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Abstract

The basic properties of distributivity and deletion of pure and o-substitution are investi-
gated. The obtained results are applied to show preservation of recognizability in a number
of surprising cases. It is proved that linear and recognizable tree series are closed under
o-substitution provided that the underlying semiring is commutative, continuous, and ad-
ditively idempotent. It is known that, in general, pure substitution does not preserve rec-
ognizability (not even for linear target tree series), but it is shown that recognizable linear
probability distributions (represented as tree series) are closed under pure substitution.

1 Introduction

Tree series substitution is an operation on tree series (i. e., mappings that associate to each tree
some coefficient of a semiring) that corresponds to substitution on tree languages. We distinguish
two main types of substitution on tree languages: IO and OI substitution. An IO substitution
replaces all occurrences of some variable by the same tree whereas an OI substitution may choose
one tree for each occurrence of a variable. In this contribution we consider IO substitutions.

An IO tree series substitution (pure or o-substitution) is the main operation used to the define
the semantics of tree series transducers [7, 10], which were introduced as a joint generalization of
tree transducers [23, 24] and weighted tree automata [1, 17]. It remains an open problem to identify
suitable classes of tree series transducers that preserve recognizable tree series (i. e., a tree series
that can be computed by a weighted tree automaton). The only positive result in this direction
is [18, Corollary 14] where the author shows that nondeleting and linear (top-down or bottom-up)
tree series transducers preserve recognizable tree series.

In this contribution we investigate whether pure and o-substitution [10] (both IO tree series
substitutions) preserve recognizable tree series. This can be seen as a first step towards a result that
states that certain tree series transducers preserve recognizability because pure and o-substitution
operation occupies such a central place in the definition of the semantics of tree series transducers.
Tree series transducers recently found applications in machine translation [15], where preservation
of recognizability is a central question.

Let us now discuss pure and o-substitution informally. To this end, we use the semiring
(R+,+, ·, 0, 1) of nonnegative real numbers. On the tree level pure and o-substitution just per-
form IO substitution of trees. It remains to show how the coefficents are obtained. Let us interpret
the coefficient (in the interval [0, 1]) as a probability. In o-substitution the probability (e. g., re-
liability), that is associated with an output tree, is taken to the nth power, if the output tree is
used in n copies (is copied n times into some other tree). In this approach, an output tree stands
for a composite, and the probability associated with the output tree reflects, e. g., the reliability of
this particular composite. When we combine composites into a new composite, then we obtain the
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reliability of the composite by a simple multiplication of the reliabilities of its components; each
component taken as often as needed to assemble the composite (under the assumption that each
component is critical for the correct functioning of the composite).

On the other hand pure substitution represents a computational approach; i. e., the output trees
represent values of computations, and the coefficient associated to an output tree can be viewed
as the cost of computing this value. When we combine output trees, we simply multiply their
coefficients to obtain the coefficient of the combined output tree. This is done irrespective of the
number of uses of an output tree; i. e., an output tree may be copied without penalty, which
represents the computational approach in the sense that a value is available and can be reused
without recomputation (call-by-value or eager evaluation).

Let us note that, in general, infinite sums may occur in pure and o-substitution. We adopt
a set of axioms from [14] and show our results for any infinitary summation that fulfils these
axioms. The axioms we use are much weaker than the axioms usually imposed (e. g., in [18, 10]).
In particular, we do not demand that every infinitary sum is well-defined. This immediately yields
that not every pure or o-substitution is well-defined (i. e., the result of a pure or o-substitution is
sometimes undefined).

We approach the problem of proving preservation of recognizability by first proving several
properties (like distributivity) of the substitutions. In particular, we investigate how deletion is
handled by pure and o-substitution. Our main result then shows that the result of a pure or
o-substitution of recognizable tree series is a well-defined recognizable tree series provided that
the target tree series (i. e., the tree series into which we substitute) is linear and certain sums
of coefficients are well-defined and equal to 1 (the neutral element of the multiplication). Let us
clarify the additional condition for pure substitution first. For every source tree series (i. e., the
tree series which we substitute into the target tree series) we add all of its coefficients and this sum
must be well-defined and equal to 1. For o-substitution we instead add as many 1’s as there are
nonzero coefficients in a source tree series. Again this sum must be well-defined and equal to 1.

From our main result we can easily derive several corollaries. For example, we show that
o-substitution preserves recognizable tree series in semirings that are commutative, idempotent,
and continuous [8], whenever the target tree series is linear. For pure substitution we show that
recognizable linear probability distributions are closed under substitution. In many contexts (e. g.,
natural language processing) only the relations of the coefficients to one another are interesting. If
the sum of all coefficients is well-defined (using real numbers and the usual notions of convergence),
then we can scale the series so that the coefficient sum becomes 1. This process retains all factors
between individual coefficients. Our mentioned result can then be applied after the scaling.

This report is structured as follows. In the second section we recall the required notions and
notations. In Section 3 we discuss distributivity and deletion. Our main results are derived and
illustrated in Section 4.

2 Preliminaries

We use N and N+ to represent the nonnegative and positive integers, respectively. Further let
[k] be an abbreviation for {n ∈ N | 1 6 n 6 k}. Given sets I and J and a subset Ij ⊆ I for every
j ∈ J , the family (Ij)j∈J is a partition of I if I =

⋃
j∈J Ij and Ij1 ∩ Ij2 = ∅ for every j1, j2 ∈ J

with j1 6= j2. A set ∆ that is nonempty and finite is also called an alphabet.
A ranked alphabet is an alphabet ∆ with a mapping rk∆ : ∆ −→ N. We use ∆k to rep-

resent {δ ∈ ∆ | rk∆(δ) = k}. Moreover, we use the set Z = {zi | i ∈ N+} of variables and
Zk = {zi | i ∈ [k]}. Given a ranked alphabet ∆ and V ⊆ Z, the set of ∆-trees indexed by V ,
denoted by T∆(V ), is inductively defined to be the smallest set T such that (i) V ⊆ T and (ii) for
every k ∈ N, δ ∈ ∆k, and t1, . . . , tk ∈ T also δ(t1, . . . , tk) ∈ T . Since we generally assume that
∆ ∩ Z = ∅, we write α instead of α() whenever α ∈ ∆0. Moreover, we also write T∆ to denote
T∆(∅).

