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Abstract. Substitution operations on tree series are at the basis of sys-
tems of equations (over tree series) and tree series transducers. Tree series
transducers seem to be an interesting transformation device in syntactic
pattern matching. In this contribution, it is shown that o-substitution
preserves recognizable tree series provided that the target tree series is
linear and the semiring is idempotent, commutative, and continuous.
This result is applied to prove that the range of the o-t-ts transforma-
tion computed by a linear recognizable tree series transducer is pointwise
recognizable.

1 Introduction

Tree series transducers [1] were introduced as a joint generalization of tree trans-
ducers [2,3] and weighted tree automata [4,5]. They thereby serve as the trans-
ducing devices corresponding to weighted tree automata. Both historical pre-
decessors of tree series transducers have successfully been motivated from and
applied in practice. Specifically, tree transducers are motivated from syntax-
directed translations in compilers [6], and they are applied in, e. g., computa-
tional linguistics [7] and query languages of xml databases [8]. Weighted tree
automata have been applied to code selection in compilers [9] and tree pattern
matching [10].

In [11] a tree-based syntactic pattern matching approach is presented and
shown to be competetive. The approach is tailored to digit recognition. Using
a training procedure for regular tree grammars a tree automaton is trained. To
accomodate for training errors, usually a refined model using probabilities is
applied. Essentially this corresponds to a weighted tree automaton. A common
observation is that the recognized digit is invariant under small translations of
the input image (such as, e. g., small tiltings). Finitely presentable transforma-
tions (also respecting the probabilities) on the input tree can be realised by
tree series transducers. Another application of tree series transducers (using the
semiring of probabilities) is demonstrated in [12], where tree series transducers
are trained to perform machine translation. Yet another application of tree series
transducers is presented in [13], where tree series transducer are applied to code
selection.
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Let us illustrate one application of tree series transducers in the setting of
natural language processing. Imagine a statistical channel model that is applied
to a channel that translates Japanese text into English text [14]. Statistical
models are built from a large corpus of hand-annotated and translated input
sentences. Any such channel model gives rise to an automatically generated (sta-
tistical) translation system, which may assist translators by providing suitable
candidate translations. In [14] the simple IBM model 1 [15,16] is displayed. This
model consists of several stages: reordering, insertion, and word translation. The
first stage just reorders parse subtrees to accomodate for different word order
(English: Subject-Verb-Object and Japanese: Subject-Object-Verb); the second
stage inserts words that have no direct translation; and the final stage just per-
form word-to-word translation. All operations are probabilistic, so with a certain
probability, the reordering TO NN→ NN TO takes place. In fact, all stages are
simple weighted tree to weighted tree (where the weight is a probability) trans-
formations, which can easily be modelled by a tree series transducer. We depict
the working of a tree series transducer for the reordering stage in Figure 1.
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Fig. 1. Reordering performed by a tree series transducer

Tree substitution is at the core of the semantics of tree transducers, and tree
series substitution fulfills this purpose for tree series transducers. In this paper
we investigate o-substitution [17]. A tree series is a mapping from a set of output
trees into some semiring. Let us illustrate o-substitution using the semiring of
probabilities. The probability (e. g., reliability), that is associated with an output
tree, is taken to the nth power, if the output tree is used in n copies (is copied
n times into some other tree). In this approach, an output tree stands for a
composite, and the probability associated with the output tree reflects, e. g.,
the reliability of this particular composite. When we combine composites into
a new composite, then we obtain the reliability of the composite by a simple
multiplication of the reliabilities of its components; each component taken as
often as needed to assemble the composite (under the assumption that each
component is critical for the correct functioning of the composite).

