Q;�;�; I; R; c) be an xttR. For every �; � 2 T�(Q(T�)) let
� )M � if there exist
{ a position w 2 pos(�),
{ a rule l! r 2 R, and
{ a substitution � : X ! T�
such that (i) �jw = l�, (ii) �jw1 2 c(l! r), and (iii) � = �[r�]w. The tree transformation
computed by M is

kMk = f(t; u) 2 T� � T� j 9q 2 I : q(t))�
M ug :

We denote the classes of transformations computed by xttR, xtt, tdttR, and tdtt
by XTOPR, XTOP, TOPR, and TOP. Moreover, we use the pre�xes `l' and `n' (and
`d' for tdttR) to restrict to linear and nondeleting (and deterministic) devices, respec-
tively. Thus, the class of tree transformations computed by linear xttR is denoted by
l{XTOPR. We �rst relate linear xttR and particular linear bimorphisms. The following
theorem shows that the power of linear xttR and linear bimorphisms with nondeleting
input homomorphism coincides [13]. Note that nl{XTOPR = nl{XTOP can easily be
shown.
Theorem 4 B(LC;LC) = nl{XTOP and B(LC;L) = l{XTOPR.

PROOF. In [13] it is proved that B(LCE;LCE) coincides with the class of transfor-
mations computed by linear, nondeleting, epsilon-free, and nonerasing xtt. We slightly
extend their approach to obtain the stated results.
Let B = (';L;  ) be a linear bimorphism such that ' : T� ! T� is nondeleting and

 : T� ! T�. Moreover, let N = (Q;�; I; �) be a tree automaton such that L(N) = L.
Roughly speaking, we use the control structure of N as control structure of the xttR and
use ' and  to determine the left- and right-hand sides of the rules, respectively. Addi-
tionally, we use the look-ahead to verify that the input tree is suitable (which is essential
only in the case of deletion). Formally, we construct the linear xttR M = (Q;�;�; I; R; c)
as follows. For every 
 2 �(k) and q; q1; : : : ; qk 2 Q, if (q; 
; q1; : : : ; qk) 2 �k, then
� = q('(
)) !  (
)� 2 R where � is the substitution such that xi� = qi(xi) for
every i 2 [k], and c(�) = '(
(L(N)q1 ; : : : ; L(N)qk)). Note that M is nondeleting when-
ever  is so. It remains to prove that kMk = kBk. To this end, it can be shown for every
q 2 Q, t 2 T�, and u 2 T� that q(t))�

M u if and only if there exists s 2 L(N)q such that
(t; u) = ('(s);  (s)). The \if"-direction of this statement can be proved by induction on

5



the structure of s, and the \only-if"-direction can be proved by induction on the length
of the derivation q(t))�

M u.
For the converse, we only consider the linear case. The nondeleting and linear case can

be handled as in [13]. We �rst extract the control structure from the extended tdttR M .
We combine the obtained tree automaton, which works on trees of rules of M , with
the one needed to check the look-ahead, which shall also work on trees of rules of M .
Since the look-ahead is performed on the input tree, we need to make sure that for each
input symbol at least one processing rule exists. The left- and right-hand sides of the
rules then determine the homomorphisms ' and  , respectively. Formally, let a linear
xttR M = (Q;�;�; I; R; c) be given. Without loss of generality, suppose that there exist
? 2 Q and � 2 �(0) such that �� = ?(�(x1; : : : ; xk))! � 2 R and c(��) = T� for every
� 2 �(k). We �rst construct ',  , and a tree automaton N = (Q;R; I; �) as follows. Let
� 2 R be such that � = q(l) ! r� for some l 2 T�(X) with preorderX(l) = x1 � � �xk,
r 2 T�(X), and q; q1; : : : ; qk 2 Q where � is the substitution such that xi� = qi(xi) for
every i 2 [k]. We already noted that, without loss of generality, any rule can be written
in this way. Then, let rkR(�) = k, '(�) = l,  (�) = r, and (q; �; q01; : : : ; q

0
k) 2 �k where

for every i 2 [k]

q0i =

(
qi if xi 2 var(r)

? otherwise.

