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Abstract. Tree series transformations computed by polynomial top-
down and bottom-up tree series transducers are considered. The hierar-
chy of tree series transformations obtained in [Fiilop, Gazdag, Vogler: Hi-
erarchies of Tree Series Transformations. Theoret. Comput. Sci. 314(3),
p. 387-429, 2004] for commutative izz-semirings (izz abbreviates idempo-
tent, zero-sum and zero-divisor free) is generalized to arbitrary positive
(4. e., zero-sum and zero-divisor free) commutative semirings. The latter
class of semirings includes prominent examples such as the natural num-
bers semiring and the least common multiple semiring, which are not
members of the former class.

1 Introduction

Tree series transducers were introduced in [II2]3] as a generalization of top-down
and bottom-up tree transducers. With the advent of tree series [ABIGI7IR], espe-
cially recognizable tree series [910], in formal language theory also transducing
devices capable of (finitely) representing transformations on tree series became
interesting. For example, in [11] the power of (top-down) tree series transducers
for natural language processing was recognized.

In the seminal paper [I2] the hierarchy of top-down tree transformation
classes was proved to be proper. This result lead to the hierarchy of top-down and
bottom-up tree transformation classes (as, e. g., displayed in [13]). This hierarchy
was generalized to classes of top-down and bottom-up tree series transformations
over izz-semirings (izz abbreviates idempotent, zero-divisor and zero-sum free)
n [14]. Let us explain this generalization in some more detail.

By p—TOP.(A) and p-BOT.(A) we denote the classes of tree-to-tree-series
transformations computable by polynomial top-down and bottom-up tree series
transducers [2] over the semiring A [I5II6], respectively. Such a tree-to-tree-
series transformation is a mapping 7: Ty, — A{(Ta)) for some ranked alphabets
Y and A. Given ranked alphabets X, A, and I" and 7: Ty — A{TA)) and
To: Ta — A{1Ir)), the composition of 7 with 75 is denoted by 71 o 75 and is
a mapping 7: Ty — A{Tr)) (an output tree u produced by 71 is subjected
to 7o, and the result is multiplied by the weight of u in the series produced
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by 71). This composition is lifted to classes of transformations, and we write
p-TOPZ(A) and p-BOTZ(A) for the n-fold composition of p-TOP.(A) and
p—BOT.(A), respectively.

In [I4] it is first proved that

p-TOPZ(A) € p-BOTI(A) and  p-BOTZ(A) € p-TOPZ™(4)

for every commutative semiring and n > 1 (see Theorems 5.1 and 5.7 in [I4],
respectively). Then in [I4] Theorem 6.20] it is proved that

p-TOP"(A) Z p-BOT"(A) and p-BOT"(A) Z p-TOP"(A)

for every izz-semiring and n > 1. Thus the hierarchy that is obtained in [14] is
proved for commutative izz-semirings. We generalize the incomparability result
to positive (i.e., zero-sum and zero-divisor free) semirings and thereby obtain
the hierarchy for all positive and commutative semirings (see Figure [I| for the
HassE diagram).

Our approach used to prove the incomparability is (in essence) similar to
the one presented in [14]. However, we carefully avoid the introduction of idem-
potency by a simpler proof method. We furthermore claim that our method of
proof is more illustrative than the one of [14].

Apart from this introduction, the paper has 3 sections. Section [2] introduces
the essential notation, Section [3| generalizes the mentioned incomparability re-
sult, and Section |4] presents the obtained hierarchy (see Figure [1)).

2 Preliminaries

We use N to represent the nonnegative integers and N, = N\ {0}. In the sequel,
let k,n € N and [k] be an abbreviation for {i e N | 1 <i < k}. A set X that
is nonempty and finite is also called an alphabet, and the elements thereof are
called symbols. As usual, X* denotes the set of all finite sequences of symbols
of X (also called X-words). Given w € X*, the length of w is denoted by |w|.

A ranked alphabet is an alphabet X' with a mapping rky: X~ — N, which
associates to each symbol a rank. We use X} to represent the set of symbols
of X that have rank k. Moreover, we use the set X = {x; | i € N, } of (formal)
variables and Xj, = {x; | i € [k]}. Given a ranked alphabet X and V' C X, the
set of X-trees indexed by V, denoted by Tx(V), is inductively defined to be the
smallest set T' such that (i) V' C T and (ii) for every k € N, 0 € Xy, and
t1,...,ty € T also o(ty,...,t,) € T. Since we generally assume that X' NX = (),
we write av instead of () whenever a € X. Moreover, we also write Ty to denote
T (0).

