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Abstract. Tree series transformations computed by polynomial top-
down and bottom-up tree series transducers are considered. The hierar-
chy of tree series transformations obtained in [Fülöp, Gazdag, Vogler: Hi-
erarchies of Tree Series Transformations. Theoret. Comput. Sci. 314(3),
p. 387–429, 2004] for commutative izz-semirings (izz abbreviates idempo-
tent, zero-sum and zero-divisor free) is generalized to arbitrary positive
(i. e., zero-sum and zero-divisor free) commutative semirings. The latter
class of semirings includes prominent examples such as the natural num-
bers semiring and the least common multiple semiring, which are not
members of the former class.

1 Introduction

Tree series transducers were introduced in [1,2,3] as a generalization of top-down
and bottom-up tree transducers. With the advent of tree series [4,5,6,7,8], espe-
cially recognizable tree series [9,10], in formal language theory also transducing
devices capable of (finitely) representing transformations on tree series became
interesting. For example, in [11] the power of (top-down) tree series transducers
for natural language processing was recognized.

In the seminal paper [12] the hierarchy of top-down tree transformation
classes was proved to be proper. This result lead to the hierarchy of top-down and
bottom-up tree transformation classes (as, e. g., displayed in [13]). This hierarchy
was generalized to classes of top-down and bottom-up tree series transformations
over izz-semirings (izz abbreviates idempotent, zero-divisor and zero-sum free)
in [14]. Let us explain this generalization in some more detail.

By p–TOPε(A) and p–BOTε(A) we denote the classes of tree-to-tree-series
transformations computable by polynomial top-down and bottom-up tree series
transducers [2] over the semiring A [15,16], respectively. Such a tree-to-tree-
series transformation is a mapping τ : TΣ −→ A〈〈T∆〉〉 for some ranked alphabets
Σ and ∆. Given ranked alphabets Σ, ∆, and Γ and τ1 : TΣ −→ A〈〈T∆〉〉 and
τ2 : T∆ −→ A〈〈TΓ 〉〉, the composition of τ1 with τ2 is denoted by τ1 ◦ τ2 and is
a mapping τ : TΣ −→ A〈〈TΓ 〉〉 (an output tree u produced by τ1 is subjected
to τ2, and the result is multiplied by the weight of u in the series produced
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by τ1). This composition is lifted to classes of transformations, and we write
p–TOPnε (A) and p–BOTnε (A) for the n-fold composition of p–TOPε(A) and
p–BOTε(A), respectively.

In [14] it is first proved that

p–TOPnε (A) ⊆ p–BOTn+1
ε (A) and p–BOTnε (A) ⊆ p–TOPn+1

ε (A)

for every commutative semiring and n > 1 (see Theorems 5.1 and 5.7 in [14],
respectively). Then in [14, Theorem 6.20] it is proved that

p–TOPnε (A) 6⊆ p–BOTnε (A) and p–BOTnε (A) 6⊆ p–TOPnε (A)

for every izz-semiring and n > 1. Thus the hierarchy that is obtained in [14] is
proved for commutative izz-semirings. We generalize the incomparability result
to positive (i. e., zero-sum and zero-divisor free) semirings and thereby obtain
the hierarchy for all positive and commutative semirings (see Figure 1 for the
Hasse diagram).

Our approach used to prove the incomparability is (in essence) similar to
the one presented in [14]. However, we carefully avoid the introduction of idem-
potency by a simpler proof method. We furthermore claim that our method of
proof is more illustrative than the one of [14].

Apart from this introduction, the paper has 3 sections. Section 2 introduces
the essential notation, Section 3 generalizes the mentioned incomparability re-
sult, and Section 4 presents the obtained hierarchy (see Figure 1).

2 Preliminaries

We use N to represent the nonnegative integers and N+ = N \ {0}. In the sequel,
let k, n ∈ N and [k] be an abbreviation for {i ∈ N | 1 6 i 6 k}. A set Σ that
is nonempty and finite is also called an alphabet, and the elements thereof are
called symbols. As usual, Σ∗ denotes the set of all finite sequences of symbols
of Σ (also called Σ-words). Given w ∈ Σ∗, the length of w is denoted by |w|.