Note that this in particular yields that rkR(��) = rk�(�) and (?; ��;?; : : : ;?) 2 �k for
every � 2 �(k). In essence, this means that R contains a copy of �. Now let us consider
the look-ahead. Let

L = fs 2 TR j 8w 2 pos(s) : '(sjw) 2 c(s(w))g :

It can easily be shown that L is recognizable. Consequently, we obtain the linear bimor-
phism B = (';L(N) \ L; ). To prove that kBk = kMk, we show for every t 2 T�,
u 2 T�, and q 2 Q we have q(t) )�

M u if and only if there exists s 2 L(N)q \ L such
that (t; u) = ('(s);  (s)). This can be achieved as in the converse direction. 2

By [18] there exist �1; �2 2 B(LCE;LCE) such that �1 ; �2 =2 B(L;L). Hence there exist
�1; �2 2 nl{XTOP such that �1 ; �2 =2 l{XTOPR.
Corollary 5 nl{XTOP, l{XTOP, and l{XTOPR are not closed under composition.

4. Multi Bottom-up Tree Transducer

Next, let us recall the multi bottom-up tree transducer (mbutt; also called STA or
S-transducteur ascendant) of [23{25,31]. We slightly adapt the model by omitting the
special root symbol, which is required in [25,31] to deterministically identify the root
of the input tree. In [25] the root symbol is needed to show that deterministic mbutt
are as powerful as deterministic tdttR. Compared to [23,24], we disallow rules that do
not consume any input symbol (epsilon rules). Essentially, an mbutt is a bottom-up tree
transducer [32,10], in which states may have arbitrary rank. Let � and Q be disjoint
ranked alphabets. We de�ne

Lhs(�; Q) = fl 2 �(Q(X)) j preorderX(l) = x1 � � �xm for some m 2 Ng :
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De�nition 6 A multi bottom-up tree transducer (mbutt) is a tuple (Q;�;�; F;R) such
that
{ Q is a ranked alphabet (the states) disjoint with � [�,
{ � and � are ranked alphabets (the input and output symbols),
{ F � Q(1) (the �nal states), and
{ R � Lhs(�; Q) � Q(T�(X)) is a �nite set (the rules) such that var(r) � var(l) for

every (l; r) 2 R.
It is nondeleting (respectively, linear), if r is nondeleting (respectively, linear) in var(l)
for every (l; r) 2 R. Finally, it is deterministic (respectively, total) if for every l there
exists at most (respectively, at least) one r such that (l; r) 2 R.
Again we write l ! r for rules (l; r). The semantics of mbutt is also given by term

rewriting. Note that the set X of variables is not needed to de�ne the tree transformation
computed by an mbutt, but we will need it for the composition construction.
De�nition 7 Let M = (Q;�;�; F;R) be an mbutt. For every �; � 2 T�(Q(T�(X))) let
� )M � if there exist
{ a position w 2 pos(�),
{ a rule l! r 2 R, and
{ a substitution � : X ! T�(X)
such that �jw = l� and � = �[r�]w. The tree transformation computed by M is

kMk = f(t; u) 2 T� � T� j 9q 2 F : t)�
M q(u)g:

Two mbutt are equivalent if their computed tree transformations coincide. By MBOT
we denote the class of tree transformations computable by mbutt. We use the pre�xes
`n', `l', `d', and `t' for nondeletion, linearity, determinism, and totality, respectively; e.g.,
the class nl{MBOT comprises all tree transformations computable by nondeleting and
linear mbutt.
Lemma 8 For every mbutt there exists an equivalent total mbutt. The involved construc-
tion preserves linearity and determinism.

PROOF. The construction is entirely similar to the classical construction for bottom-up
tree transducers [10]. The newly added state can be nullary in our case. 2

Next we present a composition result, which is similar to the composition results
of [23] and [33] for linear STA and deterministic mbutt, respectively. First let us prepare
the de�nition of the composition of two mbutt. The general idea is the classic one: take
the cross-product of the sets of states and simulate the second transducer on the right-
hand sides of the �rst transducer. However, a k-ary state of the �rst transducer has k
prepared (partial) output trees. Thus we also need to process those k trees with the second
transducer, which gives states of the form qhp1; : : : ; pki. This idea was already used in
the composition constructions of [23,33]. For all disjoint ranked alphabets Q and P , we
de�ne the ranked alphabet