Given t1,...,t, € Tx(X), the expression t[ti,...,t,] denotes the result of
substituting in t every x; by t; for every i € [n]. Let V C X. We say that
t € Tx(X) is linear and nondeleting in V, if every & € V occurs at most once
and at least once in t, respectively.

A semiring is an algebraic structure A4 = (A, +,-,0,1) consisting of a com-
mutative monoid (A, +,0) and a monoid (A4, -, 1) such that - distributes over +
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and 0 is absorbing with respect to -. The semiring is called commutative, if - is
commutative. As usual we use ), ;a; for sums of families (a;)icr of a; € A
where for only finitely many ¢ € I we have a; # 0. Let A = (A, +,-,04,14) and
B = (B,®,0,0s,15) be semirings and h: A — B. The mapping h is called
homomorphism from A to B, if

- h(OA) = 0p and h(lA) =1g, and
— h(a+b) = h(a) ® h(b) and h(a-b) = h(a) © h(b) for every a,b € A.

A semiring A = (A, +,-,0,1) is called idempotent, if 1 +1 = 1. Moreover, we
say that a semiring A = (A, +,-,0,1) is zero-sum free, if a + b = 0 implies that
a=0="0for every a,b € A. Moreover, A is zero-divisor free, if a -b = 0 implies
that 0 € {a,b} for every a,b € A. A zero-sum and zero-divisor free semiring is
also called positive. The Boolean semiring B = ({0,1},V, A, 0,1) with the usual
disjunction V and conjunction A is an example of a positive semiring.

Let S be aset and A = (A, +,-,0,1) be asemiring. A (formal) power series i
is a mapping ¢: S — A. Given s € S, we denote 1 (s) also by (¢, s) and write
the series as ) . ¢(¢,s) s. The support of 1) is supp(v)) = {s € S | (¢, s) # 0}.
Power series with finite support are called polynomials. We denote the set of
all power series by A{S) and the set of polynomials by .A(S). The polynomial
with empty support is denoted by 0. Power series ¢, € A(S)) are added
componentwise; i.e., (¢ + ', s) = (¥,s) + (¢, s) for every s € S, and we
multiply ¢ with a coefficient a € A componentwise; i. e., (a-1,s) = a- (¢, s) for
every s € S.

In this paper, we only consider power series in which the set S is a set of trees.
Such power series are also called tree series. Let A be a ranked alphabet. A tree
series ¥ € A(Ta(X))) is said to be linear and nondeleting in V' C X, if every
t € supp(®) is linear and nondeleting in V', respectively. Let ¢ € A(Ta(X))
and ¥1,...,9%, € A(TA(X)). The pure IO tree series substitution (for short:
pure substitution) (of v1,...,%, into ¥) [I72], denoted by 1) <—(¢1,...,vy),
is defined by

1/“7(1/117,1%): Z (’ll)vt)'('l/]htl)'”"(wnvtn)t[tla"'atn} .

teTA(X),
t1,..,tn €TA(X)

Let @ be an alphabet. We write Q(V) for {q(v) | ¢ € Q,v € V}. We use
the notions of linearity and nondeletion in V' accordingly also for w € Q(X)*.
Let A= (A,4,-,0,1) be a semiring and X and A be ranked alphabets. A tree
representation p (over @, X, A, and A) [2] is a family (u(0))sex of matrices
p(o) € AYTA(X))O*CXr)" where k = rky(0) such that for every ¢ € Q and
w € Q(X;)* it holds that u(0)g.w € A(Ta(X,)) with n = |w|, and p(c)gw # 0
for only finitely many (g, w) € Q x Q(Xg)*. A tree representation p is said to be

— polynomial, if p(0)qw is polynomial for every k € N, 0 € Xy, ¢ € Q, and
w € Q(Xg)™;

— linear, if p(0)qw is linear in X|w) and w is linear in Xj, for every k € N,
o€ X, q€ @, and w € Q(Xy)* such that u(o)qw # 0;
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— top-down (respectively, top-down with regular look-ahead), if j1(0) 4.4, is linear
and nondeleting (respectively, linear) in X|,,| for every k € N, 0 € X, ¢ € Q,
and w € Q(X)*; and

— bottom-up, if for every k € N, o0 € X, ¢ € Q, and w € Q(Xy)* such that
(o) g.w # 0 we have w = ¢1(x1) - - - g (x) for some q1,...,qx € Q.