Tree series substitutions have also been studied in relation with recogniz-
able tree series [4]. Substitution is a standard operation on tree series, and in
particular, OI-substitution [18] was studied with respect to preservation of rec-
ognizability [19]. A tree series is called recognizable, if there exists a finite state
automaton that computes this tree series. Recognizable tree series are of partic-
ular interest, because they are finitely representable. It is known that the result
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of certain substitutions is not recognizable. We study the limit of recognizabil-
ity under o-substitution. Which o-substitutions will lead to recognizable tree
series? Thus we aim towards classes of transformations that preserve the ability
to finitely represent tree series.

Our main result states that o-substitution preserves recognizable tree series
in semirings that are commutative, idempotent, and continuous [20], whenever
the participating tree series are linear (i. e., each variable may occur at most
once in the trees in the support).

We apply this result to show that the o-t-ts transformation computed by a
linear recognizable tree series transducer over a commutative, idempotent, and
continuous semiring is pointwise recognizable.

2 Preliminaries

We use N and N+ to represent the nonnegative and positive integers, respectively.
Further let [k] be an abbreviation for {n ∈ N | 1 6 n 6 k}. A set Σ which is
nonempty and finite is also called an alphabet. As usual, Σ∗ denotes the set of
all (finite) words over Σ. Given w ∈ Σ∗, the length of w is denoted by |w|.

A ranked alphabet is an alphabetΣ with a mapping rkΣ : Σ −→ N. We useΣk
to represent {σ ∈ Σ | rkΣ(σ) = k}. Moreover, we use the set X = {xi | i ∈ N+}
of variables and Xk = {xi | i ∈ [k]}. Given a ranked alphabet Σ and V ⊆ X,
the set of Σ-trees indexed by V , denoted by TΣ(V ), is inductively defined to be
the smallest set T such that (i) V ⊆ T and (ii) for every k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . Since we generally assume that Σ ∩X = ∅,
we write α instead of α() whenever α ∈ Σ0. Moreover, we also write TΣ to
denote TΣ(∅).

For every t ∈ TΣ(X), we denote by |t|x the number of occurrences of x ∈ X
in t. Let I ⊆ N+ be finite, u ∈ TΣ(X) and ui ∈ TΣ(X) for every i ∈ I. By
u[ui]i∈I we denote the tree obtained from u by replacing every occurrence of a
variable xi with i ∈ I by ui. We write u[u1, . . . , un] for u[ui]i∈I if I = [n]. Let
V ⊆ X. We say that u ∈ TΣ(X) is linear and nondeleting in V , if every x ∈ V
occurs at most once and at least once in t, respectively. Moreover, we use var(u)
to represent the set of variables that occur in u.

A (commutative) semiring is an algebraic structure A = (A,+, ·, 0, 1) con-
sisting of two commutative monoids (A,+, 0) and (A, ·, 1) such that · distributes
over + and 0 is absorbing with respect to · . As usual we use

∑
i∈I ai for sums

of families (ai)i∈I of ai ∈ A where for only finitely many i ∈ I we have ai 6= 0.
A semiring A = (A,+, ·, 0, 1) is called idempotent, if 1 + 1 = 1, and A is called
complete, if it is possible to define an infinitary sum operation such that for
arbitrary index sets I and (ai)i∈I of ai ∈ A we have

–
∑
i∈{j1,j2} ai = aj1 + aj2 with j1 6= j2;

–
∑
i∈I ai =

∑
j∈J
(∑

i∈Ij ai
)

for all (Ij)j∈J such that
⋃
j∈J Ij = I and for

every j1 6= j2 we have Ij1 ∩ Ij2 = ∅; and
– a ·

(∑
i∈I ai

)
=
∑
i∈I(a · ai) for all a ∈ A.
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Whenever we speak of a complete semiring, we silently assume that the infinitary
sum operation is given. A semiring is naturally ordered, whenever v ⊆ A2,
defined by a v b iff there exists a c ∈ A such that a + c = b, constitutes a
partial order on A. Let A be complete and naturally ordered. We say that A is
continuous, if for every index set I and (ai)i∈I of ai ∈ A the following supremum
exists and

∑
i∈I ai = sup{

∑
i∈F ai | F ⊆ I with F finite} where the supremum

is taken with respect to the natural order v. Examples of continuous semirings
are

– the Boolean semiring B = ({0, 1},∨,∧, 0, 1),
– the natural number semiring N = (N ∪ {∞},+, ·, 0, 1), and
– the arctic semiring A = (N ∪ {∞,−∞},max,+,−∞, 0).