QhP i = fqhp1; : : : ; pni j q 2 Q
(n); p1; : : : ; pn 2 Pg

such that rk(qhp1; : : : ; pni) =
Pn

i=1 rk(pi) for every q 2 Q(n) and p1; : : : ; pn 2 P . More-
over, let U = T�(X) and ' : QhP i(U)! Q(P (U)) be such that

'(qhp1; : : : ; pni(u1; : : : ; uk)) = q(p1(u1; : : : ; urk(p1)); : : : ; pn(uk�rk(pn)+1; : : : ; uk))
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for every symbol qhp1; : : : ; pni 2 QhP i(k) and u1; : : : ; uk 2 U . We extend this map to
' : T�(QhP i(U)) ! T�(Q(P (U))) by '(�(t1; : : : ; tk)) = �('(t1); : : : ; '(tk)) for every
� 2 �(k) and t1; : : : ; tk 2 T�(QhP i(U)).
De�nition 9 Let M1 = (Q;�;�; F1; R1) and M2 = (P;�;�; F2; R2) be mbutt such that
Q, P , and � [ � [� are mutually disjoint. Moreover, let

M 0
1 = (Q;�;� [ P [�; F1; R1) and M 0

2 = (P;� [Q [ �;�; F2; R2) :

The composition of M1 and M2 is the mbutt M1 ;M2 = (QhP i;�;�; F1hF2i; R) where

R = f(l; r) 2 Lhs(�; QhP i)�QhP i(T�(X)) j '(l) ()M 0

1
;)�

M 0

2

)'(r)g :

Note that the construction preserves nondeletion, linearity, and determinism. More-
over, our construction generalizes the composition construction of [11] for bottom-up
tree transducers (i.e., mbutt with unary states only). Let us recall the main correctness
theorem from that paper: Let M1 and M2 be bottom-up tree transducers and M be the
composition of M1 and M2 according to [11]. Then M computes the composition of the
transformations computed by M1 and M2 if
{ M1 is linear or M2 is deterministic; and
{ M1 is nondeleting or M2 is total.
Since the construction of [11] also preserves nondeletion, linearity, and determinism, we
obtain that the classes of transformations computed by linear, nondeleting and linear,
and deterministic bottom-up tree transducers are all closed under composition [10,11].
This follows from the previous conditions because every bottom-up tree transducer can be
turned into an equivalent total one (preserving linearity and determinism; cf. Lemma 8).
The following lemma states the central property that is required to show the correctness
of the construction of De�nition 9. In fact, our restrictions are exactly the mentioned
restrictions for bottom-up tree transducers. To avoid repetition, we assume the symbols
of De�nition 9.
Lemma 10 Let (i) M1 be linear or M2 be deterministic; and (ii) M1 be nondeleting or
M2 be total. In addition, let t 2 T� and � 2 QhP i(T�). Then t )�

M1;M2
� if and only if

t ()�
M1

;)�
M 0

2

)'(�). In particular, kM1 ;M2k = kM1k ; kM2k.

PROOF. Let t = �(t1; : : : ; tk) for some symbol � 2 �(k) and t1; : : : ; tk 2 T�. We �rst
prove the \if"-direction by induction on the length of the derivation)�

M1
. Let l! r 2 R1

and � : X ! T� be such that t)�
M1

l� )M1
r� )�

M 0

2

'(�). Since r� )�
M 0

2

'(�), we have

that for every w 2 posX(r) there exists �w 2 P (T�) such that r� )
�
M 0

2

r�[�w]w )�
M 0

2

'(�).