A ranked alphabet is an alphabet Σ with a mapping rkΣ : Σ −→ N, which
associates to each symbol a rank. We use Σk to represent the set of symbols
of Σ that have rank k. Moreover, we use the set X = {xi | i ∈ N+} of (formal)
variables and Xk = {xi | i ∈ [k]}. Given a ranked alphabet Σ and V ⊆ X, the
set of Σ-trees indexed by V , denoted by TΣ(V ), is inductively defined to be the
smallest set T such that (i) V ⊆ T and (ii) for every k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . Since we generally assume that Σ ∩X = ∅,
we write α instead of α() whenever α ∈ Σ0. Moreover, we also write TΣ to denote
TΣ(∅).

Given t1, . . . , tn ∈ TΣ(X), the expression t[t1, . . . , tn] denotes the result of
substituting in t every xi by ti for every i ∈ [n]. Let V ⊆ X. We say that
t ∈ TΣ(X) is linear and nondeleting in V , if every x ∈ V occurs at most once
and at least once in t, respectively.

A semiring is an algebraic structure A = (A,+, ·, 0, 1) consisting of a com-
mutative monoid (A,+, 0) and a monoid (A, ·, 1) such that · distributes over +
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and 0 is absorbing with respect to · . The semiring is called commutative, if · is
commutative. As usual we use

∑
i∈I ai for sums of families (ai)i∈I of ai ∈ A

where for only finitely many i ∈ I we have ai 6= 0. Let A = (A,+, ·, 0A, 1A) and
B = (B,⊕,�, 0B, 1B) be semirings and h : A −→ B. The mapping h is called
homomorphism from A to B, if

– h(0A) = 0B and h(1A) = 1B, and
– h(a+ b) = h(a)⊕ h(b) and h(a · b) = h(a)� h(b) for every a, b ∈ A.

A semiring A = (A,+, ·, 0, 1) is called idempotent, if 1 + 1 = 1. Moreover, we
say that a semiring A = (A,+, ·, 0, 1) is zero-sum free, if a+ b = 0 implies that
a = 0 = b for every a, b ∈ A. Moreover, A is zero-divisor free, if a · b = 0 implies
that 0 ∈ {a, b} for every a, b ∈ A. A zero-sum and zero-divisor free semiring is
also called positive. The Boolean semiring B = ({0, 1},∨,∧, 0, 1) with the usual
disjunction ∨ and conjunction ∧ is an example of a positive semiring.

Let S be a set and A = (A,+, ·, 0, 1) be a semiring. A (formal) power series ψ
is a mapping ψ : S −→ A. Given s ∈ S, we denote ψ(s) also by (ψ, s) and write
the series as

∑
s∈S(ψ, s) s. The support of ψ is supp(ψ) = {s ∈ S | (ψ, s) 6= 0}.

Power series with finite support are called polynomials. We denote the set of
all power series by A〈〈S〉〉 and the set of polynomials by A〈S〉. The polynomial
with empty support is denoted by 0̃. Power series ψ,ψ′ ∈ A〈〈S〉〉 are added
componentwise; i. e., (ψ + ψ′, s) = (ψ, s) + (ψ′, s) for every s ∈ S, and we
multiply ψ with a coefficient a ∈ A componentwise; i. e., (a ·ψ, s) = a · (ψ, s) for
every s ∈ S.

In this paper, we only consider power series in which the set S is a set of trees.
Such power series are also called tree series. Let ∆ be a ranked alphabet. A tree
series ψ ∈ A〈〈T∆(X)〉〉 is said to be linear and nondeleting in V ⊆ X, if every
t ∈ supp(ψ) is linear and nondeleting in V , respectively. Let ψ ∈ A〈T∆(X)〉
and ψ1, . . . , ψn ∈ A〈T∆(X)〉. The pure IO tree series substitution (for short:
pure substitution) (of ψ1, . . . , ψn into ψ) [17,2], denoted by ψ←−ε (ψ1, . . . , ψn),
is defined by

ψ←−ε (ψ1, . . . , ψn) =
∑

t∈T∆(X),
t1,...,tn∈T∆(X)

(ψ, t) · (ψ1, t1) · . . . · (ψn, tn) t[t1, . . . , tn] .