Let S be a set and A = (A,+, ·, 0, 1) be a semiring. A (formal) power series ψ
is a mapping ψ : S −→ A. Given s ∈ S, we denote ψ(s) also by (ψ, s) and write
the series as

∑
s∈S(ψ, s) s. The support of ψ is supp(ψ) = {s ∈ S | (ψ, s) 6= 0}.

Power series with finite support are called polynomials. We denote the set of
all power series by A〈〈S〉〉 and the set of polynomials by A〈S〉. The polynomial
with empty support is denoted by 0̃. Power series (ψi)i∈I ∈ A〈〈S〉〉 are added
componentwise; i. e., (

∑
i∈I ψi, s) =

∑
i∈I(ψi, s) for every s ∈ S, and we multiply

ψ ∈ A〈〈S〉〉 with a coefficient a ∈ A componentwise; i. e., (a ·ψ, s) = a · (ψ, s) for
every s ∈ S.

In this paper, we only consider power series in which the set S is a set of
trees. Such power series are also called tree series. Let ∆ be a ranked alphabet.
A tree series ψ ∈ A〈〈T∆(X)〉〉 is said to be linear and nondeleting in V ⊆ X,
if every t ∈ supp(ψ) is linear and nondeleting in V , respectively. We also use
var(ψ) =

⋃
u∈supp(ψ) var(u).

Now let A be a complete semiring and ψ ∈ A〈〈T∆(X)〉〉 and let I ⊆ N+ be
finite and ψi ∈ A〈〈T∆(X)〉〉 for every i ∈ I. The o-substitution of (ψi)i∈I into ψ,
denoted by ψ←−o (ψi)i∈I , is defined by

ψ←−o (ψi)i∈I =
∑

u∈supp(ψ),
(∀i∈I) : ui∈supp(ψi)

(
(ψ, u) ·

∏
i∈I

(ψi, ui)
|u|xi

)
u[ui]i∈I .

If we suppose that I = [n], then we also write ψ←−o (ψ1, . . . , ψn) instead of
ψ←−o (ψi)i∈I . In an expression ψ←−o (ψ1, . . . , ψn) the series ψ is called the target
and every ψi is called a source.

Let us recall the notion of recognizable tree series [4,5,18,21]. Let Σ be a
ranked alphabet and A = (A,+, ·, 0, 1) be a semiring. A (bottom-up) weighted
tree automaton M (over Σ and A), abbreviated to wta, is a tuple (Q,Σ,A, F, µ)
where Q is an alphabet of states, F : Q −→ A is a final weight distribution and

µ = (µk)k∈N with µk : Σk −→ AQ×Q
k

is a tree representation. The initial algebra
semantics of M is determined by the mapping hµ : TΣ −→ AQ given by

hµ(σ(t1, . . . , tk))q =
∑

q1,...,qk∈Q
µk(σ)q,q1,...,qk · hµ(t1)q1 · . . . · hµ(tk)qk
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for every k ∈ N, σ ∈ Σk, q ∈ Q, and t1, . . . , tk ∈ TΣ . The tree series recognized
by M , denoted by ‖M‖, is defined by (‖M‖, t) =

∑
q∈Q Fq · hµ(t)q for every

t ∈ TΣ .

We use the method of [22,21] to graphically represent wta. Note that we
write µ0(α)q instead of µ0(α)q,() for every α ∈ Σ0 and q ∈ Q. A tree series
ψ ∈ A〈〈TΣ〉〉 is termed recognizable, if there exists a wta M over Σ and A such
that ψ = ‖M‖. The class of all recognizable tree series over Σ and A is denoted
by Arec〈〈TΣ〉〉.

