
S. Bozapalidis and G. Rahonis (Eds.): CAI 2007, LNCS 4728, pp. 218–235, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Learning Deterministically
Recognizable Tree Series — Revisited

Andreas Maletti

Institute of Theoretical Computer Science, Faculty of Computer Science
Technische Universität Dresden

maletti@tcs.inf.tu-dresden.de

Abstract. We generalize a learning algorithm originally devised for de-
terministic all-accepting weighted tree automata (wta) to the setting of
arbitrary deterministic wta. The learning is exact, supervised, and uses
an adapted minimal adequate teacher; a learning model introduced by
Angluin. Our algorithm learns a minimal deterministic wta that recog-
nizes the taught tree series and runs in polynomial time in the size of
that wta and the size of the provided counterexamples. Compared to
the original algorithm, we show how to handle non-final states in the
learning process; this problem was posed as an open problem in [Drewes,
Vogler: Learning Deterministically Recognizable Tree Series, J. Autom.
Lang. Combin. 2007].

1 Introduction

We devise a supervised learning algorithm for deterministically recognizable tree
series. Learning algorithms for formal languages have a long and studied history
(see the seminal and survey papers [16,1,3,4]). The seminal paper [16] reports
first results on identification in the limit; in particular it shows that every recur-
sively enumerable language can be learned from a teacher. Here we study series;
quantitative versions of languages. In particular, a tree series associates to each
tree of TΣ (the set of all well-formed expressions over the ranked alphabet Σ) a
coefficient. Thus, it is nothing else than a mapping ψ : TΣ → A for some suitable
set A. It depends on A whether the coefficient represents, e.g., a probability, a
count, a string, etc. For the moment, we assume that (A,+, ·, 0, 1) is a field. A
tree language L ⊆ TΣ can then be identified with the tree series that maps the
elements of L to 1 and remaining elements of TΣ to 0.

Angluin [2] proposed query learning, a model of interactive learning. In this
learning model, the learner can question a teacher (or oracle). The teacher will
answer predetermined types of questions. For example, the minimally adequate
teacher [2,12] for a tree series ψ : TΣ → A answers only two types of questions
about ψ: coefficient and equivalence queries. A coefficient query asks for the
coefficient of a certain tree t in the tree series ψ. The teacher truthfully supplies
ψ(t). Second, the learner can query the teacher whether his learned tree series ϕ
coincides with ψ. The teacher either returns the special token ⊥ to signal equality

maletti@tcs.inf.tu-dresden.de


Learning Deterministically Recognizable Tree Series — Revisited 219

(i.e., ϕ = ψ) or he supplies a counterexample. Such a counterexample is a tree t
on which ϕ and ψ disagree (i.e., ϕ(t) 6= ψ(t)).

Certainly, we need to be able to finitely represent the learned tree series.
To this end, we use an automaton model called (bottom-up) weighted tree au-
tomaton (for short: wta; see [8] and the references therein). These devices are
classical bottom-up tree automata [14,15] with transition weights. The weights
are elements of A and are combined using the operations + and · of the field (see
Definition 3). In [17], a learning algorithm based on the introduced minimally
adequate teacher is presented for wta over fields. Here we will restrict ourselves
to deterministic wta [8] and their recognized series, which are called determin-
istically recognizable. Since no general determinization procedure for wta over
fields is known, this task is not encompassed by the result of [17].

For deterministic wta over fields (actually, semifields), the learning algo-
rithm [12] was proposed. It is based on a restricted Myhill-Nerode theo-
rem [12] for the series recognized by deterministic all-accepting (i.e., all states
are final) wta (for short: aa-wta). Consequently, this algorithm learns the mini-
mal deterministic aa-wta that recognizes ψ (which is unique up to renaming of
states) provided that any deterministic aa-wta recognizing ψ exists. We extend
this algorithm to arbitrary deterministic wta and solve the open problem of [12].

Let us discuss the main differences. First, an aa-wta M makes no distinction
between final and non-final states because all of its states are final. In essence,
the internal working of M is completely exposed to the outside. It yields that the
recognized series ψ is subtree-closed [12]. This property demands that with every
tree t such that ψ(t) 6= 0, also all of its subtrees are mapped (under ψ) to some
nonzero weight. With this property, the weight of the last transition that is used
to accept t = σ(t1, . . . , tk) can simply be computed as ψ(t) ·

∏k
i=1 ψ(ti)

−1 (see
Definition 11). Consequently, the minimal deterministic aa-wta recognizing ψ is
unique (up to renaming of states).

On the contrary, there exists no unique minimal deterministic wta recogniz-
ing ψ because the weights on transitions that lead to non-final states can be
varied (occassionally called pushing [13]). In summary, we need to (i) distin-
guish final and non-final states and (ii) use a more complicated mechanism to
compute the transition weights (because some ψ(ti) might be 0 in the above
expression). The basis for our generalized learning will be the general Myhill-
Nerode theorem [5], which provides a characterization of the deterministically
recognizable tree series by means of finite-index congruences of the initial term
algebra (TΣ , Σ). We then follow the approach of [5] and introduce a helping
tree series (see Definition 10). The exact changes to the learning algorithm are
discussed in the main body. Our new algorithm runs in time O(sm2nr) where
s is the size of the largest counterexample supplied by the teacher, m and n are
the number of transitions and the number of states of the returned automaton,
respectively, and r is the maximal rank of the input symbols.

Including this Introduction, the paper comprises 6 sections. The second sec-
tion recalls basic notions and notations. In the next section, we recall wta and
the Myhill-Nerode theorem [5]. In Sect. 4, we present the main contribution



220 A. Maletti

of this paper, which is the generalized learning algorithm. Moreover, we prove
its correctness and continue in Sect. 5 with an elaborated example run of the
algorithm. In the last section, we discuss the runtime complexity of our new
algorithm and compare it to the learning algorithm of [12].