Let Q be an alphabet. We write Q(V ) for {q(v) | q ∈ Q, v ∈ V }. We use
the notions of linearity and nondeletion in V accordingly also for w ∈ Q(X)∗.
Let A = (A,+, ·, 0, 1) be a semiring and Σ and ∆ be ranked alphabets. A tree
representation µ (over Q, Σ, ∆, and A) [2] is a family (µ(σ))σ∈Σ of matrices
µ(σ) ∈ A〈〈T∆(X)〉〉Q×Q(Xk)

∗
where k = rkΣ(σ) such that for every q ∈ Q and

w ∈ Q(Xk)∗ it holds that µ(σ)q,w ∈ A〈〈T∆(Xn)〉〉 with n = |w|, and µ(σ)q,w 6= 0̃
for only finitely many (q, w) ∈ Q×Q(Xk)∗. A tree representation µ is said to be

– polynomial, if µ(σ)q,w is polynomial for every k ∈ N, σ ∈ Σk, q ∈ Q, and
w ∈ Q(Xk)∗;

– linear, if µ(σ)q,w is linear in X|w| and w is linear in Xk for every k ∈ N,

σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗ such that µ(σ)q,w 6= 0̃;
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– top-down (respectively, top-down with regular look-ahead), if µ(σ)q,w is linear
and nondeleting (respectively, linear) in X|w| for every k ∈ N, σ ∈ Σk, q ∈ Q,
and w ∈ Q(Xk)∗; and

– bottom-up, if for every k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗ such that
µ(σ)q,w 6= 0̃ we have w = q1(x1) · · · qk(xk) for some q1, . . . , qk ∈ Q.

A tree series transducer [2,6] (with designated states), in the sequel abbrevi-
ated to tst, is a sixtuple M = (Q,Σ,∆,A, F, µ) consisting of

– an alphabet Q of states,
– ranked alphabets Σ and ∆, also called input and output ranked alphabet,

respectively,
– a semiring A = (A,+, ·, 0, 1),
– a subset F ⊆ Q of designated states, and
– a tree representation µ over Q, Σ, ∆, and A.

Tst inherit the properties from their tree representation; e. g., a tst with a
polynomial bottom-up tree representation is called a polynomial bottom-up tst.
Additionally, we abbreviate bottom-up tst to bu-tst and top-down tst to td-tst.

We introduce the semantics only for polynomial tst because we defined pure
substitution only for polynomial tree series (in order to avoid a well-definedness
issue related to infinite sums). Let M = (Q,Σ,∆,A, F, µ) be a polynomial tst.
Then M induces a mapping ‖M‖ : TΣ −→ A〈T∆〉 as follows. For every k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ we define the mapping hµ : TΣ −→ A〈T∆〉Q compo-
nentwise for every q ∈ Q by

hµ(σ(t1, . . . , tk))q =
∑

w∈Q(Xk)
∗,

w=q1(xi1 )···qn(xin )

µk(σ)q,w←−ε (hµ(ti1)q1 , . . . , hµ(tin)qn) .

For every t ∈ TΣ the tree-to-tree-series (for short: ε-t-ts) transformation com-
puted by M is ‖M‖(t) =

∑
q∈F hµ(t)q.

By p–TOPε(A) and p–BOTε(A) we denote the class of ε-t-ts transformations
computable by polynomial td-tst and bu-tst over the semiring A, respectively.
Likewise we use the prefix l for the linearity property and the stems TOPR

ε and
GSTε for td-tst with regular look-ahead and unrestricted tst, respectively.

We compose ε-t-ts transformations as follows. Let τ1 : TΣ −→ A〈T∆〉 and
τ2 : T∆ −→ A〈TΓ 〉 then (τ1 ◦ τ2)(t) =

∑
u∈T∆(τ1(t), u) · τ2(u) for every t ∈ TΣ .

This composition is extended to classes of ε-t-ts transformations in the usual
manner. By p–TOPnε (A) and p–BOTnε (A) with n ∈ N+ we denote the n-fold
composition p–TOPε(A) ◦ · · · ◦p–TOPε(A) and p–BOTε(A) ◦ · · · ◦p–BOTε(A),
respectively.

3 Incomparability Results

We show the incomparability of p–TOPnε (A) and p–BOTnε (A) for every n ∈ N+

and positive semiring A. Together with the results of [14] this yields the Hasse
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diagram (see Figure 1) that displays the top-down, bottom-up, and alternating
hierarchy of tree series transformations. We arrive at the same Hasse diagram
as [14], but we can prove it for a distinctively larger class of semirings; namely
positive commutative semirings instead of positive, idempotent, and commuta-
tive semirings as in [14].