Let Q be an alphabet. We write Q(V ) for {q(v) | q ∈ Q, v ∈ V }. Now let
A = (A,+, ·, 0, 1) be a semiring and Σ and ∆ be ranked alphabets. A tree
representation µ (over Q, Σ, ∆, and A) [1] is a family (µ(σ))σ∈Σ of matrices
µ(σ) ∈ A〈〈T∆(X)〉〉Q×Q(Xk)

∗
where k = rkΣ(σ) such that for every q ∈ Q and

w ∈ Q(Xk)∗ it holds that µ(σ)q,w ∈ A〈〈T∆(Xn)〉〉 with n = |w|, and µ(σ)q,w 6= 0̃
for only finitely many (q, w) ∈ Q × Q(Xk)∗. A tree representation µ is said to
be recognizable and linear, if µ(σ)q,w is recognizable and linear for every k ∈ N,
σ ∈ Σk, and (q, w) ∈ Q × Q(Xk)∗, respectively. A tree series transducer [1,20],
in the sequel abbreviated to tst, is a sixtuple M = (Q,Σ,∆,A, F, µ) consisting
of

– an alphabet Q of states,

– ranked alphabets Σ and ∆, also called input and output ranked alphabet,
respectively,

– a complete semiring A = (A,+, ·, 0, 1),

– a vector F ∈ A〈〈T∆(X1)〉〉Q, called top-most output, such that for all q ∈ Q:
Fq is nondeleting and linear in X1, and

– a tree representation µ over Q, Σ, ∆, and A.

Tst inherit the properties recognizable and linear from their tree repre-
sentation. Let M = (Q,Σ,∆,A, F, µ) be a tst. Then M induces a mapping
‖M‖o : TΣ −→ A〈〈T∆〉〉 as follows. For every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ
we define the mapping hoµ : TΣ −→ A〈〈T∆〉〉Q inductively for every q ∈ Q by

hoµ(σ(t1, . . . , tk))q =
∑

w∈Q(Xk)
∗,

w=q1(xi1 )···qn(xin )

µk(σ)q,w←−o (hoµ(ti1)q1 , . . . , h
o
µ(tin)qn) .

For every t ∈ TΣ the o-tree-to-tree-series (for short: o-t-ts) transformation com-
puted by M is ‖M‖o(t) =

∑
q∈Q Fq←−o (hoµ(t)q).

3 Preservation of Recognizability

In this section we consider the question whether o-substitution preserves recog-
nizability. Let Σ be a ranked alphabet. It is known that IO substitution does
not, in general, preserve recognizability. However, IO substitution on linear tree
languages preserves recognizability [23].
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In [24] a first result on tree series is presented for OI substitution. For every
k ∈ N, σ ∈ Σk, and ψ1, . . . , ψk ∈ A〈〈TΣ(X)〉〉, we define

σ(ψ1, . . . , ψk) =
∑

t1,...,tk∈TΣ(X)

(
(ψ1, t1) · . . . · (ψk, tk)

)
σ(t1, . . . , tk) .

Note that this sum is always well-defined. Let t ∈ TΣ(X) be a tree, n ∈ N, and
ψ1, . . . , ψn ∈ A〈〈TΣ(X)〉〉. For every j ∈ [n], ` ∈ N+ \ [n] let

xj←−
OI

(ψ1, . . . , ψn) = ψj and x`←−
OI

(ψ1, . . . , ψn) = 1 x`

and for every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(X) let

t←−
OI

(ψ1, . . . , ψn) = σ(t1←−
OI

(ψ1, . . . , ψn), . . . , tk←−
OI

(ψ1, . . . , ψn)) ,

where t = σ(t1, . . . , tk). Now let ψ ∈ A〈〈TΣ(X)〉〉. We define ψ←−
OI

(ψ1, . . . , ψn)
by

ψ←−
OI

(ψ1, . . . , ψn) =
∑

t∈TΣ(X)

(ψ, t) ·
(
t←−

OI
(ψ1, . . . , ψn)

)
.