For every t ∈ T∆(Z), we denote by |t|z the number of occurrences of z ∈ Z in t. Given
t1, . . . , tn ∈ T∆(Z), the expression t[t1, . . . , tn] denotes the result of substituting in t every zi by ti
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for every i ∈ [n]. Let V ⊆ Z. We say that t ∈ T∆(Z) is linear and nondeleting in V , if every
z ∈ V occurs at most once and at least once in t, respectively. Moreover, we write var(t) for the
set {i ∈ N+ | |t|zi

≥ 1}.
A (commutative) semiring is an algebraic structure A = (A,+, ·, 0, 1) consisting of two commu-

tative monoids (A,+, 0) and (A, ·, 1) such that · distributes over + and 0 is absorbing with respect
to · . As usual we use

∑
i∈I ai for sums of families (ai)i∈I of ai ∈ A where for only finitely many

i ∈ I we have ai 6= 0. A semiring A = (A,+, ·, 0, 1) is called additively idempotent if 1 + 1 = 1.
A set I is called countable, if its cardinality is smaller or equal to the cardinality of N. Let

A ⊆
⋃
I countableA

I be a collection of families. An infinitary sum operation
∑

is a mapping∑
: A −→ A. We use the usual

∑
i∈I ai instead of

∑
(ai)i∈I for every countable set I and family

(ai)i∈I ∈ AI . Moreover, we say that
∑
i∈I ai is well-defined if (ai)i∈I ∈ A. In the sequel we always

assume an infinitary sum operation
∑

such that the following axioms (cf., [14]) are fulfilled:

• all finite sums are well-defined; i. e.,
⋃
I finiteA

I ⊆ A,

• for every I = {j} and (ai)i∈I ∈ AI∑
i∈{j}

ai = aj (U)

• for every I = {j1, j2} with j1 6= j2 and (ai)i∈I ∈ AI∑
i∈{j1,j2}

ai = aj1 + aj2 (B)

• for every countable set I and (ai)i∈I ∈ AI and every countable set J and partition (Ij)j∈J
of I we have that (i) the left hand side of (GP) is well-defined if and only if the right hand
side is well-defined and (ii) the following equality holds:∑

i∈I
ai =

∑
j∈J

(∑
i∈Ij

ai

)
(GP)

• for all countable sets I and J and every (ai)i∈I ∈ AI and (aj)j∈J ∈ AJ such that the sums
in the right hand side of (D) are well-defined, the left hand side of (D) is well-defined and∑

i∈I,j∈J
(ai · aj) =

(∑
i∈I

ai

)
·
(∑
j∈J

aj

)
. (D)

Proposition 2.1 (see [14, Theorem IV.2.4]) Let I and J be countable sets with J ⊆ I and
(ai)i∈I ∈ AI . If ai = 0 for every i ∈ I \ J , then (i)

∑
i∈I ai is well-defined if and only if

∑
j∈J ai is

well-defined and (ii)
∑
i∈I ai =

∑
j∈J ai.

Proof. The proof of that statement only uses axioms (U) and (GP). �
An infinitary summation

∑
is termed ℵ0-complete if A =

⋃
I countableA

I . Whenever we speak
of an ℵ0-complete semiring, we silently assume that an ℵ0-complete infinitary sum operation

∑
(obeying the above laws) is given.

A semiring is naturally ordered, whenever v ⊆ A2, defined by a v b if and only if there exists a
c ∈ A such that a + c = b, constitutes a partial order on A. Let A be ℵ0-complete and naturally
ordered. We say that A is continuous, if for every countable set I and (ai)i∈I ∈ AI the following
supremum (with respect to the natural order v) exists and∑

i∈I
ai = sup{

∑
i∈F

ai | F ⊆ I, F finite} .

The Boolean semiring B = ({0, 1},∨,∧, 0, 1) with the usual disjunction ∨ and conjunction ∧ is an
example of a continuous semiring (where supremum is the infinitary sum operation).
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Let S be a set and A = (A,+, ·, 0, 1) be a semiring. A (formal) power series ψ is a mapping
ψ : S −→ A. Given s ∈ S, we denote ψ(s) also by (ψ, s) and write the series as

∑
s∈S(ψ, s) s.

The support of ψ is supp(ψ) = {s ∈ S | (ψ, s) 6= 0}. We sometimes simply write the series ψ as∑
s∈supp(ψ)(ψ, s) s.
Power series with finite support are called polynomials. We denote the set of all power series by

A〈〈S〉〉 and the set of polynomials by A〈S〉. The polynomial with empty support is denoted by 0̃.
Power series ψ,ψ′ ∈ A〈〈S〉〉 are added componentwise; i. e., (ψ + ψ′, s) = (ψ, s) + (ψ′, s) for every
s ∈ S, and we multiply ψ with a coefficient a ∈ A componentwise; i. e., (a · ψ, s) = a · (ψ, s) for
every s ∈ S. The summation extends to semirings with an infinitary sum operation

∑
as follows:

Let I be a countable set and (ψi)i∈I ∈ A〈〈S〉〉I . Precisely when
∑
i∈I(ψi, s) is well-defined for every

s ∈ S, then
∑
i∈I ψi is well-defined and (

∑
i∈I ψi, s) =

∑
i∈I(ψi, s) for every s ∈ S.

The previous definition shows how cumbersome the special treatment of well-definedness is. In
the sequel, we adopt a style that treats “undefined” as a value (distinct to every other value); i. e.,
we would define the above summation simply as (

∑
i∈I ψi, s) =

∑
i∈I(ψi, s) for every s ∈ S.

In this report, we only consider power series in which the set S is a set of trees. Such power
series are also called tree series. Let ∆ be a ranked alphabet. A tree series ψ ∈ A〈〈T∆(Z)〉〉 is
said to be linear and nondeleting in V ⊆ Z, if every u ∈ supp(ψ) is linear and nondeleting in V ,
respectively. Finally, we denote

⋃
u∈supp(ψ) var(u) by var(ψ).

2.1 Tree Series Substitution

Let sel∆ : T∆(Z)× N+ × {ε, o} −→ N be defined for every u ∈ T∆(Z), i ∈ N+, and η ∈ {ε, o} by

sel∆(u, i, η) =

{
1 if η = ε,

|u|zi if η = o.

Since ∆ is usually obvious from the context, we regularly omit it and just write sel.
Let η ∈ {ε, o}, I ⊆ N+ be finite, ψ ∈ A〈〈T∆(Z)〉〉, and ψi ∈ A〈〈T∆(Z)〉〉 for every i ∈ I. The

η-substitution of (ψi)i∈I into ψ [10, Definitions 3.1 and 3.2], denoted by ψ←−η (ψi)i∈I , is defined
for every t ∈ T∆(Z) by

(ψ←−η (ψi)i∈I , t) =
∑

u∈supp(ψ),
(∀i∈I) : ui∈supp(ψi),

t=u[ui]i∈I

(ψ, u) ·
∏
i∈I

(ψi, ui)sel(u,i,η) .

Note that compared to [10] we have defined η-substitution also for non-contiguous blocks of vari-
ables. The ε-substitution is also called pure substitution. In an expression ψ←−η (ψi)i∈I we call ψ
the target and each ψi a source. If I = [n] for some n ∈ N, we occasionally write ψ←−η (ψ1, . . . , ψn)
instead of ψ←−η (ψi)i∈[n].