First we show the main property that we exploit in the sequel. Roughly speak-
ing, given a positive semiring A we present a specific homomorphism from A to
the Boolean semiring B. We later use this homomorphism to lift the incompara-
bility of the top-down and bottom-up tree transformation classes to the level of
ε-t-ts transformation classes.

Lemma 1. Let A = (A,+, ·, 0A, 1A) be a positive semiring. Let χ : A −→ {0, 1}
be such that χ(0A) = 0 and χ(a) = 1 for every a ∈ A \ {0A}. Then χ is a
homomorphism from A to B.

Let A = (A,+, ·, 0A, 1A) and B = (B,⊕,�, 0B, 1B) be two semirings and
τ : TΣ −→ A〈〈T∆〉〉, and h : A −→ B. The image of τ under h, denoted by h(τ),
is defined by (h(τ)(t), u) = h((τ(t), u)) for every t ∈ TΣ and u ∈ T∆. Clearly,
h(τ) : TΣ −→ B〈〈T∆〉〉. If h is a homomorphism, then we also call h(τ) the homo-
morphic image of τ . This notion of (homomorphic) image is lifted to classes of
ε-t-ts transformations in the usual manner.

Next we show that, given an ε-t-ts transformation τ computed by a poly-
nomial td-tst or bu-tst M over the semiring A and a homomorphism h from A
to B, there exists a polynomial td-tst or bu-tst M ′ over the semiring B such that
M ′ computes the homomorphic image of τ ; i. e., h is applied to all coefficients
in the range of the ε-t-ts transformation τ . This is also the main idea of the
construction; we simply apply the homomorphism to all coefficients in the tree
representation of M to obtain the tree representation of M ′.

Moreover, we show that computable ε-t-ts transformations are also closed
under inverse homomorphisms. For this we need the following definition. Let
h : A −→ B and τ ′ : TΣ −→ B〈〈T∆〉〉. By h−1(τ ′) we denote the set

{τ ∈ A〈〈T∆〉〉TΣ | h(τ) = τ ′} .

This is again lifted to classes as usual.

Lemma 2. Let A and B be semirings and h be a homomorphism from A to B.

h(p–TOPε(A)) ⊆ p–TOPε(B) and h(p–BOTε(A)) ⊆ p–BOTε(B)

If h is surjective, then also

h−1(p–TOPε(B)) ⊆ p–TOPε(A) and h−1(p–BOTε(B)) ⊆ p–BOTε(A)

Proof. Let C = (C,+, ·, 0C , 1C) and D = (D,⊕,�, 0D, 1D). Let f : C −→ D and
M = (Q,Σ,∆, C, F, µ) be a tst. We construct the tst f(M) = (Q,Σ,∆,D, F, µ′)
as follows. For every k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗

µ′(σ)q,w =
⊕

u∈supp(µ(σ)q,w)

f((µ(σ)q,w, u)) u .
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Clearly, f(M) is top-down and bottom-up whenever M is top-down and bottom-
up, respectively.

Let us prove the former statement. Let τ ∈ p–TOPε(A) or τ ∈ p–BOTε(A).
There exists a polynomial td-tst or bu-tst M such that ‖M‖ = τ . We claim that
‖h(M)‖ = h(‖M‖). The proof of this statement can be found below.

For the second statement, let τ ∈ p–TOPε(B) or τ ∈ p–BOTε(B). There
exists a polynomial td-tst or bu-tst M such that ‖M‖ = τ . Moreover, let
f : B −→ A be such that h(f(b)) = b for every b ∈ B. Such an f exists, because
h is surjective. The claim ‖f(M)‖ ∈ h−1(‖M‖) follows from h(‖f(M)‖) = ‖M‖,
whose proof can also be found below.

Now we prove the mentioned result. Let h be a homomorphism from A to B
with A = (A,+, ·, 0A, 1A) and B = (B,⊕,�, 0B, 1B). Let M = (Q,Σ,∆,A, F, µ)
be a tst. Then ‖h(M)‖ = h(‖M‖). Let h(M) = (Q,Σ,∆,B, F, µ′). We first prove
the auxiliary statement that (hµ′(t)q, u) = h((hµ(t)q, u)) for every q ∈ Q, t ∈ TΣ ,
and u ∈ T∆. This is proved inductively, so let t = σ(t1, . . . , tk) for some k ∈ N,
σ ∈ Σk, and t1, . . . , tk ∈ TΣ .