Note that also this sum is always well-defined. With the help of [24] we can easily
relate o-substitution and OI substitution. Recall that our semirings are always
commutative.

Proposition 1. Let n ∈ N, ψ ∈ A〈〈TΣ(Xn)〉〉 be nondeleting and linear in Xn,
and ψ1, . . . , ψn ∈ A〈〈TΣ(X)〉〉.

ψ←−o (ψ1, . . . , ψn) = ψ←−
OI

(ψ1, . . . , ψn)

Proof. Clearly, t←−
OI

(1 ti)i∈I = 1 t[ti]i∈I for every t ∈ TΣ(XI) and family

(ti)i∈I ∈ TΣ(X)I .

ψ←−o (ψi)i∈I =
∑

t∈TΣ(XI),
(∀i∈I) : ti∈TΣ(X)

(
(ψ, t) ·

∏
i∈I

(ψi, ti)
)
· (1 t[ti]i∈I)

= (by t←−
OI

(1 ti)i∈I = 1 t[ti]i∈I)∑
t∈TΣ(XI),

(∀i∈I) : ti∈TΣ(X)

(
(ψ, t) ·

∏
i∈I

(ψi, ti)
)
·
(
t←−

OI
(1 ti)i∈I

)
= (by [24, Theorem 6] and definition of ←−

OI
)∑

t∈TΣ(XI)

(ψ, t) ·
(
t←−

OI
(ψi)i∈I

)
= ψ←−

OI
(ψi)i∈I

Theorem 2 (cf. [24]). For every n ∈ N, ψ ∈ Arec〈〈TΣ(Xn)〉〉 such that ψ is
nondeleting and linear in Xn, and every ψ1, . . . , ψn ∈ Arec〈〈TΣ〉〉 we have that
ψ←−o (ψ1, . . . , ψn) ∈ Arec〈〈TΣ〉〉.
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Proof. The statement is proved for OI-substitution in [24, Corollary 14]. Since
OI-substitution coincides with o-substitution on nondeleting and linear target
tree series (see Proposition 1), we obtain the statement.

We would like to achieve a result which does not depend on nondeletion
of ψ (see Theorem 2). Let us show the main idea in a simple setting. Let
ψ ∈ Arec〈〈TΣ(X1)〉〉 be linear in X1 and ψ1 ∈ Arec〈〈TΣ〉〉. Our goal is to show that
ψ←−o (ψ1) is recognizable, thus we need to present a wta M ′ = (Q′, Σ,A, F ′, µ′)
that recognizes ψ←−o (ψ1). Let M = (Q,∆,A, F, µ) and M1 = (Q1, Σ,A, F1, µ1)
be wta that recognize ψ and ψ1, respectively. We employ a standard idea for the
construction of M ′. Roughly speaking, we take the disjoint union of M and M1

and add transitions that nondeterministically change from M1 to M . More pre-
cisely, for every k ∈ N+, σ ∈ Σk, q ∈ Q, and q1, . . . , qk ∈ Q1 we set

µ′k(σ)q,q1,...,qk =
∑
p∈Q1

µ0(x1)q · (F1)p · (µ1)k(σ)p,q1,...,qk .

Roughly, for each state p of M1 we take (µ1)k(σ)p,q1···qk of M1, multiply (F1)p,
and multiply µ0(x1)q for entering M (via x1) in state q. Nullary symbols σ are
treated similarly. We employ a proof method, which requires us to make the
input alphabets Σ and ∆ disjoint. This simplifies the proof because each tree
then admits a unique decomposition into (at most one) part that needs to be
processed by M1 and a part that needs to be processed by M .

Proposition 3. Let A be idempotent and continuous. Let J ⊆ I ⊆ N+ be finite,
ψ ∈ A〈〈T∆(X)〉〉 such that J ∩ var(ψ) = I ∩ var(ψ), and for every i ∈ I let
ψi ∈ A〈〈T∆(X)〉〉 such that ψi 6= 0̃ for every i ∈ I \ J .

