
Compositions of Tree Series
Transformations

A. Maletti

Institute of Theoretical Computer Science

TUD-FI05-05 — October 2005

TECHNISCHE UNIVERSITÄT
DRESDEN

Fakultät Informatik

Technische Berichte
Technical Reports

ISSN 1430-211X

Technische Universität Dresden
Fakultät Informatik
D-01062 Dresden
Germany

URL: http://www.inf.tu-dresden.de/

Compositions of Tree Series Transformations∗

Andreas Maletti†

Technische Universität Dresden
Fakultät Informatik

D–01062 Dresden, Germany

e-mail: maletti@tcs.inf.tu-dresden.de

Abstract

Tree series transformations computed by bottom-up and top-down tree series transducers
are called bottom-up and top-down tree series transformations, respectively. (Functional)
compositions of such transformations are investigated. It turns out that the class of bottom-
up tree series transformations over a commutative and complete semiring is closed under
left-composition with linear bottom-up tree series transformations and right-composition with
boolean deterministic bottom-up tree series transformations.

Moreover, it is shown that the class of top-down tree series transformations over a com-
mutative and complete semiring is closed under right-composition with linear, nondeleting
top-down tree series transformations. Finally, the composition of a boolean, deterministic,
total top-down tree series transformation with a linear top-down tree series transformation is
shown to be a top-down tree series transformation.

1 Introduction

Tree series transducers [21, 10, 15] were introduced as the transducing devices corresponding to
weighted tree automata [2, 19, 4]. So far, the latter are applied in code selection and tree pattern
matching [13, 3]. Weighted transducers on strings are applied in image manipulation [see, e. g., 8],
where the images are coded as weighted string automata, and speech processing [see, e. g., 24]. Since
natural language processing features many transformations on parse trees, which come equipped
with a degree of certainty, it seems natural to consider finite-state devices capable of transforming
weighted trees. For natural language processing, the potential of tree series transducers over the
semiring of the positive real numbers was recently discovered [17].

Let us explain the scenario of natural language processing in some more detail. A tree bank is a
collection of parse trees (of natural language sentences) each annotated with a weight (usually the
relative frequency). When translating a natural language sentence from one language into another,
we first have to parse the original sentence in order to obtain a parse tree. Since natural language
is usually ambiguous we obtain a collection of parse trees each annotated with a probability. The
probability is derived from the evidence found in the tree bank. Now the transformation stage
translates the annotated parse trees into parse trees of the output language. Again there may be
more than one possible translation for one parse tree, so that for each input parse tree we obtain a
collection of annotated output parse trees. A tree bank containing parse trees of sentences in the
output languages delivers the coefficients required to compute the probability.

Such collections of annotated parse trees are formal tree series; i. e., mappings from a set of
trees into a semiring. The translation stage can then be seen as a transformation which transforms
tree series into tree series. Tree series transducers are finite-state devices computing such tree-
series-to-tree-series transformations.

∗This is an extended and revised version of: Andreas Maletti, “Compositions of bottom-up tree series transfor-
mations”, Proc. 11th Int. Conf. Automata and Formal Languages, University of Szeged, 187–199, 2005

†Financially supported by the German Research Foundation (DFG, GK 334/3).

The complexity of the transformations involved in the translation stage is usually high (au-
tomata requiring several million states), so that modularity is of utmost importance. One designs
small transducers that only deal with one phenomenon and then composes the transformations
(i. e., uses the output of the first transformation as the input of a second transformation) to obtain
the final result. However, this approach is usually inefficient because many intermediate results are
computed. By composing the transducers we can avoid these intermediate results. Moreover, the
analysis of a single transducer is usually simpler than the analysis of a series of transducers. For
example, an important problem in natural language processing is finding the most likely path (i. e.,
the path that generates the highest probability) outputting a given parse tree. This problem is
very difficult for compositions of transformations, so that composing the transducers that compute
the transformations helps to reduce the complexity.