A tree series transducer [2J6] (with designated states), in the sequel abbrevi-
ated to tst, is a sixtuple M = (Q, X, A, A, F, 1) consisting of

— an alphabet @ of states,

— ranked alphabets X and A, also called input and output ranked alphabet,
respectively,

— a semiring A = (4, +,-,0,1),

— a subset F' C @ of designated states, and

— a tree representation p over @, X, A, and A.

Tst inherit the properties from their tree representation; e. g., a tst with a
polynomial bottom-up tree representation is called a polynomial bottom-up tst.
Additionally, we abbreviate bottom-up tst to bu-tst and top-down tst to td-tst.

We introduce the semantics only for polynomial tst because we defined pure
substitution only for polynomial tree series (in order to avoid a well-definedness
issue related to infinite sums). Let M = (Q, X, A, A, F, 1) be a polynomial tst.
Then M induces a mapping |M||: Tz — A(Ta) as follows. For every k € N,
0 € Xy, and ty,...,t; € Tx, we define the mapping h,: Ty, — A(TA)® compo-
nentwise for every ¢ € QQ by

hu(a<t17"'7tk))q = Z :uk(a)q,w T(h’ﬂ(til)ql7'"7hﬂ(tin)qn) :
wEQ(Xk)™,
w=q1(Xiy ) qn (Xiy, )

For every t € T, the tree-to-tree-series (for short: e-t-ts) transformation com-
puted by M is [ M) = ¥, by (t)s

By p-TOP.(A) and p-BOT.(A) we denote the class of e-t-ts transformations
computable by polynomial td-tst and bu-tst over the semiring A, respectively.
Likewise we use the prefix 1 for the linearity property and the stems TOP? and
GST, for td-tst with regular look-ahead and unrestricted tst, respectively.

We compose e-t-ts transformations as follows. Let 7: Ty, — A(Tx) and
20 Ta — A(Tr) then (11 0 72)(t) = X, eq, (T1(t),u) - T2(u) for every t € T.
This composition is extended to classes of e-t-ts transformations in the usual
manner. By p-TOPZ(A) and p-BOT, (A) with n € N, we denote the n-fold
composition p-TOP.(A)o---op-TOP.(A) and p-BOT.(A)o---op-BOT.(A),
respectively.

3 Incomparability Results

We show the incomparability of p~TOPZ(A) and p~BOTZ (A) for every n € N,
and positive semiring A. Together with the results of [14] this yields the HASSE
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diagram (see Figure [1]) that displays the top-down, bottom-up, and alternating
hierarchy of tree series transformations. We arrive at the same HASSE diagram

s [14], but we can prove it for a distinctively larger class of semirings; namely
positive commutative semirings instead of positive, idempotent, and commuta-
tive semirings as in [14].

First we show the main property that we exploit in the sequel. Roughly speak-
ing, given a positive semiring .4 we present a specific homomorphism from A to
the Boolean semiring B. We later use this homomorphism to lift the incompara-
bility of the top-down and bottom-up tree transformation classes to the level of
e-t-ts transformation classes.

Lemma 1. Let A= (A, +,-,04,14) be a positive semiring. Let x: A — {0,1}
be such that x(04) = 0 and x(a) = 1 for every a € A\ {04}. Then x is a
homomorphism from A to B.

Let A = (A, +,,04,14) and B = (B, ®,®,05,15) be two semirings and
7: Ty — A{TA)), and h: A — B. The image of 7 under h, denoted by h(7),
is defined by (h(7)(t),u) = h((7(t),u)) for every t € Tx, and u € Ta. Clearly,
h(7): Ty — B{TA)). If h is a homomorphism, then we also call A(7) the homo-
morphic image of 7. This notion of (homomorphic) image is lifted to classes of
e-t-ts transformations in the usual manner.

Next we show that, given an e-t-ts transformation 7 computed by a poly-
nomial td-tst or bu-tst M over the semiring A and a homomorphism A from A
to B, there exists a polynomial td-tst or bu-tst M’ over the semiring B such that
M’ computes the homomorphic image of ; i. e., h is applied to all coefficients
in the range of the e-t-ts transformation 7. This is also the main idea of the
construction; we simply apply the homomorphism to all coeflicients in the tree
representation of M to obtain the tree representation of M’.