The following three properties of paramount importance from [10, Proposition 3.4] will be used
without explicit mention.

1. If I = ∅, then ψ←−η (ψi)i∈I = ψ.

2. If ψ = 0̃, then ψ←−η (ψi)i∈I = 0̃.

3. If ψi = 0̃ for some i ∈ I, then ψ←−η (ψi)i∈I = 0̃.

Note that independent of ψ and (ψi)i∈I the above η-substitutions are well-defined.

3 Basic properties of substitutions

In this section we investigate basic properties, namely distributivity and deletion, of η-substitutions.
Distributivity is important in a number of results (e. g., associativity, compositions of tree series
transducers [20], and equivalence of rewrite and initial-algebra semantics of tree series transduc-
ers [11]). Deletion needs to be handled in results on associativity, which are usually required
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for composition results on tree series transducers [20]. Moreover, our results on preservation of
recognizability also use the properties of deletion.

In contrast to the published results, we do not assume that all countable sums are well-defined.
If we, for example, take the real number semiring together with the finite and the absolutely
convergent series (and the obvious summation), then this infinitary summation is not ℵ0-complete.
The real number semiring has major applications, for example, in natural language processing [15].

For the rest of this report, let A = (A,+, ·, 0, 1) be a commutative semiring with 0 6= 1 and an
infinitary summation

∑
. Moreover, let η ∈ {ε, o}, I ⊆ N+ be a finite set, J a countable set, and

Ji a countable set for every i ∈ I. Finally, let b = 1 if η = ε, and let b = 0 otherwise.

3.1 Distributivity

In this section we investigate η-substitution with respect to distributivity. If we consider only
ℵ0-complete semirings, then the results for pure substitution already appeared in [7], while the
results for o-substitution were first published in [21]. We start with a straightforward observation
that shows distributivity in the target tree series.

Proposition 3.1 (see [7, Proposition 2.9] and [10, Proposition 3.14])
For every j ∈ J let ψj ∈ A〈〈T∆(Z)〉〉, and for every i ∈ I let ψi ∈ A〈〈T∆(Z)〉〉. Then∑

j∈J
ψj←−η (ψi)i∈I =

(∑
j∈J

ψj

)
←−η (ψi)i∈I ,

provided that the right hand side is well-defined (i. e., the η-substitution and the sum are well-
defined).

Proof. In the proof we use the axioms (U), (D), and (GP). Let t ∈ T∆(Z).((∑
j∈J

ψj

)
←−η (ψi)i∈I , t

)
= [by definition of ←−η ]∑

u∈supp(
P

j∈J ψj),

(∀i∈I) : ui∈supp(ψi),
t=u[ui]i∈I

(∑
j∈J

ψj , u
)
·
∏
i∈I

(ψi, ui)sel(u,i,η)

= [by Proposition 2.1]∑
u∈T∆(Z),

(∀i∈I) : ui∈supp(ψi),
t=u[ui]i∈I

(∑
j∈J

ψj , u
)
·
∏
i∈I

(ψi, ui)sel(u,i,η)

= [by definition of sum of series]∑
u∈T∆(Z),

(∀i∈I) : ui∈supp(ψi),
t=u[ui]i∈I

(∑
j∈J

(ψj , u)
)
·
∏
i∈I

(ψi, ui)sel(u,i,η)

= [by axiom (D)]∑
u∈T∆(Z),

(∀i∈I) : ui∈supp(ψi),
t=u[ui]i∈I

(∑
j∈J

(ψj , u) ·
∏
i∈I

(ψi, ui)sel(u,i,η)
)

= [by axiom (GP); applied twice]∑
j∈J

( ∑
u∈T∆(Z),

(∀i∈I) : ui∈supp(ψi),
t=u[ui]i∈I

(ψj , u) ·
∏
i∈I

(ψi, ui)sel(u,i,η)
)
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= [by Proposition 2.1]∑
j∈J

( ∑
u∈supp(ψj),

(∀i∈I) : ui∈supp(ψi),
t=u[ui]i∈I

(ψj , u) ·
∏
i∈I

(ψi, ui)sel(u,i,η)
)

= [by definition of ←−η ]∑
j∈J

(ψj←−η (ψi)i∈I , t)

= [by definition of sum of series](∑
j∈J

ψj←−η (ψi)i∈I , t
)

�

If we recall the definition of o-substitution, we see that for the distributivity of o-substitution in
source tree series we obviously need a law of the form (

∑
j∈J aj)

n =
∑
j∈J a

n
j where J is nonempty,

(aj)j∈J ∈ AJ , and n ∈ N.

Definition 3.2 Let N ⊆ N. The semiring A is called N -Frobenius, if for every n ∈ N , nonempty
and countable J , and family (aj)j∈J ∈ AJ the equality (

∑
j∈J aj)

n =
∑
j∈J a

n
j holds, provided that

both sides are well-defined. Semirings that are N-Frobenius are also called Frobenius semirings.

Note that with the help of axioms (D) and (GP) we can show that whenever (
∑
j∈J aj)

n with
n ≥ 1 is well-defined then also

∑
j∈J a

n
j is well-defined. We require the set J to be nonempty in the

previous definition because
∑
j∈∅ a

n
j = 0 for every n ∈ N but (

∑
j∈∅ aj)

n = 1 if n = 0. Thus only
the trivial semiring with 0 = 1 would be {0, 1}-Frobenius, if we would omit the nonemptiness
condition for J in Definition 3.2. If a semiring is N -Frobenius, then it immediately follows
that for every n ∈ N the n-th power Frobenius mapping fn : A −→ A defined for every a ∈ A
by f(a) = an is a semiring homomorphism.

Let us focus on finite sums for the moment (i. e.,
∑
j∈J aj is undefined if and only if J is

infinite; note that this infinitary summation does not fulfil all the axioms) and show examples of
N -Frobenius semirings for various N ⊆ N.

• Every semiring is {1}-Frobenius.

• Every additively idempotent semiring is {0, 1}-Frobenius.

• Every additively extremal (i. e., a1 + a2 ∈ {a1, a2} for every a1, a2 ∈ A) semiring is Frobe-
nius.

• Every additively idempotent, multiplicatively cancellative (i. e., a · a1 = a · a2 implies that
a1 = a2 for every a, a1, a2 ∈ A with a 6= 0), and commutative semiring is Frobenius [13,
Proposition 4.43].

In fact, a semiring is {0}-Frobenius if and only if it is additively idempotent. This observation
is used in the following proposition.

Proposition 3.3 Let (ψj)j∈J ∈ A〈〈T∆(Z)〉〉J and n ∈ N be such that the semiring A is {n}-
Frobenius. Then∑

j∈J

( ∑
u∈supp(ψj)

(ψj , u)n
)

=
∑

u∈supp(
P

j∈J ψj)

(∑
j∈J

ψj , u
)n

provided that the right hand side and
∑
j∈J(ψj , u)n for every u ∈ T∆(Z) are well-defined.