2 Preliminaries

We write IN to represent the nonnegative integers. Further, we write [l, u] for
{n ∈ IN | l 6 n 6 u}. Any nonempty and finite set Σ is an alphabet. A ranked
alphabet is a partition (Σk)k∈IN of an alphabet Σ. For every ranked alpha-
bet Σ = (Σk)k∈IN, the set of Σ-trees, denoted by TΣ , is inductively defined
to be the smallest set T such that for every σ ∈ Σk and t1, . . . , tk ∈ T also
σ(t1, . . . , tk) ∈ T . We write α instead of α() if α ∈ Σ0. Given a set T ⊆ TΣ , the
set {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T} is denoted by Σ(T ). The size of a tree
t ∈ TΣ , denoted by size(t), is the number of occurrences of symbols of Σ in t.
Let � /∈ Σ be a distinguished nullary symbol. Let Σ′k = Σk for every k > 0 and
Σ′0 = Σ0 ∪ {�}. A Σ-context c is a tree of TΣ′ such that � occurs exactly once
in c. The set of all Σ-contexts is denoted by CΣ , and we write c[t] for the tree
that is obtained by replacing in c ∈ CΣ the occurrence of � with t ∈ TΣ .

Let ≡ be an equivalence on a set S. We write [s]≡ for the equivalence class
of s ∈ S and (S/≡) for {[s]≡ | s ∈ S}. We drop the subscript from [s]≡ if ≡
is clear. Finally, if S = TΣ , then ≡ is a congruence if for every σ ∈ Σk and
t1, . . . , tk, u1, . . . , uk ∈ TΣ such that ti ≡ ui for every i ∈ [1, k] also σ(t1, . . . , tk)
≡ σ(u1, . . . , uk).

A (commutative) semiring is an algebraic structure (A,+, ·, 0, 1) comprising
two commutative monoids (A,+, 0) and (A, ·, 1) such that · distributes over +
and 0 is absorbing for · . A semiring (A,+, ·, 0, 1) is a semifield if for every
a ∈ A \ {0} there exists an a−1 ∈ A such that a · a−1 = 1. A tree series ψ is a
mapping ψ : TΣ → A; the set of all such mappings is denoted by A〈〈TΣ〉〉. Given
t ∈ TΣ , we denote ψ(t) also by (ψ, t). The Hadamard product of two tree series
ψ,ϕ ∈ A〈〈TΣ〉〉 is denoted by ψ ·ϕ and given by (ψ ·ϕ, t) = (ψ, t) · (ϕ, t) for every
t ∈ TΣ . Finally, a series ψ ∈ A〈〈TΣ〉〉 is subtree-closed if for every t ∈ TΣ with
(ψ, t) 6= 0 also (ψ, u) 6= 0 for every subtree u of t.

3 Weighted Tree Automaton

In this section, we recall from [8,5] the central notions of this contribution:
deterministic weighted tree automata (wta) and deterministically recognizable
tree series. For the rest of the paper, let A = (A,+, ·, 0, 1) be a commutative
semifield; in examples we will use the field IR = (IR,+, ·, 0, 1) of real numbers.
In Sect. 4 we show how to learn a deterministic wta from a teacher using the
characterization given by the Myhill-Nerode theorem [5].

Definition 1 (see [8, Definitions 3.1 and 3.3]). A weighted tree automa-
ton M is a tuple (Q,Σ,A, F, µ) with



Learning Deterministically Recognizable Tree Series — Revisited 221

– a finite set Q of states;
– a ranked alphabet Σ of input symbols;
– a set F ⊆ Q of final states; and

– a tree representation (µk)k∈IN such that µk : Σk → AQ
k×Q.

We call M (bottom-up) deterministic if for every symbol σ ∈ Σk and w ∈ Qk
there exists at most one q ∈ Q such that µk(σ)w,q 6= 0.

Note that a wta model with final weights (i.e., with F : Q → A instead of
F ⊆ Q) is considered in [6]. However, for every deterministic “final weight” wta
an equivalent deterministic wta can be constructed [7, Lemma 6.1.4]. Instead of
µ0(α)ε,q with α ∈ Σ0 and ε the empty word, we commonly write µ0(α)q.

Let us present our running-example wta. It is supposed to assign a probability
to (simplified) syntax trees of simple English sentences. If the tree is ill-formed,
then the assigned probability shall be 0. This shall signal that it is rejected.
Moreover, the probability shall diminish with the length of the input sentence.

Example 2. Let Σ = (Σk)k∈IN with
⋃
k∈IN\{0,2}Σk = ∅ and Σ2 = {σ} and

Σ0 = {Alice,Bob, loves,hates,ugly,nice,mean, tall}. Moreover, let (Q,Σ, IR, F, µ)
be the deterministic wta with {NN,VB,ADJ,NP,VP,S} as set Q of states and
F = {S} and the nonzero tree representation entries

0.5 = µ0(Alice)NN = µ0(Bob)NN = µ0(loves)VB = µ0(hates)VB

0.25 = µ0(ugly)ADJ = µ0(nice)ADJ = µ0(mean)ADJ = µ0(tall)ADJ

0.5 = µ2(σ)NNVP,S = µ2(σ)NPVP,S = µ2(σ)VBNN,VP = µ2(σ)VBNP,VP

0.5 = µ2(σ)ADJNN,NP = µ2(σ)ADJNP,NP . �

In the sequel, we will sometimes abbreviate the nullary symbols used in
Example 2 to just their initial letter. Let us continue with the semantics of wta.

Definition 3 (see [8, Definition 3.3]). Let M = (Q,Σ,A, F, µ) be a wta. The
mapping hµ : TΣ → AQ is given by

hµ(σ(t1, . . . , tk))q =
∑

q1···qk∈Qk
µk(σ)q1···qk,q · hµ(t1)q1 · . . . · hµ(tk)qk

for every σ ∈ Σk, q ∈ Q, and t1, . . . , tk ∈ TΣ. The tree series that is recognized
by M , denoted by S(M), is defined for every t ∈ TΣ by (S(M), t) =

∑
q∈F hµ(t)q.

We note that deterministic wta do not essentially use the additive operation.
A tree series ψ ∈ A〈〈TΣ〉〉 is deterministically recognizable if there exists a de-
terministic wta M such that S(M) = ψ. Let us illustrate the definition of the
semantics on a small example.

Example 4. Recall the deterministic wta M of Example 2. Then

(S(M), σ(Alice, σ(loves,Bob))) = 3.125 · 10−2



222 A. Maletti

(S(M), σ(σ(mean,Bob), σ(hates, σ(ugly,Alice)))) = 4.8828125 · 10−4

(S(M), σ(σ(Alice, loves),Bob)) = 0 .

Let us illustrate the computation of the last coefficient. To this end, let t = σ(σ
(A, l),B). Since S is the only final state of M , we obtain that (S(M), t) = hµ(t)S.
We continue with

hµ(σ(σ(A, l),B))S

=
∑

q1q2∈Q2

µ2(σ)q1q2,S · hµ(σ(A, l))q1 · hµ(B)q2

=
∑
q1∈Q

0.5 · hµ(σ(A, l))q1 · µ0(B)VP = 0 .