(hµ′(σ(t1, . . . , tk))q, u)

= (by definition of hµ′)( ⊕
w∈Q(Xk)

∗,
w=q1(xi1 )···qn(xin )

µ′(σ)q,w←−ε (hµ′(ti1)q1 , . . . , hµ′(tin)qn), u
)

= (by definition of ←−ε )( ⊕
w∈Q(Xk)

∗,
w=q1(xi1 )···qn(xin )

⊕
u′∈T∆(Xn),
u1,...,un∈T∆

(µ′(σ)q,w, u
′)�

� (hµ′(ti1)q1 , u1)� · · · � (hµ′(tin)qn , un) u′[u1, . . . , un], u
)

= (by definition of µ′ and induction hypothesis)( ⊕
w∈Q(Xk)

∗,
w=q1(xi1 )···qn(xin )

⊕
u′∈T∆(Xn),
u1,...,un∈T∆

h((µ(σ)q,w, u
′))�

� h((hµ(ti1)q1 , u1))� · · · � h((hµ(tin)qn , un)) u′[u1, . . . , un], u
)

= (by homomorphism property)⊕
w∈Q(Xk)

∗,
w=q1(xi1 )···qn(xin )

( ⊕
u′∈T∆(Xn),
u1,...,un∈T∆

h
(

(µ(σ)q,w, u
′) ·

· (hµ(ti1)q1 , u1) · . . . · (hµ(tin)qn , un)
)
u′[u1, . . . , un], u

)
= (by homomorphism property and definition of ←−ε )⊕

w∈Q(Xk)
∗,

w=q1(xi1 )···qn(xin )

h
(
µ(σ)q,w←−ε (hµ(ti1)q1 , . . . , hµ(tin)qn), u

)
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= (by homomorphism property)

h
( ∑

w∈Q(Xk)
∗,

w=q1(xi1 )···qn(xin )

µ(σ)q,w←−ε (hµ(ti1)q1 , . . . , hµ(tin)qn), u
)

= (by definition of hµ)

h((hµ(σ(t1, . . . , tk))q, u))

With this statement the proof is easy. We observe that for every t ∈ TΣ and
u ∈ T∆

(‖h(M)‖(t), u) =
(⊕
q∈F

hµ′(t)q, u
)

=
⊕
q∈F

(hµ′(t)q, u)

= (by the auxiliary statement)⊕
q∈F

h((hµ(t)q, u)) = h
(∑
q∈F

(hµ(t)q, u)
)

= h
((∑

q∈F
hµ(t)q, u

))
= h((‖M‖(t), u)) .

This lemma admits an important corollary, which will form the basis of our
new lifting result. Roughly, the corollary states that every ε-t-ts transformation
computed by a polynomial td-tst or bu-tst over B can also be computed as
the homomorphic image (under χ) of the ε-t-ts transformation computed by a
polynomial td-tst or bu-tst over the positive semiring A. The statement also
holds vice versa.

Corollary 1. Let A be a positive semiring.

χ(p–TOPε(A)) = p–TOPε(B) and χ(p–BOTε(A)) = p–BOTε(B)

Proof. We have seen in Lemma 1 that χ is a homomorphism from A to B.
Consequently, the statement holds by Lemma 2 because χ is surjective.

Next we show that homomorphisms are compatible with the composition
introduced for ε-t-ts transformations.

Lemma 3. Let h be a homomorphism from the semiring A to the semiring B.
Moreover, let τ1 : TΣ −→ A〈T∆〉 and τ2 : T∆ −→ A〈TΓ 〉.

h(τ1 ◦ τ2) = h(τ1) ◦ h(τ2)

Proof. Let t ∈ TΣ and u′ ∈ TΓ be an input and output tree, respectively. Further,
let A = (A,+, ·, 0A, 1A) and B = (B,⊕,�, 0B, 1B).

h
(
((τ1 ◦ τ2)(t), u′)

)
= h

((∑
u∈T∆

(τ1(t), u) · τ2(u), u′
))

=
⊕
u∈T∆

h
(
((τ1(t), u) · τ2(u), u′)

)
=
⊕
u∈T∆

h((τ1(t), u))� h((τ2(u), u′))

=
⊕
u∈T∆

(h(τ1)(t), u)� (h(τ2)(u), u′) =
(
(h(τ1) ◦ h(τ2))(t), u′

)
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Now we ready to state our main theorem, which states the incomparability
of p–TOPnε (A) and p–BOTnε (A) in all positive semirings.