Proof. In the proof we use the axioms (U) and (GP). We distinguish two cases. Let n 6= 0.∑
u∈supp(

P
j∈J ψj)

(∑
j∈J

ψj , u
)n
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= [by Proposition 2.1]∑
u∈T∆(Z)

(∑
j∈J

ψj , u
)n

= [by definition of sum of series]∑
u∈T∆(Z)

(∑
j∈J

(ψj , u)
)n

= [because A is {n}-Frobenius]∑
u∈T∆(Z)

(∑
j∈J

(ψj , u)n
)

= [by axiom (GP); applied twice]∑
j∈J

( ∑
u∈T∆(Z)

(ψj , u)n
)

= [by Proposition 2.1]∑
j∈J

( ∑
u∈supp(ψj)

(ψj , u)n
)

Now let n = 0. Thus A is {0}-Frobenius and hence additively idempotent. Furthermore,
(
∑
j∈J ψj , u)

0 and
∑
j∈J(ψj , u)0 are well-defined. Hence

1 =
(∑
j∈J

ψj , u
)0

=
∑
j∈J

(ψj , u)0 =
∑
j∈J

1 .

If J is countably infinite, then this yields that arbitrary nonempty sums of 1’s are 1. In this case
the statement of the proposition is easily verified. Now let us suppose that J is finite. Since
A is additively idempotent, we also have that A is zero-sum free [13, p. 4]. We conclude that
supp(

∑
j∈J ψj) =

⋃
j∈J supp(ψj) by [5, Section VI.3].∑

u∈supp(
P

j∈J ψj)

(∑
j∈J

ψj , u
)0

= [by the above equalities]∑
u∈

S
j∈J supp(ψj)

(∑
j∈J

(ψj , u)0
)

= [because A is additively idempotent]∑
u∈

S
j∈J supp(ψj)

( ∑
j∈J,

(ψj ,u) 6=0

(ψj , u)0
)

= [by axiom (GP); applied twice]∑
j∈J

( ∑
u∈supp(ψj)

(ψj , u)0
)

�

Using the notion “N -Frobenius” we can prove distributivity of η-substitution (cf. [7, Propo-
sition 2.9]), e. g., for η = o and linear tree series over additively idempotent semirings.

Proposition 3.4 (see [7, Proposition 2.9]) Let ψ ∈ A〈〈T∆(Z)〉〉, and for every i ∈ I and ji ∈ Ji
let ψji ∈ A〈〈T∆(Z)〉〉. Moreover, let A be an N -Frobenius semiring for some N ⊆ N. Provided
that the right hand side of (1) is well-defined and sel(u, i, η) ∈ N for every i ∈ I and u ∈ supp(ψ),
then ∑

(∀i∈I) : ji∈Ji

ψ←−η (ψji)i∈I = ψ←−η
( ∑
ji∈Ji

ψji

)
i∈I

. (1)
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Proof. The result for η = ε (in this case the restriction sel(u, i, η) ∈ N can be simplified to
1 ∈ N and the semiring A is always {1}-Frobenius) is stated for continuous semirings and proved
for ℵ0-complete semirings in [7, Proposition 2.9]. A similar statement for semirings that are not
ℵ0-complete with respect to

∑
is claimed in [9, Proposition 2.3], but unfortunately, it is wrong.

Clearly, the statement holds if Ji = ∅ for some i ∈ I. Thus we assume that Ji 6= ∅ for every
i ∈ I. Let t ∈ T∆(Z).(

ψ←−η
( ∑
ji∈Ji

ψji

)
i∈I
, t

)
= [by definition of ←−η ]∑

u∈supp(ψ),
(∀i∈I) : ui∈supp(

P
ji∈Ji

ψji
),

t=u[ui]i∈I

(ψ, u) ·
∏
i∈I

( ∑
ji∈Ji

ψji , ui

)sel(u,i,η)

= [by axioms (D) and (GP) and Proposition 3.3]∑
(∀i∈I) : ji∈Ji

( ∑
u∈supp(ψ),

(∀i∈I) : ui∈supp(ψji
),

t=u[ui]i∈I

(ψ, u) ·
∏
i∈I

(ψji , ui)
sel(u,i,η)

= [by definition of ←−η ]∑
(∀i∈I) : ji∈Ji

(ψ←−η (ψji)i∈I , t)

= [by definition of sum of series]( ∑
(∀i∈I) : ji∈Ji

ψ←−η (ψji)i∈I , t
)

�

As a corollary we obtain the stated distributivity result (for o-substitution) for linear target
tree series in additively idempotent semirings.

Corollary 3.5 (of Proposition 3.4) Let A be additively idempotent, ψ ∈ A〈T∆(Z)〉 be linear
in ZI . Moreover, let Ji be finite for every i ∈ I, and let ψji ∈ A〈T∆(Z)〉 for every i ∈ I and ji ∈ Ji.∑

(∀i∈I) : ji∈Ji

ψ←−o (ψji)i∈I = ψ←−o
( ∑
ji∈Ji

ψji

)
i∈I

3.2 Handling deletion

In this section we study the effect of deletion. The obtained law is of paramount importance
for associativity results, preservation of recognizibility, and compositions of tree series transfor-
mations [20]. Let u ∈ T∆(Z) and ui ∈ T∆(Z) for every i ∈ I. We present a proposition that
generalizes the result that u[ui]i∈I = u[uj ]j∈J for every J ⊆ I such that J ∩ var(u) = I ∩ var(u).
Intuitively speaking, this asserts that ui is irrelevant in u[ui]i∈I , if i /∈ var(u). This generalizes
nicely to tree languages L,Li ⊆ T∆(Z); i. e., L[Li]i∈I = L[Lj ]j∈J for every J ⊆ I such that
J ∩ var(L) = I ∩ var(L) and Li 6= ∅ for every i ∈ I \ J . The additional restriction is derived from
the fact that L[Li]i∈I = ∅ whenever Li = ∅ for some i ∈ I.

Proposition 3.6 Let J ⊆ I and ψ ∈ A〈〈T∆(Z)〉〉 be such that J ∩ var(ψ) = I ∩ var(ψ). Moreover,
for every i ∈ I let ψi ∈ A〈〈T∆(Z)〉〉. Then

ψ←−η (ψi)i∈I = ψ←−η (ψj)j∈J ,

provided that:

(i) the left hand side is well-defined; and
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(ii)
∑
u∈supp(ψi)

(ψi, u)b = 1 for every i ∈ I \ J .

Proof. Let t ∈ T∆(Z).