We showed two parse trees for the sentence “Alice loves Bob”. One of them is
ill-formed and the other is assigned a positive probability. Thus, the sentence
would not be considered ill-formed because a parse tree with nonzero weight
exists. �

Let us conclude this section with the Myhill-Nerode theorem [5] for de-
terministically recognizable tree series. Let ψ ∈ A〈〈TΣ〉〉. The Myhill-Nerode
congruence relation ≡ψ ⊆ TΣ×TΣ is given by t ≡ψ u if and only if there exists a
coefficient a ∈ A \ {0} such that (ψ, c[t]) = a · (ψ, c[u]) for every c ∈ CΣ . Finally,
by Lψ we denote {t ∈ TΣ | ∀c ∈ CΣ : (ψ, c[t]) = 0}.

Theorem 5 (see [5, Theorem 2]). A tree series ψ ∈ A〈〈TΣ〉〉 is determinis-
tically recognizable if and only if ≡ψ has finite index. Moreover, every minimal
deterministic wta recognizing ψ has card((TΣ \ Lψ)/≡ψ) states.

4 Learning Algorithm

Next, we show how to learn a minimal deterministic wta for a given determinis-
tically recognizable tree series ψ with the help of a teacher. To this end, we now
fix a tree series ψ ∈ A〈〈TΣ〉〉. Let us clarify the role of the teacher. He is able to
answer two types of questions:

1. Coefficient queries: Given t ∈ TΣ , the teacher supplies (ψ, t).
2. Equivalence queries: Given a wta M , he answers whether S(M) = ψ. If so,

he returns the special token ⊥. Otherwise he returns a counterexample; i.e.,
some tree t ∈ TΣ such that (S(M), t) 6= (ψ, t).

This straightforward adaptation of the minimally adequate teacher [2] was pro-
posed in [12] and is based on the adaptation for tree languages [9,11]. Equivalence
queries might be considered unrealistic in a fully automatic setting and might
there be replaced by tests that check a predetermined number of trees in applica-
tions. We will, however, not investigate the ramifications of this approximation.



Learning Deterministically Recognizable Tree Series — Revisited 223

At this point, we will only note that equivalence of deterministic wta is decid-
able [6]. So in the particular case, that the teacher uses a deterministic wta to
represent ψ, both types of queries can automatically be answered.

The following development is heavily inspired by the learning algorithm de-
vised in [12]; in its turn an extension of the learning algorithm of [11] to de-
terministic all-accepting [12] wta. It was argued in [12] that the all-accepting
property is no major restriction because any deterministically recognizable tree
series ψ can be presented as the Hadamard product of a series ψ′ recognized
by a deterministic all-accepting wta and a series ψ′′ recognized by a determin-
istic Boolean (i.e., only weights 0 and 1) wta (for the latter class, learning
algorithms are known [9,11]).

Let us discuss the problems of this approach. First, the decomposition is not
unique; in general, we need to guess coefficients in ψ′ (namely the ones where
ψ is 0). The guessed coefficients affect the size of the minimal deterministic wta
recognizing ψ′. Second, we learn minimial deterministic wta M ′ and M ′′ recog-
nizing ψ′ and ψ′′, respectively, however, the Hadamard product of M ′ and M ′′

is not necessarily a minimal deterministic wta recognizing ψ = ψ′ · ψ′′. Third,
we run two very similar algorithms and then perform a Hadamard product
construction; this is most likely not the most efficient solution.

The first problem (the completion of ψ to a subtree-closed ψ′) can indeed
be easily solved, provided that a representation of ψ by a deterministic wta is
available (on the other hand, provided that a representation as deterministic wta
is available, we could also just minimize the available representation). If no such
representation is available, then the problem is far more complicated, and we
will now show that very simple completions can even lead to deterministically
non-recognizable tree series.

Example 6. Recall the wta M from Example 2. Clearly, S(M) is not yet subtree-
closed, so we complete it to ψ′ ∈ IR〈〈TΣ〉〉 (cf. Definition 10) by

(ψ′, t) =

{
(S(M), t) if (S(M), t) 6= 0

1 otherwise

for every t ∈ TΣ . We consider trees of the form σ(m, σ(m, . . . σ(m,B) . . .)). For
every n ∈ IN, let tn be the such obtained tree with n occurrences of m. Clearly,
(ψ′, tn) = 1 for every n ∈ IN. Thus, for every i, j ∈ IN, we have ti ≡ψ′ tj if
and only if (ψ′, c[ti]) = (ψ′, c[tj ]) for every c ∈ CΣ because (ψ′, ti) = (ψ′, tj).
Now, we consider the context c = σ(A, σ(l,�)). An easy computation shows that
(ψ′, c[tn]) = 0.55 · (0.5 ·0.25)n for every n ∈ IN. Consequently, ti 6≡ψ′ tj whenever
i 6= j. Consequently, ≡ψ′ has infinite index and thus ψ′ is not deterministically
recognizable by Theorem 5. �

Our main contribution is a slightly modified learning algorithm that is not
restricted to deterministic all-accepting wta. To this end, we first define a re-
striction of the Myhill-Nerode congruence [5]. Henceforth, we will drop the
index ψ from ≡ψ and Lψ.



224 A. Maletti

Definition 7 (cf. [5, Sect. 5]). Let C ⊆ CΣ. The relation ≡C contains all
(t, u) ∈ TΣ×TΣ for which there exists an a ∈ A\{0} such that for every context
c ∈ C the equality (ψ, c[t]) = a · (ψ, c[u]) holds.

Clearly, ≡C is an equivalence for every C ⊆ CΣ . Moreover, the relation ≡CΣ
coincides with the Myhill-Nerode congruence [5] and for every t, u ∈ TΣ
and c ∈ CΣ it holds that t ≡{c} u if and only if (ψ, c[t]) 6= 0 precisely when
(ψ, c[u]) 6= 0 (cf. Condition (MN2) in [5]). In particular, for c = �, we have
that t ≡{�} u if and only if both (ψ, t) and (ψ, u) are nonzero or both zero.
Consequently, the context� will allow us to distinguish final and non-final states.
Finally, let

LC = {t ∈ TΣ | ∀c ∈ C : (ψ, c[t]) = 0}

for every C ⊆ CΣ . Note that L = LCΣ .
An important observation is that there exists a finite set C of contexts such

that ≡C and ≡ coincide, if ≡ has finite index. Moreover, we note that for every
C ⊆ CΣ the index of ≡C is at most as large as the index of ≡. Consequently,
if ≡ has finite index, then also ≡C has finite index. Our learning strategy is to
learn a set C of contexts such that ≡C and ≡ coincide. Next, we present our
main data structure.