Since either M1 is linear [and thus card(posx(r)) � 1 for every x 2 var(r)] or M2

is deterministic [and thus r�jw completely determines �w for every w 2 posX(r)], we
obtain that �v = �w for every v; w 2 posX(r) such that r(v) = r(w). Consequently,
let �0 : var(r) ! P (T�) be such that x�0 = �w for some w 2 posx(r). We observe that
r� )�

M 0

2

r�0 )�
M 0

2

'(�). Now, we extend �0 to a substitution �0 : var(l) ! P (T�) such

that additionally x� )�
M2

x�0 for every x 2 var(l). This can be achieved because either
M1 is nondeleting [and thus var(l) = var(r)] or M2 is total [and thus such x�0 exists for
every x 2 var(l)]. Consequently, ti )

�
M1

lji� )
�
M 0

2

lji�
0 for every i 2 [k]. Invoking the

induction hypothesis k times, we obtain

�(t1; : : : ; tk))
�
M1;M2

�('�1(lj1�
0); : : : ; '�1(ljk�

0)) = '�1(l�0) :

8



Since l�0 )M 0

1
r�0 )�

M 0

2

'(�), we also obtain '�1(l�0))M1;M2
� by the de�nition of R.

For the converse, which is proved by induction on the length of the derivation)�
M1;M2

,
let l ! r 2 R and � : X ! T� be such that t )�

M1;M2
l� )M1;M2

r� = �. Since
ti )�

M1;M2
lji� for every i 2 [k], the induction hypothesis implies that there exist

�i 2 Q(T�) such that ti )
�
M1

�i )
�
M 0

2

'(lji)�. Taking � = �(�1; : : : ; �k), we obtain

that t )�
M1

� )�
M 0

2

'(l)�. By the de�nition of R, there exist l0 ! r0 2 R1 and

�0 : X ! P (X) such that l0�0 = '(l) and '(l) )M 0

1
r0�0 )�

M 0

2

'(r). Clearly, � = l0�00

for some �00 : X ! T�, and consequently,

t)�
M1

� )M1
r0�00 )�

M 0

2

r0�0� )�
M 0

2

'(r)� = '(�) ;

where we used that x�00 )�
M2

x�0� for every x 2 var(l0) [because � )�
M 0

2

l0�0�]. 2

We thus obtain the main composition theorem. Note that it is known that d-MBOT is
closed under composition [24]. In [25] it is shown that their deterministic mbutt, which are
more powerful than our deterministic mbutt, compute exactly the class of transformations
computed by deterministic tdttR, which is closed under composition [17]. In addition,
[23] proves that the classes of transformations computed by linear STA and nondeleting
and linear STA are closed.
Theorem 11

l{MBOT ; MBOT � MBOT and MBOT ; d{MBOT � MBOT :

In particular, l{MBOT, nl{MBOT, and d{MBOT are closed under composition.

PROOF. The inequalities follow immediately from Lemma 10 with the help of Lemma 8.
The closure results are essentially due to [23,24,33], but can also be obtained by the
observation that the construction of De�nition 9 preserves linearity, nondeletion, and
determinism. 2

5. Relation to Top-down Devices

Let us consider how mbutt relate to tdttR and xttR. An important result in this
respect can be found in [25]. It is shown there that every deterministic mbutt (note that
their deterministic mbutt are slightly more powerful than ours) can be simulated by a
deterministic tdttR. Here we present a slightly di�erent construction. Our construction
is a faithful generalization of the decomposition [10] of bottom-up tree transducers. We
�rst need to recall two more properties of tdttR. Let M = (Q;�;�; I; R; c) be a tdttR.
ThenM is single-use [30,27{29,7] if for every q(x) 2 Q(X) and t 2 T� there exist at most
one l! r 2 R and w 2 pos(r) such that l(1) = t("), t 2 c(l! r), and rjw = q(x). In the
notations for classes of transformations, we use the subscript `su' to restrict to single-use
tdttR; e.g., d{TOPsu denotes the class of transformations computed by deterministic
single-use tdtt. Finally, a �nite-state relabeling [10] is a tdtt (Q;�;�; I; R) such that
r 2 �(Q(X)) and preorderX(l) = preorderX(r) for every l ! r 2 R, and we use QREL
for the class of transformations computed by such relabelings.
Lemma 12

l{MBOT � QREL ; d{TOPsu and MBOT � QREL ; d{TOP :