Moreover, we show that computable e-t-ts transformations are also closed
under inverse homomorphisms. For this we need the following definition. Let
h: A— B and 7': T, — B(T4)). By h=!(7') we denote the set

{r € A(Ta)™ | h(r) =1} .
This is again lifted to classes as usual.
Lemma 2. Let A and B be semirings and h be a homomorphism from A to B.
h(p—TOP.(A)) C p-TOP.(B) and h(p—BOT.(A)) C p-BOT.(B)
If h is surjective, then also
h™(p-TOP.(B)) C p-TOP.(A) and h~'(p-BOT.(B)) C p-BOT.(A)

Proof. Let C = (C,+,-,0¢,1¢) and D = (D,®,®,0p,1p). Let f: C — D and
M =(Q,X,A,C, F,u) be a tst. We construct the tst f(M) = (Q, X, A, D, F, u')
as follows. For every k € N, 0 € X}, ¢ € @, and w € Q(Xy)*

W (0)gw = D wo)gww)u .

u€supp(1(0)q,w)
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Clearly, f(M) is top-down and bottom-up whenever M is top-down and bottom-
up, respectively.

Let us prove the former statement. Let 7 € p-TOP.(A) or 7 € p-BOT.(A).
There exists a polynomial td-tst or bu-tst M such that | M|| = 7. We claim that
[Ih(M)|| = h(||M]|). The proof of this statement can be found below.

For the second statement, let 7 € p-TOP.(B) or 7 € p-BOT.(B). There
exists a polynomial td-tst or bu-tst M such that ||[M| = 7. Moreover, let
f: B — A be such that h(f(b)) = b for every b € B. Such an [ exists, because
h is surjective. The claim || f(M)| € h=1(||M]||) follows from h(||f(M)]]) = || M]],
whose proof can also be found below.

Now we prove the mentioned result. Let A be a homomorphism from A to B
with A= (A4,+,-,04,14) and B = (B, ®,®,05,15). Let M = (Q, X, A, A, F, 11)
be a tst. Then ||h(M)| = h(||M]]). Let h(M) = (Q, X, A, B, F, ). We first prove
the auxiliary statement that (hys (¢)q, ) = h((hu(t)q, u)) for every g € Q, t € Tx;,
and u € Ty. This is proved inductively, so let ¢t = o(t1,...,t;) for some k € N,
o € Xy, and tq,...,t; € Tyx.

(hy (o(t1,. .. tk))g, )
= (by definition of k)
B O U ti)ars b (ti)a,) )

weQ(Xk)",
w=q1 (Xiq ) qn (Xiy, )

= (by definition of «—)

( &P B Wegw )

weQ(Xk)", u'€TA(Xn),
w=q1(Xiy ) qn(Xip, ) UL, un €TA

O (b (tiy )gurur) © -+ © (hyw (ti,) ) g, tn) W'fun, - . ,Un],“>
= (by definition of i and induction hypothesis)

( @ @ h((ﬂ(a)q,w»u/)) O]

’wEQ(Xk)*, u/eTA(X'rL)7
w=q1(Xiq ) qn (Xiy, ) U150 un €TA

O M((hu(tin)gu>u1)) © =+ © A((hu(tin )gpr un)) W', - - tnl, “)

= (by homomorphism property)

B (D ro)w)

wEQR(Xk)", u' €Ta(Xy),
w=q1(Xiy ) *qn(Xip, ) UL, un€TA

(Bt )gysu) - (hﬂ(tin)qn,un)) W[, - . . ,un],u)

(by homomorphism property and definition of <+—)

@ h(,u(o')q,w T(hu(th)qu R hu(tin)qn)v “)
weQ(Xx)",
w=q1 (Xil)"‘Qn(Xin)
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= (by homomorphism property)

B > e (alti)gns s (i, )a) )
weQ(Xk)",
w=q1(Xiy ) "qn (Xiy, )

= (by definition of k)
h((hpu(o(trs -5 tk))g, w))

With this statement the proof is easy. We observe that for every ¢t € Ty and
u € Ty

IRODI0),0) = (D (D)grw) = e (0)g,w)
qeEF qeF
= (by the auxiliary statement)

P (g ) = h(D- (hu(®qw) = k(D hult)sru))

qEF gqeF qeF
= h(([[M][(t), u))

This lemma admits an important corollary, which will form the basis of our
new lifting result. Roughly, the corollary states that every e-t-ts transformation
computed by a polynomial td-tst or bu-tst over B can also be computed as
the homomorphic image (under x) of the e-t-ts transformation computed by a
polynomial td-tst or bu-tst over the positive semiring A. The statement also
holds vice versa.

Corollary 1. Let A be a positive semiring.
X(p-TOP.(A)) = p-TOP.(B) and x(p-BOT:(A)) =p-BOT(B)

Proof. We have seen in Lemma [l| that x is a homomorphism from A to B.
Consequently, the statement holds by Lemma [2] because  is surjective.

Next we show that homomorphisms are compatible with the composition
introduced for e-t-ts transformations.