Definition 8 (cf. [12, Definition 4.3]). We call a triple (E, T,C) an obser-
vation table if

1. E and T are finite subsets of TΣ such that E ⊆ T ⊆ Σ(E);
2. C is a subset of CΣ with � ∈ C and card(C) ≤ card(E) + card(T ) + 1;
3. T ∩ LC = ∅; and
4. card(E) = card(E/≡C).

If, additionally, card(E) = card(T/≡C), then we call (E, T,C) complete.

The only major difference to [12] is found in Condition 2. First, the pres-
ence of the context � in C basically enables us to distinguish final and non-
final states. There is no need for � in [12] because all states will be final. Sec-
ond, we changed the size restriction on C from card(C) ≤ card(E) (as in [12])
to card(C) ≤ card(E)+card(T )+1. In [12], for every e, e′ ∈ E, the coefficient a of
Definition 7 (required to show that e ≡C e′) can always be determined with the
help of the context �. Clearly, card(E) contexts are then sufficient to separate
the elements of E. In our more general setting, we cannot always determine the
coefficient a of Definition 7 with the help of the context �. Rather, the contexts
of C shall not only separate the elements of E, but shall also serve as explicit
evidence that no tree in T (and thus also in E) is in LC . This evidence is needed
to determine the right coefficient in Definition 7 and is, consequently, used in
Definition 10 to fix the right weight.

The third condition encodes the avoidance of trees t such that no supertree
of t can be accepted (dead states; see [12]). This condition is only checked for
those contexts that we accumulated in C.



Learning Deterministically Recognizable Tree Series — Revisited 225

Proposition 9. Let L 6= ∅, and let C ⊆ CΣ be such that ≡C coincides with ≡.
Then LC = L.

Proof. The direction L ⊆ LC is trivial. We prove the remaining direction by
contradiction. Let t ∈ LC \ L. Thus, (ψ, c[t]) = 0 for every c ∈ C, and clearly,
t ≡C u for every u ∈ L. However, there exists a context c ∈ CΣ \ C such that
(ψ, c[t]) 6= 0 because t /∈ L. This yields that t 6≡ u for every u ∈ L. Thus, we can
derive the contradiction that ≡C and ≡ do not coincide because L 6= ∅. ut

The condition L 6= ∅ is necessary in the above statement because the partition
induced by ≡ (and thus also ≡C) does not distinguish between an equivalence
class containing only one tree, which happens to be in L, and an equivalence
class containing only one tree, which is not in L.

The fourth and completeness condition in Definition 8 are equivalent to:
e 6≡C e′ for every two distinct e, e′ ∈ E, and for every t ∈ T there exists an
e ∈ E such that t ≡C e, respectively. Clearly, such an element e is uniquely
determined by the former condition. In the sequel, given a complete observation
table T = (E, T,C) and t ∈ T we write T (t) for the unique e ∈ E such that
e ≡C t. Clearly, T (e) = e for every e ∈ E (see [12, Lemma 4.4]). Next we
show how to construct a deterministic wta given a complete observation table.
To achieve this, we modify the construction [5] of a deterministic wta from the
Myhill-Nerode congruence ≡.

Definition 10 (cf. [5, Lemma 8 and Page 9]). Let T = (E, T,C) be a
complete observation table. Let ψ(T ) : TΣ → A \ {0} be such that for every
t ∈ TΣ

(ψ(T ), t) =


(ψ, t) if (ψ, t) 6= 0

(ψ, c[t]) · (ψ, c[T (t)])−1 if (ψ, t) = 0 and t ∈ T and

(ψ, c[t]) 6= 0 for some c ∈ C
1 otherwise.

Here, we only consider a baseline implementation; an efficient implementation
could avoid many queries to the teacher [10] and store the required information
in an extended observation table. Note that, for example, a suitable context for
the second case in Definition 10 is observed by our algorithm (see Algorithms
1 and 3) when t is added to the observation table; it could thus be stored for
efficient retrieval.

Some notes on the well-definedness of ψ(T ) are necessary. First, the condition
(ψ, t) 6= 0 can be checked easily by a coefficient query. Second, t ∈ T implies
t /∈ LC by the third condition of Definition 8. Thus, there trivially exists a
context c ∈ C such that (ψ, c[t]) 6= 0. It follows that (ψ, c[T (t)]) 6= 0 because
t ≡C T (t) and hence t ≡{c} T (t). Consequently, the inverse is well-defined. It
remains to show that the result is independent of the selection of the context c.
To this end, let c′ ∈ C be another context such that (ψ, c′[t]) 6= 0. Following
the above argumentation, (ψ, c′[T (t)]) 6= 0. Since t ≡C T (t), there exists a



226 A. Maletti

coefficient a ∈ A \ {0} such that (ψ, c′′[t]) = a · (ψ, c′′[T (t)]) for every c′′ ∈ C. It
follows that

(ψ, c[t]) · (ψ, c[T (t)])−1 = a = (ψ, c′[t]) · (ψ, c′[T (t)])−1 .

Definition 11 (cf. [5, Definition 4]). Let T = (E, T,C) be a complete obser-
vation table. We construct the wta M(T ) = (E,Σ,A, F, µ) such that

– F = {e ∈ E | (ψ, e) 6= 0};
– for every σ ∈ Σk and e1, . . . , ek ∈ E such that σ(e1, . . . , ek) ∈ T

µk(σ)e1···ek,T (σ(e1,...,ek)) = (ψ(T ), σ(e1, . . . , ek)) ·
k∏
i=1

(ψ(T ), ei)
−1

– and all remaining entries in µ are 0.

Let us immediately observe some properties of the constructed wta. Clearly,
M(T ) is deterministic. Moreover, S(M(T )) coincides with ψ on all trees of T .

Lemma 12 (cf. [12, Lemma 4.5]). Let T = (E, T,C) be a complete observa-
tion table. Then (S(M(T )), t) = (ψ, t) for every t ∈ T .