9



PROOF. The �nite-state relabeling annotates the input tree with the transitions ap-
plied by a run of the mbutt. It thus takes care of the nondeterminism. The deterministic
tdtt then executes the annotated transitions using a state for each parameter position.
Note that we could obtain the second result by proving that MBOT � QREL ;d{MBOT
and then applying the result of [25].
Let M = (Q;�;�; F;R) be an mbutt. We de�ne the rank of a rule l ! r 2 R by

rkR(l! r) = card(posQ(l)). Thus, R is a ranked alphabet. We construct the �nite-state
relabeling M1 = (Q;�; R; F;R1) where all states in Q have rank 1 and

R1 = fr(")(l(")(x1; : : : ; xk))! (l! r)(l(1)(x1); : : : ; l(k)(xk)) j l! r 2 R(k)g :

Clearly, M1 relabels the input tree by applicable rules. The deterministic tdtt can now
simply execute the annotated rules. Let M2 = ([mx]; R;�; f1g; R2) be the deterministic
tdtt with mx = max rk(Q) and

R2 = fn((l! r)(x1; : : : ; xk))! rjn�l j n 2 [mx] and l! r 2 R(k)g

where for every l 2 Lhs(�; Q) the substitution �l : X ! [mx](X) is such that for every
x 2 var(l) we have �l(x) = j(xi) with ij 2 posx(l). Note that M2 is single-use if M is
linear.
We only sketch the correctness proof. Let t 2 T�, q 2 Q(m), and u1; : : : ; um 2 T�.

Suppose that t )�
M q(u1; : : : ; um) and consider one �xed derivation d. Since one rule

of M is applied at each position of the input tree, we can consider the tree s that has
the same shape as t and each position is labeled with the rule that is applied at this
position of t in the derivation d. It is straightforward to show that q(t) )�

M1
s, i.e., the

�nite-state relabeling can transform t into s (in state q). Finally, we have to take care of
the output. This is achieved by M2 and it is easily seen that for every n 2 [m] we have
n(s))�

M2
un. Thus, the proof obligation is

t)�
M q(u1; : : : ; um) () 9s 2 TR : q(t))

�
M1

s and 8n 2 [m] : n(s))�
M2

un :

This can be proved by induction in a straightforward fashion. 2

Now let us investigate whether the inclusions of Lemma 12 are strict. It will turn
out that the inequalities are actually equalities. For this, we show how to implement a
deterministic tdtt with the help of a nondeleting mbutt by a variation of [25, Lemma 4.2].
Lemma 13

d{TOPsu � nl{MBOT and d{TOP � n{MBOT :

PROOF. The mbutt guesses at each position of the input tree, which states of the
top-down tree transducer would process this subtree. Since the tdtt is deterministic,
processing the same subtree in the same state yields the same output tree, so that the
mbutt can simply copy the generated output tree. Formally, let M = (Q;�;�; I; R)
be a deterministic tdtt such that preorderX(l) = x1 � � �xk with k = rk(l(1)) for every
l ! r 2 R. We construct the mbutt M 0 = (P(Q);�;�; fIg; R0) where rk(P ) = card(P )
for every P � Q. In addition, for every P � Q �x a bijection fP : P ! [card(P )]. For
better readability, we occasionally write f(P; p) instead of fP (p). We then construct the
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rules of R0 as follows. Let � 2 �(k), P 2 P(Q)(n), and f�1P (j)(�(x1; : : : ; xk)) ! rj 2 R
for every j 2 [n]. Moreover, for every i 2 [k] let

Pi =

n[
j=1

fq 2 Q j 9w 2 pos(rj) : rj jw = q(xi)g :

We then construct the rule l ! P (r01; : : : ; r
0
n) where l 2 Lhs(�;P(Q)) is such that

l(") = � and l(i) = Pi for every i 2 [k]. Moreover, for every j 2 [n] the tree r0j is obtained
from rj by replacing all occurrences of q(xi) by l(im) where m = f(Pi; q). Note that M

0

is nondeleting. Moreover, if M is single-use, then P (r01; : : : ; r
0
n) is linear in X, and hence,

M 0 is linear. It remains to prove that for every P 2 P(Q)(n), t 2 T�, and u1; : : : ; un 2 T�
we have

t)�
M 0 P (u1; : : : ; un) () 8p 2 P : p(t))�

M uf(P;p) :

Induction on the length of the derivation can be used to show both directions of this
statement. We obtain �M 0 = �M for P = I. 2