ψ←−o (ψi)i∈I = ψ←−o (ψj)j∈J

Theorem 4. Let A be a continuous and idempotent semiring. Let n ∈ N,
ψ ∈ Arec〈〈TΣ(Xn)〉〉 be linear in Xn, and ψ1, . . . , ψn ∈ Arec〈〈TΣ〉〉.

ψ←−o (ψ1, . . . , ψn) ∈ Arec〈〈TΣ〉〉

Proof. Let ψi = 0̃ for some i ∈ [n]. Then ψ←−o (ψ1, . . . , ψn) = 0̃, which is

recognizable. Thus let ψi 6= 0̃ for all i ∈ [n]. For every k ∈ N+ let ∆k = Σk
and ∆0 = Σ0 ∪Xn. Since ψ ∈ Arec〈〈TΣ(Xn)〉〉 and ψ1, . . . , ψn ∈ Arec〈〈TΣ〉〉, there
exist wta M = (Q,∆,A, F, µ) and Mi = (Qi, Σ,A, Fi, µi) such that ‖M‖ = ψ
and ‖Mi‖ = ψi for every i ∈ [n].

For every i ∈ [n] and k ∈ N let Σ
i

be Σ
i

k = {σi | σ ∈ Σk}. We de-
fine bari : TΣ −→ T

Σ
i by bari(σ(t1, . . . , tk)) = σi(bari(t1), . . . ,bari(tk)) for

every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ . Moreover, we define the mapping
bari : A〈〈TΣ〉〉 −→ A〈〈TΣi〉〉 for every ϕ ∈ A〈〈TΣ〉〉 by

bari(ϕ) =
∑
t∈TΣ

(ϕ, t) bari(t) .
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Without loss of generality, we assume that for every i ∈ [n] we have that

(i) Σ and Σ
i

are disjoint and (ii) Q and Qi are disjoint. Let Σ′k = Σk∪
⋃

1≤i≤nΣ
i

k

for every k ∈ N, and Q′ = Q ∪
⋃

1≤i≤nQi. We construct a wta M ′ recognizing
ψ←−o (bar1(ψ1), . . . ,barn(ψn)) as follows. Let M ′ = (Q′, Σ′,A, F ′, µ′) where for
every i ∈ [n], k ∈ N, σ ∈ Σk:

– F ′q = Fq for every q ∈ Q and F ′p = 0 for every p ∈
⋃

1≤i≤nQi;

– µ′k(σi)p,w = (µi)k(σ)p,w for every p ∈ Qi and w ∈ (Qi)
k;

– µ′k(σ)q,w = µk(σ)q,w for every q ∈ Q and w ∈ Qk; and
– µ′k(σi)q,w =

∑
p∈Qi µ0(xi)q ·(Fi)p ·(µi)k(σ)p,w for every q ∈ Q and w ∈ (Qi)

k.

All the remaining entries in µ′ are set to 0.
We claim that ψ′ = ψ←−o (bar1(ψ1), . . . ,barn(ψn)) is recognizable. In fact,

M ′ recognizes ψ′. Clearly, hµ′(bari(t))p = hµi(t)p for every i ∈ [n], t ∈ TΣ , and
p ∈ Qi. Next we prove that for every q ∈ Q and t ∈ TΣ(Xn), which is linear in

Xn, and family (ui)i∈var(t) ∈ T
var(t)
Σ we have

hµ′(t[bari(ui)]i∈var(t))q = hµ(t)q ·
∏

i∈var(t)

(
‖Mi‖, ui

)
.