Proof. Suppose that M(T ) = (E,Σ,A, F, µ). We first prove that

hµ(t)T (t) = (ψ(T ), t) (1)

for every t ∈ T . Let t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ E. By the
induction hypothesis, we have hµ(ti)T (ti) = (ψ(T ), ti) for every i ∈ [1, k]. Clearly,
hµ(ti)e = 0 for all states e ∈ E with e 6= T (ti) because M(T ) is deterministic
(see [8, Lemma 3.6]). Then

hµ(σ(t1, . . . , tk))T (σ(t1,...,tk))

=
∑

e1,...,ek∈E
µk(σ)e1···ek,T (σ(t1,...,tk)) ·

k∏
i=1

hµ(ti)ei

= µk(σ)T (t1)···T (tk),T (σ(t1,...,tk)) ·
k∏
i=1

(ψ(T ), ti)

= µk(σ)t1···tk,T (σ(t1,...,tk)) ·
k∏
i=1

(ψ(T ), ti)

= (ψ(T ), σ(t1, . . . , tk)) ·
k∏
i=1

(ψ(T ), ti)
−1 ·

k∏
i=1

(ψ(T ), ti)

= (ψ(T ), σ(t1, . . . , tk))

where the second equality is by the induction hypothesis; the third is due to
the fact that t1, . . . , tk ∈ E; and the fourth is by the definition of µ (see Defini-
tion 11).



Learning Deterministically Recognizable Tree Series — Revisited 227

Algorithm 1 Learn a minimal deterministic wta recognizing ψ

T ← (∅, ∅, {�}) {initial observation table}
2: loop

M ←M(T ) {construct new wta}
4: t← Equal?(M) {ask equivalence query}

if t = ⊥ then
6: return M {return the approved wta}

else
8: T ← Extend(T , t) {extend the observation table}

Thus, hµ(t)T (t) 6= 0. We now return to the main statement and complete
the proof by distinguishing two cases: (ψ, t) = 0 and (ψ, t) 6= 0. In the former
case, (ψ, T (t)) = 0 because T (t) ≡C t and thus T (t) ≡{�} t (since � ∈ C).
Consequently, T (t) /∈ F and (S(M(T )), t) = 0. In the latter case, an analoguous
reasoning leads to (ψ, T (t)) 6= 0 and T (t) ∈ F . Consequently, (S(M(T )), t) =
hµ(t)T (t) = (ψ(T ), t) = (ψ, t). ut

In Algorithm 1 we show the principal structure of the learner. The bulk of
work is done in Extend, which is shown in Algorithm 3. We start with the
initial empty observation table (∅, ∅, {�}) and iteratively query the teacher for
counterexamples and update our complete observation table with the returned
counterexample. Once the teacher approves our wta, we simply return it. Clearly,
the returned wta recognizes ψ because the teacher certifies this. In Sect. 5 we
show an example application of the learning algorithm to learn the series rec-
ognized by the wta of Example 2. We say that an algorithm works correctly
if whenever the pre-conditions (Require) are met at the beginning of the algo-
rithm, then the algorithm terminates and the post-conditions (Ensure) hold at
the point of return.

Theorem 13 (see [12, Theorem 5.4]). Let us suppose that Extend works
correctly and ψ is deterministically recognizable. Then Algorithm 1 terminates
and returns a minimal deterministic wta recognizing ψ.

Proof. Let ψ be deterministically recognizable. Then ≡ has finite index by The-
orem 5. Let l = card(TΣ/≡). We already remarked that, for every C ⊆ CΣ , the
index of ≡C is at most l. This yields that for every observation table (E, T,C)
we have card(E) 6 l because

card(E) = card(E/≡C) 6 card(TΣ/≡C) 6 card(TΣ/≡) = l .

It is easily checked that Extend is always called with a complete observa-
tion table and a counterexample as parameters. Since card(E) and card(T ) are
bounded, there can only be finitely many calls to Extend. Thus, Algorithm 1
terminates. Moreover, the returned wta, sayM(T ), is approved by the teacher,
so we have S(M(T )) = ψ. By the construction of M(T ), we know that M(T )
has at most l states. Consequently,M(T ) is a minimal deterministic wta recog-
nizing ψ by Theorem 5. ut



228 A. Maletti

Algorithm 2 The Complete function

Require: an observation table (E, T,C)

Ensure: return a complete observation table (E′, T, C) such that E ⊆ E′

for all t ∈ T do
2: if t 6≡C e for every e ∈ E then

E ← E ∪ {t}
4: return (E, T,C)

Next, we describe the functionality of Complete, which is shown in Al-
gorithm 2. This function takes an observation table (E, T,C) and returns a
complete observation table (E′, T, C) with E ⊆ E′. We simply check for every
t ∈ T whether there exists an e ∈ E such that t ≡C e. If this is not the case,
then we add t to E. It is clear that Complete works correctly.

Finally, let us discuss the Extend function, which is shown in Algorithm 3.
We search for a minimal subtree that is still a counterexample using a technique
called contradiction backtracking [18]. Let T = (E, T,C) be a complete obser-
vation table, M(T ) = (E,Σ,A, F, µ) be the constructed wta, and t ∈ TΣ be a
counterexample; i.e., a tree t such that (S(M(T )), t) 6= (ψ, t). We first decom-
pose t into a context c ∈ CΣ and a tree u that is not in E but whose direct
subtrees are all in E. In some sense, this is a minimal offending subtree because
the wta works correctly on all trees of T by Lemma 12. Moreover, such a subtree
must exist because t is a counterexample.

Now we distinguish two cases. If u was already seen (i.e., u ∈ T ), then
u ≡C T (u). By Lemma 12, the wta M(T ) works correctly on u. Thus the error
is made when processing the context c. We test whether c separates u and T (u).
Provided that u ≡C∪{c} T (u), then u and T (u) behave equally in all contexts
of C ∪ {c} and we continue our search for the counterexample with c[T (u)].

In all other cases, either u and T (u) should be separated or u was not seen
before (i.e., is not already present in T ). In the latter case, hµ(u)e = 0, and
consequently, also hµ(c[u])e = 0 for every e ∈ E (see [8, Lemma 3.7]). Hence
(S(M(T )), c[u]) = 0 and (ψ, c[u]) 6= 0. Thus we claim that in T ′ = (E, T ∪ {u},
C ∪ {c}) is an observation table and return the completion of T ′. If u /∈ T , then
(ψ, c[u]) 6= 0 and thus u /∈ LC∪{c}. Moreover, ≡C∪{c} ⊆ ≡C and either we add u
to T (if u /∈ T ) or we add u to E (if u ∈ T but u 6≡C∪{c} T (u)). Thus the
post-condition of the algorithm and the size restriction on the set of contexts
are met.