(ψ←−η (ψi)i∈I , t)

= [by definition of ←−η ]∑
u∈supp(ψ),

(∀i∈I) : ui∈supp(ψi),
t=u[ui]i∈I

(ψ, u) ·
∏
i∈I

(ψi, ui)sel(u,i,η)

= [because i /∈ var(u) ⊆ var(ψ) for every i ∈ I \ J and thus sel(u, i, η) = b]∑
u∈supp(ψ),

(∀i∈I) : ui∈supp(ψi),
t=u[uj ]j∈J

(ψ, u) ·
∏
j∈J

(ψj , uj)sel(u,j,η) ·
∏
i∈I\J

(ψi, ui)b

= [by axiom (D)]∑
u∈supp(ψ),

(∀j∈J) : uj∈supp(ψj),
t=u[uj ]j∈J

(ψ, u) ·
∏
j∈J

(ψj , uj)sel(u,j,η) ·
∏
i∈I\J

( ∑
ui∈supp(ψi)

(ψi, ui)b
)

= [by condition (ii)]∑
u∈supp(ψ),

(∀j∈J) : uj∈supp(ψj),
t=u[uj ]j∈J

(ψ, u) ·
∏
j∈J

(ψj , uj)sel(u,j,η)

= [by definition of ←−η ]

(ψ←−η (ψj)j∈J , t) �

The condition J ∩ var(ψ) = I ∩ var(ψ) asserts that J covers all those variables of ψ which are
also covered by I; i. e., (I \J)∩var(ψ) = ∅. We have already seen that this restriction is necessary
even for substitution on trees. Moreover, we have seen that, for the corresponding statement on
tree languages, the condition Li 6= ∅ is necessary for every i ∈ I \ J . This condition is hidden in∑
u∈supp(ψi)

(ψi, u)b = 1 for every i ∈ I \J . Unless 0 = 1 (which we generally excluded), this means
that ψi 6= 0̃ for every i ∈ I \ J .

Let us consider the condition
∑
u∈supp(ψi)

(ψi, u)b = 1 in some more detail. When supp(ψi) is
infinite, we need the notion of a necessary summation [13].

Definition 3.7 (see [13, p. 251]) We call
∑

necessary if
∑
j∈J aj =

∑
j∈J cj for all countable

sets J and (aj)j∈J , (cj)j∈J ∈ AJ such that:

1.
∑
j∈J aj and

∑
j∈J cj are well-defined; and

2. for each finite subset J ′ ⊆ J there exists a finite set J ′′ with
∑
j∈J′′ aj =

∑
j∈J′′ cj and

J ′ ⊆ J ′′ ⊆ J .

Note that not every infinitary summation of an ℵ0-complete semiring is necessary. Examples of
infinitary summations that are not necessary can be found in [13, Example 22.18].

Proposition 3.8 Let A be continuous with respect to
∑

. Then
∑

is necessary.

Proof. Clearly, A is ℵ0-complete with respect to
∑

, so all sums with countably many summands
are defined. It is well-known that the natural order v is a partial order if A is continuous. Let J
be a countable index set and (aj)j∈J ∈ AJ and (cj)j∈J ∈ AJ be families. By definition of v we
have

∑
j∈J′ aj v

∑
j∈J aj for every J ′ ⊆ J .

9



Suppose that for every finite J ′ ⊆ J there exists a finite subset J ′′, denoted by SJ′ , such that
J ′ ⊆ J ′′ ⊆ J and

∑
j∈J′′ aj =

∑
j∈J′′ cj . It remains to show that

∑
j∈J aj =

∑
j∈J cj .∑

j∈J
aj = sup{

∑
j∈F

aj | F ⊆ J, F finite} = sup{
∑
j∈SF

aj | F ⊆ J, F finite}

= sup{
∑
j∈SF

cj | F ⊆ J, F finite} = sup{
∑
j∈F

cj | F ⊆ J, F finite} =
∑
j∈J

cj �

Note that every semiring that is ℵ0-complete with respect to a necessary summation is naturally
ordered [13, Proposition 22.29]. Further, in an additively idempotent semiring with necessary
summation we have

∑
i∈I a = a for every a ∈ A and countable index set I such that

∑
i∈I a is

well-defined. Let us now come back to the discussion of Condition (ii) in Proposition 3.6. The next
proposition lists some simple conditions; each of them implies Condition (ii) of Proposition 3.6.

Proposition 3.9 Let ψ ∈ A〈〈T∆(Z)〉〉 with ψ 6= 0̃ be such that
∑
u∈supp(ψ)(ψ, u)

b is well-defined.
Then

∑
u∈supp(ψ)(ψ, u)

b = 1 if

• b = 0 (i. e., η = o) and

– supp(ψ) is a singleton;

– A is additively idempotent and ψ is polynomial; or

– A is additively idempotent with necessary
∑

.

• b = 1 (i. e., η = ε) and

– A is simple [13] (i. e., a+ 1 = 1 for every a ∈ A) and (ψ, u) = 1 for some u ∈ supp(ψ);
or

– ψ is boolean and any of the conditions of the case b = 0 applies.

4 Preservation of recognizability

In this section we consider the question whether η-substitution preserves recognizability. Let ∆ be
a ranked alphabet. It is known that substitution of the same tree u′ for two occurrences of a
variable z, in general, does not preserve recognizability; i. e., already for n ∈ N+, recognizable tree
languages L1, . . . , Ln and L = {u} with u ∈ TΣ(Zn) we have that L[L1, . . . , Ln] is not necessarily
recognizable (although L1, . . . , Ln and {u} are recognizable). However, IO substitution on tree
languages preserves recognizable tree languages, if the target tree language is linear (see [6, The-
orem 3.65] or [12, Theorem 4.16]); i. e., for every n ∈ N and L,L1, . . . , Ln ⊆ TΣ(Z) such that L is
linear in Zn and L,L1, . . . , Ln are recognizable also L[L1, . . . , Ln] is recognizable.

First, let us clarify the notion of recognizable tree series [1, 17, 3]. We refer the reader to [2] for a
detailed introduction and references to further models and results. We have chosen the automaton
model called bu-w-fta-f (bottom-up finite-state weighted tree automaton with final weights) in [2,
Section 4.1.3].

Definition 4.1 (see [2, Chapter 4]) A bottom-up weighted tree automaton (over ∆ and A) is
a tuple M = (Q,∆,A, F, µ) where Q is an alphabet of states; ∆ is a ranked alphabet of input
symbols; A = (A,+, ·, 0, 1) is a semiring; F : Q −→ A is a final weight distribution; and µ = (µk)k∈N

with µk : ∆k −→ AQ×Q
k

is a tree representation.
The initial algebra semantics ofM [2, Section 4.1] is determined by the mapping hµ : T∆ −→ AQ,

which is defined by

hµ(δ(u1, . . . , uk))q =
∑

q1,...,qk∈Q
µk(δ)q,q1···qk

·
∏
i∈[k]

hµ(ui)qi

10
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δ/0

z1/0
z1/0

Figure 1: Bottom-up weighted tree automaton over A∞.

for every k ∈ N, δ ∈ ∆k, q ∈ Q, and u1, . . . , uk ∈ T∆. The tree series recognized by M , denoted
by ‖M‖, is defined for every u ∈ T∆ by

(‖M‖, u) =
∑
q∈Q

Fq · hµ(u)q .