Theorem 1. Let A be a positive semiring and n ∈ N+.

p–TOPnε (A) 6⊆ p–BOTnε (A) p–BOTnε (A) 6⊆ p–TOPnε (A)

Proof. We prove the statement by contradiction. To this end, suppose that
p–TOPnε (A) ⊆ p–BOTnε (A). Then

χ(p–TOPnε (A))

= χ(p–TOPε(A)) ◦ · · · ◦ χ(p–TOPε(A)) by Lemma 3

= p–TOPε(B) ◦ · · · ◦ p–TOPε(B) by Corollary 1

= p–TOPnε (B) by definition

Analogously we obtain χ(p–BOTnε (A)) = p–BOTnε (B). It follows that we also
have p–TOPnε (B) ⊆ p–BOTnε (B). This, however, contradicts the famous tree
transducer hierarchy [18] due to [2, Corollaries 4.7 and 4.14]. The second state-
ment is proved analogously.

4 Hierarchy Results

In this section we state the hierarchy result that can be obtained with the new
incomparability result. First we recall the inclusion results of [14].

. . . . . .

p–BOTn+1
ε (A) p–TOPn+1

ε (A)

p–BOTn
ε (A) p–TOPn

ε (A)

. . . . . .

p–BOT2
ε(A) p–TOP2

ε(A)

p–BOT1
ε(A) p–TOP1

ε(A)

Fig. 1. Hasse diagram of the hierarchies.
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Proposition 1 (Theorems 5.1 and 5.7 of [14]). Let A be commutative and
n ∈ N+.

p–BOTnε (A) ⊆ p–TOPn+1
ε (A) p–TOPnε (A) ⊆ p–BOTn+1

ε (A)

With these inclusions and the incomparability results of Theorem 1 we obtain
the following hierarchy result for positive and commutative semirings. Important
semirings like

– the semiring of nonnegative integers N = (N,+, ·, 0, 1),
– the least common multiple semiring Lcm = (N, lcm, ·, 0, 1), and
– the matrix semiring Matn(N+) = (Nn×n+ ∪ {0, 1},+, ·, 0, 1) over N+ (where 0

is the n× n zero matrix and 1 is the n× n unit matrix)

are all positive, but not idempotent. However, the matrix semiring is not com-
mutative.

p–GSTε(A)

p–TOPR
ε (A)

p–TOPε(A)

p–BOTε(A)

lp–BOTε(A)

= lp–TOPR
ε (A)

lp–TOPε(A)

Fig. 2. Hasse diagram of general tst.

Theorem 2. Let A be a positive and commutative semiring. Figure 1 is the
Hasse diagram for the depicted classes of transformations (ordered by inclu-
sion).

Proof. The inclusions are trivial or follow from Proposition 1. Incomparability
is shown in Theorem 1.

Similarly, we can use the approach also for other incomparability results. For
example, in [19] a diagram of inclusions is presented (for commutative semirings,
cf. Section 6 of [20]), however the properness of the inclusions remained open.
Using our approach we can now prove this diagram to be a Hasse diagram.
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Theorem 3. Let A be a positive and commutative semiring. Figure 2 is the
Hasse diagram for the depicted classes of transformations (ordered by inclu-
sion).

Proof. Note that the inclusions are proved in [19]. It remains to prove strictness
and incomparability.

First we note that the construction of Lemma 2 preserves all introduced
properties (thus also linearity and top-down with regular look-ahead). Thus we
obtain the following statements.

χ(p–TOPR
ε (A)) = p–TOPR

ε (B) χ(p–GSTε(A)) = p–GSTε(B)

χ(lp–TOPR
ε (A)) = lp–TOPR

ε (B) χ(lp–GSTε(A)) = lp–GSTε(B)

χ(lp–TOPε(A)) = lp–TOPε(B) χ(lp–BOTε(A)) = lp–BOTε(B)

In Section 5 of [20] the diagram is proved to be Hasse diagram for the Boolean
semiring and we lift the incomparability results of this diagram using the ap-
proach used in the proof of Theorem 2. This proves the correctness of the diagram
presented in Figure 2.
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2. Engelfriet, J., Fülöp, Z., Vogler, H.: Bottom-up and top-down tree series transfor-
mations. J. Autom. Lang. Combin. 7 (2002) 11–70
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