The next lemma will rely on two straightforward lemmata; their proofs offer
little insight and can thus be skipped on first reading.

Lemma 14 (see [5, Theorem 1]). Let M = (Q,Σ,A, F, µ) be a deterministic
wta, and let t, u ∈ TΣ be such that hµ(t)p 6= 0 and hµ(u)p 6= 0 for some state
p ∈ Q. Then for every context c ∈ CΣ and state q ∈ Q

hµ(c[t])q · hµ(t)−1p = hµ(c[u])q · hµ(u)−1p .



Learning Deterministically Recognizable Tree Series — Revisited 229

Algorithm 3 The Extend function

Require: a complete observation table T = (E, T,C) and a counterexample t ∈ TΣ
Ensure: return a complete observation table T ′ = (E′, T ′, C′)

such that E ⊆ E′ and T ⊆ T ′ and one inclusion is strict

Decompose t into t = c[u] where c ∈ CΣ and u ∈ Σ(E) \ E
2: if u ∈ T and u ≡C∪{c} T (u) then

return Extend(T , c[T (u)]) {normalize and continue}
4: else

return Complete(E, T ∪ {u}, C ∪ {c}) {add u and c}

Proof. We prove the statement by induction on the context c. Let c = �.
Then hµ(c[t])q = hµ(t)q and hµ(c[u])q = hµ(u)q. We now distinguish two cases:
(i) q = p and (ii) q 6= p. In the former case, we immediately obtain

hµ(t)p · hµ(t)−1p = 1 = hµ(u)p · hµ(u)−1p .

In the latter case, hµ(t)q = 0 = hµ(u)q because M is deterministic (see [8,
Lemma 3.6]). Consequently,

hµ(t)q · hµ(t)−1p = 0 = hµ(u)q · hµ(u)−1p .

In the induction step we assume that c = σ(t1, . . . , ti−1, c
′, ti+1, . . . , tk) for

some σ ∈ Σk, context c′ ∈ CΣ , position i ∈ [1, k], and t1, . . . , tk ∈ TΣ . Then

hµ(σ(t1, . . . , ti−1, c
′, ti+1, . . . , tk)[t])q · hµ(t)−1p

= hµ(σ(t1, . . . , ti−1, c
′[t], ti+1, . . . , tk))q · hµ(t)−1p

=
( ∑
q1,...,qk∈Q

µk(σ)q1···qk,q · hµ(c′[t])qi ·
∏

i∈[1,k]\{i}

hµ(ti)qi

)
· hµ(t)−1p

=
( ∑
q1,...,qk∈Q

µk(σ)q1···qk,q · hµ(c′[u])qi ·
∏

i∈[1,k]\{i}

hµ(ti)qi

)
· hµ(u)−1p

= hµ(σ(t1, . . . , ti−1, c
′[u], ti+1, . . . , tk))q · hµ(u)−1p

= hµ(σ(t1, . . . , ti−1, c
′, ti+1, . . . , tk)[u])q · hµ(u)−1p

where the third equality holds by the induction hypothesis and distributivity.
ut

Lemma 15. Let T = (E, T,C) be an observation table, and let t, u ∈ T be such
that t ≡C u. For every c ∈ C

(ψ, c[t]) · (ψ(T ), t)−1 = (ψ, c[u]) · (ψ(T ), u)−1 .

Proof. By t ≡C u there exists an a ∈ A \ {0} such that for every context c′ ∈ C
we have (ψ, c′[t]) = a · (ψ, c′[u]). Consequently,

(ψ, t) = a · (ψ, u) and (ψ, c[t]) = a · (ψ, c[u]) . (2)



230 A. Maletti

1. First, let (ψ, c[t]) = 0. By (2) also (ψ, c[u]) = 0, which proves the statement.
2. Second, let (ψ, c[t]) 6= 0 and (ψ, t) 6= 0. Then we can again conclude with

the help of (2) that (ψ, c[u]) 6= 0 and (ψ, u) 6= 0. Further,

(ψ, c[t]) · (ψ(T ), t)−1 = (ψ, c[t]) · (ψ, t)−1 = (ψ, c[u]) · (ψ, u)−1

= (ψ, c[u]) · (ψ(T ), u)−1

where the second equality holds by (2).
3. Finally, let (ψ, c[t]) 6= 0 and (ψ, t) = 0. We again immediately note that

(ψ, c[u]) 6= 0 and (ψ, u) = 0 by (2). Since t, u /∈ LC ,

(ψ, c[t]) · (ψ(T ), t)−1 = (ψ, c[t]) ·
(
(ψ, c[t]) · (ψ, c[T (t)])−1

)−1
= (ψ, c[T (t)]) = (ψ, c[T (u)])

= (ψ, c[u]) ·
(
(ψ, c[u]) · (ψ, c[T (u)])−1

)−1
= (ψ, c[u]) · (ψ(T ), u)−1

where the third equality holds because t ≡C u. ut

Now we are ready with the two auxiliary lemmata. It remains to prove that
the recursive call of Extend meets the pre-conditions of Extend. It is clear,
that T is a complete observation table, but we need to prove that c[T (u)] is also
a counterexample. This is achieved in the next lemma.

Lemma 16. Let T = (E, T,C) be a complete observation table, u ∈ T , and
c ∈ CΣ such that u ≡C∪{c} T (u). If (S(M(T )), c[u]) 6= (ψ, c[u]), then also
(S(M(T )), c[T (u)]) 6= (ψ, c[T (u)]).

Proof. LetM(T ) = (E,Σ,A, F, µ). We distinguish two cases: First, let hµ(c[u])q
= 0 for every q ∈ Q. Then also hµ(c[T (u)])q = 0 for every q ∈ Q becauseM(T )
is deterministic and hµ(u)T (u) 6= 0 and hµ(T (u))T (u) 6= 0 by Lemma 12 (see
also Lemma 14). Clearly, (S(M(T )), c[u]) = 0 and (S(M(T )), c[T (u)]) = 0.
Consequently, (ψ, c[u]) 6= 0 and (ψ, c[T (u)]) 6= 0 because u ≡C∪{c} T (u). This
proves the statement in the first case.