Lemma 3. Let h be a homomorphism from the semiring A to the semiring B.
Moreover, let 71: T, — A(TA) and 7o: To — A(I}).

h(mi 072) = h(71) o h(12)

Proof. Lett € Tx; and v’ € T be an input and output tree, respectively. Further,
let A= (A,+,-,04,14) and B = (B,®,®,03,15).

h(((r 0 m)(t),u')) = h((z (m1.(t), w) -Tg(u),u'))

uw€eTh

= P r((n@),w) - ma(u),u)) = @ h(1i(t),w) © h((72(u), )

u€Th u€Th

= D (h(r)(t),u) © (h(r2)(u),w') = ((h(n) o h(r2))(1), )

u€Tp



222 A. Maletti

Now we ready to state our main theorem, which states the incomparability
of p-TOPZ(A) and p-BOT? (A) in all positive semirings.

Theorem 1. Let A be a positive semiring and n € N, .
p-TOPZ(A) £ p-BOTZ(A)  p-BOTZ(A) £ p-TOPZ(A)

Proof. We prove the statement by contradiction. To this end, suppose that
p—-TOPZ(A) C p-BOTZ(A). Then

x(p-TOPZ(A))

= x(p~TOP.(A))o---ox(p-TOP.(A)) by Lemma
=p-TOP.(B) o---op-TOP.(B) by Corollary
= p-TOPZ(B) by definition

Analogously we obtain x(p—BOTZ(A)) = p-BOTZ(B). It follows that we also
have p—TOPZ(B) C p-BOT,(B). This, however, contradicts the famous tree
transducer hierarchy [I8] due to [2, Corollaries 4.7 and 4.14]. The second state-
ment is proved analogously.

4 Hierarchy Results

In this section we state the hierarchy result that can be obtained with the new
incomparability result. First we recall the inclusion results of [14].

p-BOTZ(A) p-TOPZ(A)

pBOT!(A) p TOP!(A)

Fig. 1. HASSE diagram of the hierarchies.
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Proposition 1 (Theorems 5.1 and 5.7 of [14]). Let A be commutative and
neN,.

p-BOTZ(A) C p-TOP!™'(4)  p-TOPZ(A) C p-BOTZT!(A)

With these inclusions and the incomparability results of Theorem [T we obtain
the following hierarchy result for positive and commutative semirings. Important
semirings like

— the semiring of nonnegative integers N = (N, +,-,0, 1),

— the least common multiple semiring Lem = (N, lem, -, 0,1), and

— the matrix semiring Mat, (N, ) = (N?*" U {0,1},+,-,0,1) over N, (where 0
is the n X n zero matrix and 1 is the n X n unit matrix)

are all positive, but not idempotent. However, the matrix semiring is not com-
mutative.

p-GST,(A)

/

p-TOPE(A)

/ p-BOT.(4)
p-TOP.(A) /

Ip-BOT,(A)

/ = Ip-TOPE(A)

Ip-TOP_(A)

Fig. 2. HASSE diagram of general tst.

Theorem 2. Let A be a positive and commutative semiring. Figure [1] is the
HASSE diagram for the depicted classes of transformations (ordered by inclu-
sion).

Proof. The inclusions are trivial or follow from Proposition [I} Incomparability
is shown in Theorem [

Similarly, we can use the approach also for other incomparability results. For
example, in [19] a diagram of inclusions is presented (for commutative semirings,
¢f. Section 6 of [20]), however the properness of the inclusions remained open.
Using our approach we can now prove this diagram to be a HASSE diagram.
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Theorem 3. Let A be a positive and commutative semiring. Figure [ is the
HASSE diagram for the depicted classes of transformations (ordered by inclu-
sion).

Proof. Note that the inclusions are proved in [I9]. It remains to prove strictness
and incomparability.

First we note that the construction of Lemma [2| preserves all introduced
properties (thus also linearity and top-down with regular look-ahead). Thus we
obtain the following statements.

x(p-TOPZ(A)) = p-TOP (B) x(p-GST:(A)) = p-GST.(B)
X(Ip-TOPZ(A)) =Ip-TOPE(B)  x(Ip-GST.(A)) = Ip-GST.(B)
X(Ip-TOP,(A)) = Ip-TOP.(B) x(Ip-BOT.(A)) = Ip-BOT.(B)

In Section 5 of [20] the diagram is proved to be HASSE diagram for the Boolean
semiring and we lift the incomparability results of this diagram using the ap-
proach used in the proof of Theorem[2] This proves the correctness of the diagram
presented in Figure
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