We prove this statement inductively, so let t = xj for some j ∈ [n]. Moreover,
let uj = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ .

hµ′(xj [bari(ui)]i∈var(xj))q

= (by substitution and definition of barj)

hµ′
(
σj(barj(t1), . . . ,barj(tk))

)
q

=
∑

q1,...,qk∈Q′
µ′k(σj)q,q1···qk ·

∏
i∈[k]

hµ′(barj(ti))qi

= (by definition of µ′ and hµ′(barj(ti))qi = hµj (ti)qi)∑
q1,...,qk∈Qj

∑
p∈Qj

µ0(xj)q · (Fj)p · (µj)k(σ)p,q1···qk ·
∏
i∈[k]

hµj (ti)qi

=
∑
p∈Qj

µ0(xj)q · (Fj)p · hµj (σ(t1, . . . , tk))p

= µ0(xj)q ·
(
‖Mj‖, σ(t1, . . . , tk)

)
= hµ(xj)q ·

∏
i∈var(xj)

(
‖Mi‖, ui

)
Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(Xn).

hµ′(σ(t1, . . . , tk)[bari(ui)]i∈var(t))q

= (by substitution)

hµ′(σ(t1[bari(ui)]i∈var(t1), . . . , tk[bari(ui)]i∈var(tk)))q
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=
∑

q1,...,qk∈Q′
µ′k(σ)q,q1···qk ·

∏
j∈[k]

hµ′(tj [bari(ui)]i∈var(tj))qj

= (by induction hypothesis and definition of µ′)∑
q1,...,qk∈Q

µk(σ)q,q1···qk ·
∏
j∈[k]

(
hµ(tj)qj ·

∏
i∈var(tj)

(
‖Mi‖, ui

))
= hµ(σ(t1, . . . , tk))q ·

∏
j∈[k],i∈var(tj)

(
‖Mi‖, ui

)
= (because t is linear in Xn)

hµ(σ(t1, . . . , tk))q ·
∏

i∈var(t)

(
‖Mi‖, ui

)
This completes the proof of the auxiliary statement. Consequently,

(‖M ′‖, t[bari(ui)]i∈var(t)) = (‖M‖, t) ·
∏

i∈var(t)

(‖Mi‖, ui)

= (ψ, t) ·
∏

i∈var(t)

(ψi, ui) . (1)

Using this result, we can show that ψ′ = ψ←−o (bari(ψi))i∈I is recognizable. In
fact, this is the tree series that is recognized by M ′.

ψ←−o (bar1(ψ1), . . . ,barn(ψn))

= (by distributivity)∑
t∈supp(ψ)

(ψ, t) ·
((

1 t
)
←−o

(
bar1(ψ1), . . . ,barn(ψn)

))
= (by Proposition 3)∑

t∈supp(ψ)

(ψ, t) ·
((

1 t
)
←−o

(
bari(ψi)

)
i∈var(t)

)
= (by definition of ←−o because t is linear)∑

t∈supp(ψ),
(∀i∈var(t)) : ui∈supp(bari(ψi))

(
(ψ, t) ·

∏
i∈var(t)

(bari(ψi), ui)
)
t[ui]i∈var(t)

= (by definition of bari)∑
t∈TΣ(Xn),

(∀i∈var(t)) : ui∈TΣ

(
(ψ, t) ·

∏
i∈var(t)

(ψi, ui)
)
t[bari(ui)]i∈var(t)

= (by (1) )∑
t∈TΣ(Xn),

(∀i∈var(t)) : ui∈TΣ

(
‖M‖, t[bari(ui)]i∈var(t)

)
t[bari(ui)]i∈var(t)
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=
∑
u∈TΣ′

( ∑
t∈TΣ(Xn),

(∀i∈var(t)) : ui∈TΣ

(
‖M‖, t[bari(ui)]i∈var(t)

)
t[bari(ui)]i∈var(t) , u

)
u

= (because t and ui are uniquely determined by u)∑
u∈TΣ′

(
‖M‖, u

)
u = ‖M‖

Finally, we need to remove the annotation. To this end we define the mapping
unbar : TΣ′(X) −→ TΣ(X) for every x ∈ X, k ∈ N, i ∈ [n], σ ∈ Σk, and
t1, . . . , tk ∈ TΣ′(X) by

unbar(x) = x

unbar(σ(t1, . . . , tk)) = σ(unbar(t1), . . . ,unbar(tk))

unbar(σi(t1, . . . , tk)) = σ(unbar(t1), . . . ,unbar(tk)) .