Second, let q ∈ Q be such that hµ(c[u])q 6= 0. Note that hµ(u)T (u) 6= 0 and
hµ(T (u)T (u) 6= 0 by Lemma 12. Then

(S(M(T )), c[u]) · hµ(u)−1T (u) =
∑

p∈{q}∩F

hµ(c[u])p · hµ(u)−1T (u)

=
∑

p∈{q}∩F

hµ(c[T (u)])p · hµ(T (u))−1T (u)

= (S(M(T )), c[T (u)]) · hµ(T (u))−1T (u) (3)

where the second equality is by Lemmata 12 and 14. We now reason as follows.

(S(M(T )), c[T (u)])

= (S(M(T )), c[u]) · hµ(T (u))T (u) · hµ(u)−1T (u) by (3)



Learning Deterministically Recognizable Tree Series — Revisited 231

= (S(M(T )), c[u]) · (ψ(T ), T (u)) · (ψ(T ), u)−1 by (1)

6= (ψ, c[u]) · (ψ(T ), T (u)) · (ψ(T ), u)−1

= (ψ, c[T (u)]) by Lemma 15 ut

The previous lemma justifies the recursive call of Extend. It remains to
check whether the recursion terminates (see [12, Lemma 5.3]). For this we con-
sider a call Extend(T , t) triggered in Line 8 of Algorithm 1. Since the recursive
call of Extend also has T as parameter, we now fix a complete observation
table T = (E, T,C) for all invocations of Extend that are triggered by the
considered call Extend(T , t). Moreover, let v : TΣ → IN be the mapping that
assigns to every u ∈ TΣ the number of occurrences of subtrees of u that are
not in E. Next we show that every call in our chain of invocations strictly de-
creases v(t) where t is the second parameter of the call to Extend. Suppose we
now consider the call Extend(T , t), and let t = c[u] be the decomposition as
given in Line 1 of Algorithm 3. Without regard of the occurrence of the recursive
call to Extend, it is of the form Extend(T , c[T (u)]). By Line 1 in Algorithm 3
we have u ∈ Σ(E) \ E. So v(t) = size(c) and v(c[T (u)]) = size(c) − 1 because
T (u) ∈ E and E is trivially subtree-closed (i.e., if e ∈ E then also all subtrees
of e are in E). Thus the recursion must terminate and hence each call of Extend
terminates.

Corollary 17 (of Theorem 13). Provided that ψ is deterministically recog-
nizable, Algorithm 1 terminates and returns a minimal deterministic wta recog-
nizing ψ.

5 An Example

Let us show, how the algorithm learns the tree series ψ recognized by the
wta of Example 2. We start (Line 1) with the initial empty observation ta-
ble T0 = (∅, ∅, {�}). The constructed (Line 3) wta M0 = (∅, Σ,A, ∅, µ) recog-
nizes the tree series that maps every tree to 0. We have seen in Example 4 that
(ψ, σ(A, σ(l,B))) = 3.125 ·10−2, so suppose the equivalence query (Line 4) is an-
swered with t1 = σ(A, σ(l,B)). Consequently, we will call Extend(T0, t1). Inside
the call, we first decompose t1 into c1 = σ(�, σ(l,B)) and u1 = A. Consequently,
we return

Complete(∅, {u1}, {�, c1}) = ({u1}, {u1}, {�, c1}) = T1

in Line 8 of Algorithm 3. We thus finished the first loop in Algorithm 1.
The wta M(T1) will only have the non-final state A and the nonzero tree

representation entry µ0(A)A = 1. Hence t1 is still a counterexample, and we
might assume that t1 is returned by the teacher. Thus we call Extend(T1, t1).
There we first decompose t1 into the context c2 = σ(A, σ(�,B)) and u2 = l.
Consequently, the call returns

Complete({u1}, {u1, u2}, {�, c1, c2}) = ({u1, u2}, {u1, u2}, {�, c1, c2})



232 A. Maletti

because (ψ, σ(l, σ(l,B))) = 0. Let T2 be the complete observation table displayed
above. This concludes the second iteration.

In the third iteration, we can still use t1 as counterexample and the de-
composition c3 = σ(A, σ(l,�)) and u3 = B. The call to Extend then returns
T3 = ({u1, u2}, {u1, u2, u3}, {�, c1, c2, c3}) because we have A ≡{�,c1,c2,c3} B.
Another iteration with the counterexample t1 again yields the decomposition
c3 and u3. Now u3 was already seen before and A ≡{�,c1,c2,c3} B, so we re-
turn Extend(T3, σ(A, σ(l,A))). In that call, we decompose the second argument
into c4 = σ(A,�) and u4 = σ(l,A) and return

Complete({u1, u2}, {u1, . . . , u4}, {�, c1, . . . , c4})
= ({u1, u2, u4}, {u1, . . . , u4}, {�, c1, . . . , c4}) = T4 .

We will not demonstrate the construction of the wta M(T4) but will give an
elaborate example at the end. For the moment, rest assured that t1 is still a coun-
terexample (becauseM(T4) has no final states). The decomposition of t1 will be
c3 and u3. As previously, this yields the recursive call Extend(T4, σ(A, σ(l,A))).
Now the decomposition will be c5 = � and u5 = σ(A, σ(l,A)) and Extend will
return

Complete({u1, u2, u4}, {u1, . . . , u5}, {�, c1, . . . , c4})
= ({u1, u2, u4, u5}, {u1, . . . , u4}, {�, c1, . . . , c4}) = T5 .

Note that u5 is a final state ofM(T5) and that t1 is no longer a counterexample. If
we continue with t2 = σ(A, σ(h, σ(u,B))) until it is no longer a counterexample,
then we obtain

T8 = ({u1, u2, u4, u5,u}, {u1, . . . , u5,h,u, σ(u,A)},
{�, c1, . . . , c4, σ(u1, σ(�, σ(u, u3))), σ(u1, σ(u2, σ(�, u3)))}) .

Next we select t3 = σ(σ(t, σ(m,A)), σ(l, σ(n,B))) as counterexample and con-
tinue in the same manner. We obtain T11 as

({A, l, σ(l,A), σ(A, σ(l,A)),u}, {u1, . . . , u5,h,u, σ(u,A),m, t,n}, C ′)

for some C ′ ⊆ CΣ . At last, let us construct the wta M(T11). By Definition 11
we obtain the wta (Q,Σ,A, F, µ) with

– Q = {A, l, σ(l,A), σ(A, σ(l,A)),u}
– F = {σ(A, σ(l,A))}; and
– the nonzero tree representation entries

1 = µ0(A)A = µ0(B)A = µ0(l)l = µ0(h)l

1 = µ0(n)u = µ0(t)u = µ0(u)u = µ0(m)u

1 = µ2(σ)l A,σ(l,A)

0.125 = µ2(σ)uA,A

0.03125 = µ2(σ)Aσ(l,A),σ(A,σ(l,A)) .