Thus, we obtain the following characterization of the power of mbutt. It also shows
that every mbutt (respectively, linear mbutt) is equivalent to a nondeleting (respectively,
nondeleting and linear) one.
Theorem 14

l{MBOT = QREL ; d{TOPsu = nl{MBOT

MBOT = QREL ; d{TOP = n{MBOT :

PROOF. Since obviously, QREL � nl{MBOT, the equalities follow directly from (the
proof of) Theorem 11 and Lemmata 12 and 13. 2

The following development of the relation of mbutt to �nite-copying tdtts [26] is es-
sentially due to an anonymous referee [34]. Roughly speaking, a tdtt is �nite-copying if
it processes each input subtree at most a bounded number of times. Formally, a tdtt
M = (Q;�;�; I; R) is m-copying for some m 2 N if card(pos?(u)) � m for every
t 2 T�(f?g) and u 2 T�(f?g) such that card(pos?(t)) = 1 and (t; u) 2 kM 0k where
M 0 = (Q;� [ f?(0)g;� [ f?(0)g; I; R [ fq(?) ! ? j q 2 Qg). The tdtt M is �nite-
copying if there exists an m 2 N such that it is m-copying. We use the subscript `fc'
for classes of transformations computed by �nite-copying tdtt, e.g., d-TOPfc denotes the
class of all transformations computed by deterministic �nite-copying tdtt. The equality
QREL ;d{TOPsu = QREL;d{TOPfc is due to [30, Theorems 5.10 and 7.4], and could be
added to the characterization of Theorem 14. Let us now show that every �nite-copying
tdtt can be simulated by a linear mbutt.
Lemma 15

TOPfc � l{MBOT :

PROOF. It is already hinted in [26, Lemma 3.2.3] (in the context of tree-to-string-
transducers) that TOPfc � QREL ; d-TOPfc, which would prove the statement by Theo-
rem 14. Again, the relabeling annotates the input tree with rules. However, since the tdtt
might make a bounded number of copies of input subtrees, we annotate several rules to
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each position. The deterministic tdtt should execute the �rst rule when running on the
�rst copy, the second rule when running on the second copy, etc. Note that this approach
is closely related to the construction of Lemma 12.
Let M = (Q;�;�; I; R) be an m-copying tdtt such that preorderX(l) = x1 � � �xk

with k = rk(l(1)) for every l ! r 2 R. Let P = Q � [m] be a ranked alphabet of unary
symbols and f : T�(P (X))! T�(Q(X)) be such that f((q; j)(x)) = q(x) for every q 2 Q,
j 2 [m], and x 2 X and f(�(u1; : : : ; uk)) = �(f(u1); : : : ; f(uk)) for every � 2 �(k) and
u1; : : : ; uk 2 T�(P (X)). For every � 2 �(k), let

R� = f(q; �)! r j r 2 T�(P (X)) and q(�(x1; : : : ; xk))! f(r) 2 Rg :

We turn R0 =
S
�2�R

m
� into a ranked alphabet by rkR0(�) = rk(�) for every � 2 � and

� 2 Rm
� . The �nite-state relabelingM1 = (fyg;�; R0; fyg; R1) is such that y =2 �[R0 and

R1 = fy(�(x1; : : : ; xk))! �(y(x1); : : : ; y(xk)) j � 2 �(k) and � 2 Rm
� g :

Finally, let > =2 P . We construct the tdtt M2 = (P [ f>g; R0;�; f>g; R2) such that
for every q; q1; : : : ; qm 2 Q, j 2 [m], r1; : : : ; rm 2 T�(P (X)), and � 2 �(k) with
�i = (qi; �)! ri 2 R� for every i 2 [m] we have
{ (q; j)((�1; : : : ; �m)(x1; : : : ; xk))! rj 2 R2 if q = qj ; and
{ >((�1; : : : ; �m)(x1; : : : ; xk))! r1 2 R2 if q1 2 I.
It is obvious that M2 is deterministic. In addition, we can easily prove that q(t) )�

M u
if (t; t0) 2 kM1k and (q; 1)(t0) )�

M2
u, for every q 2 Q, t 2 T�, u 2 T�, and t

0 2 TR0 . In
fact, we can obtain a derivation q(t))�

M u from (q; 1)(t0))�
M2

by simply changing states
from (q0; j) to just q0 and replacing symbols of Rm

� by �. Hence kM1k ; kM2k � kMk.
The same implication can also be extended to T�(f?g) and thus be used to show that
M2 is m-copying. It remains to prove kMk � kM1k ; kM2k. To this aim, let w 2 Q� be
a state sequence of M if there exist q 2 I, t 2 T�(f?g), and � 2 T�(Q(f?g)) such that
card(pos?(t)) = 1, q(t) )�

M 0 �, and w = preorderQ(�) where M
0 is the extension of M

given in the de�nition of m-copying. Clearly, every state sequence of M is at most of
length m because M is m-copying. We can prove by a straightforward induction that for
every state sequence q1 � � � qn of M , t 2 T�, and u1; : : : ; un 2 T�: if qj )

�
M uj for every

j 2 [n], then there exists t0 2 TR0 such that (t; t0) 2 kM1k and (qj ; j)(t
0) )�

M2
uj for

every j 2 [n]. Since every initial state q 2 I is a state sequence of M , this proves that
kMk � kM1k ; kM2k. 2

Hence, we identi�ed the composition closure of TOPfc. It is l{MBOT, and in addition,
it coincides with the second level of the composition hierarchy.
Theorem 16

l{MBOT = TOPfc ; TOPfc

and this class is closed under composition.

PROOF. The statements follow trivially from Theorems 11 and 14 and Lemma 15
because every linear tdtt is 1-copying and every single-use tdtt is n-copying where n is
the number of its states. 2

Let us �nally investigate the relation of mbutt to xtt. We immediately observe that
l{XTOP is too rich because there exist � 2 l{XTOP and t 2 T� such that �\(ftg�T�) is
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in�nite. However, for an mbuttM the set kMk\(ftg�T�) is always �nite. Consequently,
we restrict ourselves to epsilon-free xtt. We use the stems XTOPef and XTOPR

ef (with
the usual pre�xes) for the classes of transformations computable by epsilon-free xtt and
xttR, respectively. Note that every tdttR is epsilon-free. The following theorem follows
from the proof of Theorem 4.
Theorem 17 B(LCE;LC) = nl{XTOPef and B(LCE;L) = l{XTOPR

ef .
Corollary 18 nl{XTOPef , l{XTOPef , and l{XTOPR

ef are not closed under composition.
By [19] we have XTOPR

ef = TOPR, and if we reconsider the proof, then we see that if
the xttR is linear, then the constructed tdttR also has a \�nite-copying" property (note
that we did not de�ne \�nite-copying" for tdttR). In fact, the resulting tdttR will be
m-copying where m = maxfcard(var(r)) j l ! r 2 Rg with R being the set of rules of
the given xttR. We can state this as l{XTOPR

ef � QREL ; TOPfc. It can thus be shown
that compositions of epsilon-free and linear xtt can be simulated by a composition of a
�nite-state relabeling and a deterministic tdtt, and hence by a linear mbutt. This is our
main theorem for compositions of extended tdtts.
Theorem 19 [

n2N

l{XTOPnef � l{MBOT = QREL ; d{TOPsu :

PROOF. We have the inclusions

l{XTOPnef � (QREL ; TOPfc)
n � l{MBOTn � l{MBOT

by [19, Lemma 7] and Theorems 16 and 11. The equality is due to Theorem 14. Strictness
follows because (by Theorem 4) every transformation of l-XTOPef preserves recogniz-
ability [3,4] whereas some transformations of l-MBOT do not. 2

6. Conclusions and Open Problems

We have identi�ed a class, namely nl{MBOT, that is closed under composition and
contains all transformations that can be computed by epsilon-free and linear extended
tdtt. We further showed that compositions of epsilon-free and linear extended tdtt can
be implemented by a single composition of a �nite-state relabeling and a deterministic
(single-use) tdtt.
It remains an open problem to decide whether the composition of the transformations

computed by two extended tdtts can be computed by just a single extended tdtt. In the
relevant subcase where the two extended tdtts are epsilon-free one can investigate how
to implement (restricted) mbutts using just one extended tdtt.
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