We use the method of [22] and [2, Example 3.1.2] to graphically represent weighted tree au-
tomata. Note that we write µ0(α)q instead of µ0(α)q,ε for every α ∈ ∆0 and q ∈ Q. Let ∆ be a
ranked alphabet and A be a semiring. A tree series ψ ∈ A〈〈T∆〉〉 is termed recognizable, if there
exists a bottom-up weighted tree automaton M over ∆ and A such that ψ = ‖M‖. The class of
all recognizable tree series over ∆ and A is denoted by Arec〈〈T∆〉〉. For every finite I ⊆ N+, we say
that a tree series ψ ∈ A〈〈T∆(ZI)〉〉 is recognizable, if ψ ∈ Arec〈〈TΓ〉〉 where Γk = ∆k for every k ∈ N+

and Γ0 = ∆0 ∪ ZI ; i. e., the elements of ZI are treated as new nullary symbols. Consequently,
Arec〈〈T∆(ZI)〉〉 = Arec〈〈TΓ〉〉 denotes the class of all recognizable tree series over ∆, A, and I.

Let us illustrate the previous definition. Let us use ∆ = {δ(2), α(0)} as ranked alphabet.
We show that ψ = maxu∈T∆(Z1) height(u) u is a recognizable tree series using the arctic semi-
ring A∞ = (N∪{−∞,∞},max,+,∞, 0) by presenting a bottom-up weighted tree automaton that
recognizes ψ. Let M = (Q,Γ,A∞, F, µ) be the bottom-up weighted tree automaton specified by
Q = {1, 2}; Γ = {δ(2), α(0), z

(0)
1 }; F1 = 0 and F2 = −∞; and

µ0(α)1 = µ0(α)2 = µ0(z1)1 = µ0(z1)2 = 0
µ2(δ)1,12 = µ2(δ)1,21 = 1 and µ2(δ)2,22 = 0 .

All remaining entries of µ2(δ) are assumed to be −∞. The automaton is illustrated in Figure 1. We
claim that (‖M‖, u) = height(u) for every u ∈ TΓ. This claim can be proved by a straightforward
induction.

In fact, for every ranked alphabet ∆ and finite I ⊆ N+ we can give a bottom-up weighted tree
automaton (over A∞) recognizing maxu∈T∆(ZI) height(u) u.

Now let us return to the question of preservation of recognizability. In [18, Corollary 14]
it is proved that recognizability (of tree series) is preserved whenever the target tree series is
nondeleting and linear and the semiring is commutative and continuous. This statement is proved
for OI substitution in [18], but OI and η-substitution coincide whenever the target tree series is
nondeleting and linear.

We should like to obtain a statement on preservation of recognizability in which the target
tree series is only linear (and not necessarily nondeleting). Let us illustrate the main idea in
a simplified setting. Let ψ ∈ Arec〈〈T∆(Z1)〉〉 be linear in Z1 and ψ1 ∈ Arec〈〈T∆〉〉. We want to
show that ψ←−η (ψ1) is recognizable, thus we need to present a bottom-up weighted tree automa-
ton M ′ = (Q′,∆,A, F ′, µ′) that recognizes ψ←−η (ψ1). Let M = (Q,Γ,A, F, µ) be a bottom-up
weighted tree automaton recognizing ψ and M1 = (Q1,∆,A, F1, µ1) be a bottom-up weighted
tree automaton recognizing ψ1. We employ a standard idea for the construction of M ′. Roughly
speaking, we take the disjoint union of M and M1 and add transitions that nondeterministically
change from M1 to M . More precisely, for every k ∈ N+, δ ∈ ∆k, q ∈ Q, and q1, . . . , qk ∈ Q1 we
set

µ′k(δ)q,q1···qk
=

∑
p∈Q1

µ0(z1)q · (F1)p · (µ1)k(δ)p,q1···qk
.

11



Informally speaking, for each state p of M1 we take the weight of the transition (µ1)k(δ)p,q1···qk

of M1, multiply the corresponding entry (F1)p in the final weight distribution, and multiply the
weight µ0(z1)q for entering M (via z1) in state q. Nullary symbols δ are treated similarly. We
employ a proof method, which requires us to make the input alphabets ∆ and Γ disjoint. This
simplifies the proof because each tree then admits a unique decomposition into (at most one) part
that needs to be processed by M1 and a part that needs to be processed by M .

Theorem 4.2 Let ψ ∈ Arec〈〈T∆(ZI)〉〉 be linear in ZI . Moreover, let ψi ∈ Arec〈〈T∆〉〉 for every
i ∈ I. Then ψ←−η (ψi)i∈I is well-defined and recognizable, provided that

∑
u∈supp(ψi)

(ψi, u)b = 1
for every i ∈ I.

Proof. Let ψi = 0̃ for some i ∈ I. Then ψ←−η (ψi)i∈I = 0̃, which is clearly recognizable. Note
that it is decidable in zero-sum free (e. g., all ℵ0-complete semirings) whether ψi = 0̃ [19]. Hence for
the remainder of the proof we assume that ψi 6= 0̃ for all i ∈ I. For every k ∈ N+ let Γk = ∆k and
Γ0 = ∆0 ∪ZI . Since ψ ∈ Arec〈〈T∆(ZI)〉〉 and ψi ∈ Arec〈〈T∆〉〉 for every i ∈ I, there exist bottom-up
weighted tree automata M = (Q,Γ,A, F, µ) and Mi = (Qi,∆,A, Fi, µi) such that ‖M‖ = ψ and
‖Mi‖ = ψi for every i ∈ I.

For every i ∈ I let ∆
i
be the ranked alphabet given by ∆

i

k = {δi | δ ∈ ∆k} for every k ∈ N. For
every i ∈ I we define the mapping bari : T∆ −→ T

∆
i by

bari(δ(t1, . . . , tk)) = δ
i
(bari(t1), . . . ,bari(tk))

for every k ∈ N, δ ∈ ∆k, and t1, . . . , tk ∈ T∆. Moreover, we extend bari to tree series as follows. We
define the mapping bari : A〈〈T∆〉〉 −→ A〈〈T∆

i〉〉, which relabels all δ-nodes by their corresponding
i-overlined version, for every ϕ ∈ A〈〈T∆〉〉 by

bari(ϕ) =
∑
t∈T∆

(ϕ, t) bari(t) .