Learning Deterministically Recognizable Tree Series — Revisited 233

Clearly, M(T11) recognizes exactly ψ. In the next iteration, the teacher thus
approvesM(T11). The returned wta has only 5 states (compared to the 6 states
of the wta in Example 2). By Corollary 17 the returned wta is minimal. Thus,
the learning algorithm might also be used to minimize deterministic wta but it
is rather inefficient at that task.

6 Complexity Analysis

Our formal runtime complexity analysis follows the approach of [11]. In [12] a
similar analysis is outlined but not actually shown. Our computation model will
be the random access machine and we assume that the multiplicative semifield
operations (including taking the inverse and equality tests) and the queries to
the teacher can be performed in constant time. Finally, we assume that the
algorithm terminates with the deterministic wta (Q,Σ,A, F, µ). In the sequel,
let

m = card({(σ, q, q1, . . . , qk) | µk(σ)q1···qk,q 6= 0})

and n = card(Q). Let r = max{k | Σ(k) 6= ∅}, and let T = (E, T,C) be a
complete observation table encountered during the run of the algorithm. Let us
start with the complexity of Complete.

Proposition 18 (cf. [11, Lemma 4.7]). Within time O(mn) the call to func-
tion Complete(E, T ∪ {u}, C ∪ {c}) returns.

Proof. First we check for each t ∈ T \ E whether the new context c splits
t and T (t); i.e., whether t ≡C∪{c} T (t). Suppose that with each t ∈ T \ E we
store the coefficient a required in Definition 7 for t ≡C T (t). Now we simply
need to check whether this coefficient also qualifies for t ≡{c} T (t). These simple
checks require O(m) because card(T ) ≤ m.

Should the check fail for some t1 and t2 that previously have been in the
same equivalence class, then we need to compare them to each other. For each t
these comparisons can amount up to O(n) because card(E) ≤ n.

Now it only remains to classify the new tree u provided that u /∈ T . We
simply compare u to each identified representative. Clearly, this requires us to
check all contexts C ∪ {c}. This takes O(n(m + n)), which can also be given
as O(2mn) because n ≤ m. Thus the overall complexity is O(mn). ut

With the previous proposition we can state the complexity of a call to Extend.

Proposition 19 (cf. [11, Lemma 4.6]). The call Extend(T , t) returns in
time O(size(t)mnr).

Proof. We already argued that at most size(t) recursive calls might be triggered
by this call. In each invocation, we need to perform the decomposition into c[u].
In [11, Lemma 4.5], it is shown how this can be achieved in time O(nr). Thus it
is also in O(mr). Using a similar technique, we can also test whether u ∈ T in
time O(mr). Finally, if u ∈ T , then the check u ≡C∪{c} T (u) can be performed



234 A. Maletti

in constant time because we can assume that a pointer to T (u) and the required
coefficient for Definition 7 is stored with u. Thus, we only need to confirm that
coefficient for the new context c. Altogether, this yields that the call to Extend
returns in time O(size(t)mnr). ut

Proposition 20 (cf. [11, Lemma 4.7]). The wta M(T ) can be constructed
in time O(mr).

Let s be the size of the largest counterexample returned by the teacher.
Our simple and straightforward complexity analysis yields the following overall
complexity (cf. O(mn2(n+ s)r) for the algorithm of [12]).

Theorem 21. Our devised learning algorithm runs in time O(sm2nr).

Proof. We already saw that at most m + n ≤ 2m calls to Extend can happen
before termination. Thus, we obtain the statement. ut

Acknowledgements

The author would like to thank Heiko Vogler and Frank Drewes for lively dis-
cussions. Further, the author wants to express cordial thanks to the referees of
the draft version of this paper. Their insight and criticism enabled the author
to improve the paper.

References

1. Angluin, D.: Inductive inference of formal languages from positive data. Inform.
and Control 45(2) (1980) 117–135

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inform. and
Comput. 75(2) (1987) 87–106

3. Angluin, D.: Queries and concept learning. Machine Learning 2(4) (1987) 319–342
4. Angluin, D.: Queries revisited. In: Proc. 12th Int. Conf. Algorithmic Learning

Theory. Volume 2225 of LNCS., Springer (2001) 12–31
5. Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Proc.

7th Int. Conf. Developments in Language Theory. Volume 2710 of LNCS., Springer
(2003) 146–158

6. Borchardt, B.: A pumping lemma and decidability problems for recognizable tree
series. Acta Cybernet. 16(4) (2004) 509–544

7. Borchardt, B.: The Theory of Recognizable Tree Series. PhD thesis, Technische
Universität Dresden (2005)

8. Borchardt, B., Vogler, H.: Determinization of finite state weighted tree automata.
J. Autom. Lang. Combin. 8(3) (2003) 417–463

9. Drewes, F., Högberg, J.: Learning a regular tree language from a teacher. In: Proc.
7th Int. Conf. Developments in Language Theory. Volume 2710 of LNCS., Springer
(2003) 279–291

10. Drewes, F., Högberg, J.: Extensions of a MAT learner for regular tree languages. In:
Proc. 23rd Annual Workshop of the Swedish Artificial Intelligence Society, Ume̊a
University (2006) 35–44



Learning Deterministically Recognizable Tree Series — Revisited 235

11. Drewes, F., Högberg, J.: Query learning of regular tree languages: How to avoid
dead states. Theory of Comput. Syst. 40(2) (2007) 163–185

12. Drewes, F., Vogler, H.: Learning deterministically recognizable tree series. J.
Automata, Languages and Combinatorics (2007) to appear.

13. Eisner, J.: Simpler and more general minimization for weighted finite-state au-
tomata. In: Human Language Technology Conf. of the North American Chapter
of the Association for Computational Linguistics. (2003) 64–71

14. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
15. Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages.

Volume 3. Springer (1997) 1–68
16. Gold, E.M.: Language identification in the limit. Inform. and Control 10(5) (1967)

447–474
17. Habrard, A., Oncina, J.: Learning multiplicity tree automata. In: Proc. 8th Int.

Colloquium Grammatical Inference. Volume 4201 of LNAI., Springer (2006) 268–
280

18. Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertation.
MIT Press (1983)


	Learning Deterministically  Recognizable Tree Series — Revisited