Finally, let unbar : A〈〈TΣ′(X)〉〉 −→ A〈〈TΣ(X)〉〉 be defined by

unbar(ϕ) =
∑

t∈TΣ′ (X)

(ϕ, t) unbar(t)

for every ϕ ∈ A〈〈TΣ′(X)〉〉. Clearly, unbar(ψ′) = ψ←−o (ψ1, . . . , ψn). Moreover,
unbar can be realized by a nondeleting, linear tree transducer (with one state)
of [24] (which uses OI substitution). Since ψ′ is a recognizable tree series and non-
deleting, linear tree transducers of [24] preserve recognizability, also unbar(ψ′)
is recognizable, which proves the statement.

Let us illustrate the previous theorem on an example.

Example 5. Let Σ = {γ(1), α(0)} and consider the arctic semiring. Let

ψ = max
u∈TΣ(X1)

height(u) u and ψ′ = max
u∈TΣ

height(u) u .

Then ψ←−o (ψ′) is recognizable. In fact, ψ←−o (ψ′) = ψ′. We show the wta that
recognize ψ and ψ←−o (ψ′) [the automaton that is constructed in Theorem 4] in
Fig. 2.

4 Application to Tree Series Transducers

In Theorem 4 we showed that o-substitution preserves recognizability under
certain conditions. We now apply this theorem to tst. In fact this means that
theorems about wta can be applied. We demonstrate such an application after
the theorem.

Theorem 6. Let A be an idempotent and continuous semiring. Moreover, let
M = (Q,Σ,∆,A, F, µ) be a linear recognizable tst. Then ‖M‖o(t) is recognizable
for every t ∈ TΣ.
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?

0

α/0 x1/0

γ/1

2

1

0

α/0

α/0

γ/1

γ/1

γ/1

Fig. 2. Wta recognizing ψ [left] and ψ←−
o

(ψ′) [right] over A.

Proof. We first prove that hoµ(t)q is recognizable for every t ∈ TΣ and q ∈ Q by
induction on t. Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ .

hoµ(σ(t1, . . . , tk))q =
∑

w∈Q(Xk)
∗,

w=q1(xi1 )···qn(xin )

µk(σ)q,w←−o (hoµ(ti1)q1 , . . . , h
o
µ(tin)qn) .

By induction hypothesis hoµ(tij )qj is recognizable for every j ∈ [n]. Since M is
recognizable, µk(σ)q,w is recognizable. By Theorem 4 also

µk(σ)q,w←−o (hoµ(ti1)q1 , . . . , h
o
µ(tin)qn)

is recognizable because µk(σ)q,w is linear in Xn. Since recognizable tree series
are closed under finite sums [4] we obtain that hoµ(t)q is recognizable.

For every t ∈ TΣ we have ‖M‖o(t) =
∑
q∈Q Fq←−o (hoµ(t)q). We showed that

hoµ(t)q is recognizable. Moreover, Fq←−o (hoµ(t)q) is recognizable due to Theo-
rem 4. Thus, also ‖M‖o(t) is recognizable.

Since idempotent semirings are zero-sum free [25], we obtain the following
corollary. Other results on recognizable tree series can be applied similarly.

Corollary 7. Let A be an idempotent and continuous semiring with recursive
operations. Moreover, let M = (Q,Σ,∆,A, F, µ) be a linear recognizable tst.
Then for every t ∈ TΣ it is decidable whether ‖M‖o(t) = 0̃ or not.

Proof. By Theorem 6 we have that ψ = ‖M‖o(t) is recognizable and by [26] we
can decide whether ψ = 0̃.
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