Without loss of generality, let us suppose that for every i ∈ I we have that (i) ∆ and ∆
i

are disjoint and (ii) Q and Qi are disjoint. We let ∆′
k = ∆k ∪

⋃
i∈I ∆

i

k for every k ∈ N,
and Q′ = Q ∪

⋃
i∈I Qi. We construct a bottom-up weighted tree automaton M ′ recognizing

ψ←−η (bari(ψi))i∈I as follows. Let M ′ = (Q′,∆′,A, F ′, µ′) where for every i ∈ I, k ∈ N, δ ∈ ∆k:

• F ′
q = Fq for every q ∈ Q and F ′

p = 0 for every p ∈
⋃
i∈I Qi;

• µ′k(δ
i
)p,w = (µi)k(δ)p,w for every p ∈ Qi and w ∈ (Qi)k;

• µ′k(δ)q,w = µk(δ)q,w for every q ∈ Q and w ∈ Qk; and

• µ′k(δ
i
)q,w =

∑
p∈Qi

µ0(zi)q · (Fi)p · (µi)k(δ)p,w for every q ∈ Q and w ∈ (Qi)k.

All the remaining entries in µ′ are set to 0.
Clearly, hµ′(bari(t))p = hµi(t)p for every i ∈ I, t ∈ T∆, and p ∈ Qi. Next we prove that for

every q ∈ Q and t ∈ T∆(ZI), which is linear in ZI , and family (ui)i∈var(t) ∈ (T∆)var(t) we have

hµ′(t[bari(ui)]i∈var(t))q = hµ(t)q ·
∏

i∈var(t)

(
‖Mi‖, ui

)
.

We prove this statement inductively, so let t = zj for some j ∈ I. Moreover, let uj = δ(t1, . . . , tk)
for some k ∈ N, δ ∈ ∆k, and t1, . . . , tk ∈ T∆.

hµ′(zj [bari(ui)]i∈var(zj))q
= [by substitution and definition of barj ]

hµ′
(
δ
j
(barj(t1), . . . ,barj(tk))

)
q

= [by Definition 4.1]∑
q1,...,qk∈Q′

µ′k(δ
j
)q,q1···qk

·
∏
i∈[k]

hµ′(barj(ti))qi
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= [by definition of µ′ and hµ′(barj(ti))qi
= hµj

(ti)qi
]∑

q1,...,qk∈Qj

( ∑
p∈Qj

µ0(zj)q · (Fj)p · (µj)k(δ)p,q1···qk

)
·

∏
i∈[k]

hµj (ti)qi

= [by distributivity and Definition 4.1]∑
p∈Qj

hµ(zj)q · (Fj)p · hµj (δ(t1, . . . , tk))p

= [by distributivity and Definition 4.1]

hµ(zj)q ·
∏

i∈var(zj)

(
‖Mi‖, ui

)
Now, let t = δ(t1, . . . , tk) for some k ∈ N, δ ∈ ∆k, and t1, . . . , tk ∈ T∆(ZI).

hµ′(δ(t1, . . . , tk)[bari(ui)]i∈var(t))q
= [by substitution]
hµ′(δ(t1[bari(ui)]i∈var(t1), . . . , tk[bari(ui)]i∈var(tk)))q

= [by Definition 4.1]∑
q1,...,qk∈Q′

µ′k(δ)q,q1···qk
·

∏
j∈[k]

hµ′(tj [bari(ui)]i∈var(tj))qj

= [by induction hypothesis and definition of µ′]∑
q1,...,qk∈Q

µk(δ)q,q1···qk
·

∏
j∈[k]

(
hµ(tj)qj ·

∏
i∈var(tj)

(
‖Mi‖, ui

))
= [by associativity and Definition 4.1]

hµ(δ(t1, . . . , tk))q ·
∏

j∈[k],i∈var(tj)

(
‖Mi‖, ui

)
= [because t is linear in ZI ]

hµ(δ(t1, . . . , tk))q ·
∏

i∈var(t)

(
‖Mi‖, ui

)
This completes the proof of the auxiliary statement. Consequently,

(‖M ′‖, t[bari(ui)]i∈var(t)) = (‖M‖, t) ·
∏

i∈var(t)

(‖Mi‖, ui) = (ψ, t) ·
∏

i∈var(t)

(ψi, ui) .

Using this result, we can show that ψ′ = ψ←−η (bari(ψi))i∈I is recognizable. In fact, this is
the tree series that is recognized by M ′. Note that the semantics ‖M ′‖ is well-defined. We
delay the proof of the mentioned equality because we first want to prove that ψ←−η (ψi)i∈I and
ψ′ = ψ←−η (bari(ψi))i∈I are well-defined. Let t ∈ T∆ and n = height(t). We start from a finite
sum, which is well-defined.∑

u∈supp(ψ),height(u)≤n
(∀i∈var(u)) : ui∈supp(ψi),

height(ui)≤n
t=u[ui]i∈var(u)

(ψ, u) ·
∏

i∈var(u)

(ψi, ui)

= [by the condition:
∑
ui∈supp(ψi)

(ψi, ui)b = 1]∑
u∈supp(ψ),height(u)≤n

(∀i∈var(u)) : ui∈supp(ψi),
height(ui)≤n
t=u[ui]i∈var(u)

(ψ, u) ·
∏

i∈var(u)

(ψi, ui) ·
∏

i∈I\var(u)

( ∑
ui∈supp(ψi)

(ψi, ui)b
)
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= [by axioms (GP) and (D)]∑
u∈supp(ψ),height(u)≤n

(∀i∈var(u)) : ui∈supp(ψi),height(ui)≤n,
(∀i∈I\var(u)) : ui∈supp(ψi),

t=u[ui]i∈var(u)

(ψ, u) ·
∏

i∈var(u)

(ψi, ui) ·
∏

i∈I\var(u)

(ψi, ui)b

= [by commutativity and because u is linear in ZI ]∑
u∈supp(ψ),

(∀i∈I) : ui∈supp(ψi),
t=u[ui]i∈I

(ψ, u) ·
∏
i∈I

(ψi, ui)sel(u,i,η)

= [by definition of ←−η ]

(ψ←−η (ψi)i∈I , t)

Thus ψ←−η (ψi)i∈I is well-defined. In a similar manner we can prove that ψ←−η (bari(ψi))i∈I
is well-defined. Now we return to the proof that M ′ recognizes ψ←−η (bari(ψi))i∈I . Clearly,
(‖M ′‖, u) = 0 for every u ∈ T∆′ such that u 6= t[bari(ui)]i∈var(t) for every t ∈ T∆(ZI) and ui ∈ T∆

for every i ∈ var(u).

‖M ′‖
= [by the above observation]∑

t∈T∆(ZI),
(∀i∈var(t)) : ui∈T∆

(
‖M ′‖, t[bari(ui)]i∈var(t)

)
t[bari(ui)]i∈var(t)

= [by the auxiliary statement]∑
t∈T∆(ZI),

(∀i∈var(t)) : ui∈T∆

(
(ψ, t) ·

∏
i∈var(t)

(ψi, ui)
)
t[bari(ui)]i∈var(t)

= [by axioms (U) and (GP) and definition of bari]∑
t∈supp(ψ),

(∀i∈var(t)) : ui∈supp(bari(ψi))

(
(ψ, t) ·

∏
i∈var(t)

(bari(ψi), ui)
)
t[ui]i∈var(t)

= [by axiom (GP) and definition of ←−η because t is linear]∑
t∈supp(ψ)

((
(ψ, t) t

)
←−η

(
bari(ψi)

)
i∈var(t)

)
= [by Proposition 3.6]∑

t∈supp(ψ)

((
(ψ, t) t

)
←−η

(
bari(ψi)

)
i∈I

)
= [by Proposition 3.1]
ψ←−η (bari(ψi))i∈I

Finally, we need to remove the annotation. We define the mapping unbar : T∆′(Z) −→ T∆(Z)
for every z ∈ Z, k ∈ N, i ∈ I, δ ∈ ∆k, and t1, . . . , tk ∈ T∆′(Z) by

unbar(z) = z

unbar(δ(t1, . . . , tk)) = δ(unbar(t1), . . . ,unbar(tk))

unbar(δ
i
(t1, . . . , tk)) = δ(unbar(t1), . . . ,unbar(tk)) .
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We now lift unbar to tree series as follows. Let unbar : A〈〈T∆′(X)〉〉 −→ A〈〈T∆(Z)〉〉 be the mapping
defined for every ϕ ∈ A〈〈T∆′(Z)〉〉 by

unbar(ϕ) =
∑

t∈T∆′ (Z)

(ϕ, t) unbar(t) .

Clearly, unbar(ψ′) = ψ←−η (ψi)i∈I . Moreover, unbar can be realized by a nondeleting, linear tree
transducer (with one state and with OI substitution) of [18] (because it is a relabeling homomor-
phism). Since ψ′ is a recognizable tree series and nondeleting, linear tree transducers of [18] pre-
serve recognizability [18, Corollary 14], also unbar(ψ′) is recognizable, which proves the statement.
The proof of [18, Corollary 14] additionally assumes a continuous semiring, but this assumption
is not needed for the special case considered here. Alternatively the last step can be shown by
referring to the closure of the class of recognizable tree series under linear and nondeleting tree
homomorphisms [4]. �

Let us illustrate the previous theorem. The first example shows that the linearity restriction
is necessary and the second example demonstrates a successful application of Theorem 4.2 using
o-substitution.

Let ∆ = {δ(2), α(0)} and let
ψ1 = max

u∈T∆
height(u) u and ψ = max

u∈T∆(Z1)
height(u) u

over the semiring A∞, which is additively idempotent and continuous (see Proposition 3.9). How-
ever, ψ is not linear in Z1. Nevertheless we apply the construction found in the proof of Theorem 4.2
(see Figure 1 for the bottom-up weighted tree automaton recognizing ψ) and obtain the bottom-up
weighted tree automaton M = (Q,Γ,A∞, F, µ) with

• Q = {1, 2, 3, 4};

• Γ2 = {δ, δ} and Γ0 = {α, α} (we omit the 1 at the overlining);

• F1 = 0 and F2 = F3 = F4 = −∞; and

• µ0(α)1 = µ0(α)2 = µ0(α)1 = µ0(α)2 = µ0(α)3 = µ0(α)4 = 0 and

µ2(δ)1,12 = µ2(δ)1,21 = µ2(δ)3,34 = µ2(δ)3,43 = 1

µ2(δ)2,22 = µ2(δ)4,44 = 0

µ2(δ)1,34 = µ2(δ)1,43 = 1 .

All remaining entries of µ2(δ) and µ2(δ) are −∞.

The automaton M is displayed in Figure 2. However, M does not recognize ψ←−o (bar1(ψ1)).
To demonstrate this, let u = δ(δ(α, α), δ(α, α)). Clearly, we observe that (‖M‖, u) = −∞, but
(ψ←−o (bar1(ψ1)), u) = 3. The latter can be seen using the decomposition u = δ(z1, z1)[δ(α, α)].

Corollary 4.3 (of Theorem 4.2 and Proposition 3.9) Let A be additively idempotent and
continuous. Let ψ ∈ Arec〈〈T∆(ZI)〉〉 be linear in ZI , and let ψi ∈ Arec〈〈T∆〉〉 for every i ∈ I. Then
ψ←−o (ψi)i∈I is well-defined and recognizable.

Finally, we conclude the report by an application of Theorem 4.2 to show preservation of
recognizability using pure substitution. In this section we consider the real number semiring
(R+,+, ·, 0, 1) with the set A of absolutely convergent series and the standard infinitary summa-
tion

∑
: A −→ R+. It is known [16] that this infinitary summation fulfils the presented axioms.

Let ∆ be a ranked alphabet and ψ ∈ R+〈〈T∆〉〉. Then the classical notion of a probability
distribution coincides with Condition (ii) in Proposition 3.6. More formally, ψ is called a probability
distribution if

∑
u∈T∆

(ψ, u) = 1 (i. e., (ψ, u)u∈T∆ is an absolutely convergent series and its sum
is 1). Theorem 4.2 shows that the recognizable linear probability distributions are closed under
pure substitution.
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δ/1

Figure 2: Bottom-up weighted tree automaton over A∞.

Corollary 4.4 (of Theorem 4.2) Let ψ ∈ (R+)rec〈〈T∆(ZI)〉〉 be a probability distribution that is
linear in ZI , and ψi ∈ (R+)rec〈〈T∆〉〉 be a probability distribution for every i ∈ I. Then ψ←−ε (ψi)i∈I
is a recognizable probability distribution.

Proof. By Theorem 4.2 we have that ψ←−ε (ψi)i∈I is well-defined and recognizable. It remains
to prove that ψ←−ε (ψi)i∈I is a probability distribution.

1 ·
∏
i∈I

1

= [because ψ and ψi are probability distributions]( ∑
u∈supp(ψ)

(ψ, u)
)
·
∏
i∈I

( ∑
ui∈supp(ψi)

(ψi, ui)
)

= [by axioms (GP) and (D)]∑
u∈supp(ψ),

(∀i∈I) : ui∈supp(ψi)

(ψ, u) ·
∏
i∈I

(ψi, ui)

= [by axiom (GP)]∑
t∈T∆

( ∑
u∈supp(ψ),

(∀i∈I) : ui∈supp(ψi),
t=u[ui]i∈I

(ψ, u) ·
∏
i∈I

(ψi, ui)
)

= [by axioms (U) and (GP) and definition of ←−ε ]∑
t∈supp(ψ←−

ε
(ψi)i∈I)

(ψ←−ε (ψi)i∈I , t) �
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[10] Zoltán Fülöp and Heiko Vogler. Tree series transformations that respect copying. Theory
Comput. Systems, 36(3):247–293, 2003.
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