Since tree series transducers generalize tree transducers [26, 25, 9] by adding a cost component,
we obtain top-down tree series transducers [21, 10, 15], where the input tree is processed from
the root towards the leaves, and bottom-up tree series transducers [10, 15], where the input is
processed from the leaves towards the root. In this paper, we deal with compositions of the
transformations computed by both types of tree series transducers. Moreover, four notions of
substitution on tree series are known. These are pure IO-substitution [6, 10], o-IO-substitution [15],
[IO]-substitution [7], and OI-substitution [5, 21]. Here we deal with pure IO-substitution, since it
seems to be the most appropriate choice for bottom-up tree series transducers (for top-down tree
series transducers the choice of substitution is irrelevant).

Roughly speaking, a (bottom-up or top-down) tree series transducer is a (bottom-up or top-
down) tree transducer [26, 25] in which the transitions carry a weight; a weight is an element of
some semiring [18, 16]. The rewrite semantics works as follows. Along a successful computation
on some input tree, the weights of the involved transitions are combined by means of the semiring
multiplication; if there is more than one successful computation for some pair of input and output
trees, then the weights of these computations are combined by means of the semiring addition.

In the unweighted case, bottom-up tree transformations are closed under left-composition with
linear bottom-up tree transformations [9, Theorem 4.5] and right-composition with deterministic
bottom-up tree transformations [9, Theorem 4.6] (see also [1, Theorem 6]). In this paper we try
to extend these results to bottom-up tree series transformations. The first result was already
generalized to bottom-up tree series transformations [21, 10]. Essentially the authors obtain that,
for arbitrary commutative and complete semirings [18], bottom-up tree series transformations are
closed under left-composition with nondeleting, linear bottom-up tree series transformations. We
generalize this further by showing that the mentioned class of bottom-up tree series transforma-
tions is even closed under left-composition with linear bottom-up tree series transformations. The
construction required to show this statement is mostly standard (i. e., the transitions of the linear
transducer are translated with the help of the second transducer) with one notable exception.

For commutative and complete semirings, the class of bottom-up tree series transformations
is closed under right-composition with boolean homomorphism bottom-up tree series transforma-
tions [10, Corollary 5.5]. Using an adaptation of the standard construction, we also show that
this class of bottom-up tree series transformations is actually closed under right-composition with
boolean, deterministic bottom-up tree series transformations.

In the top-down case, we have that the class of top-down tree transformations is closed under
right-composition with nondeleting, linear top-down tree transformations [1, Theorem 1]. More-
over, it is closed under left-composition with deterministic, total tree transformations [26, 25]
(see also [1, Theorem 1]). These results were generalized for deterministic tree series transducers
by [10, Theorem 5.18]. They showed that, for every commutative and complete semiring, the class
of deterministic top-down tree series transformations is closed under right-composition with non-
deleting, linear, deterministic tree series transformations and under left-composition with boolean,
deterministic, total tree series transformations. We present a generalization of the former state-
ment and a statement similar to the latter. More precisely, we show that the class of top-down
tree series transformations is closed under right-composition with nondeleting, linear top-down
tree series transformations. Secondly, we show that the composition of a boolean, deterministic,

2

total top-down tree series transformation with a linear top-down tree series transformation is a
top-down tree series transformation.

Together with this introduction the paper has 5 sections. Section 2 recalls general notions and
notations. In particular, the definition of tree series transducers is presented. In Section 3 pure
substitution is investigated with respect to basic properties such as distributivity, linearity, and
associativity. Section 4 presents the composition results for bottom-up tree series transducers and
Section 5 deals with compositions of top-down tree series transducers.

2 Preliminaries

We use N to represent the set of nonnegative integers {0, 1, 2, . . . }, and we also use N+ = N\{0}. In
the sequel, let k, n ∈ N. We abbreviate { i ∈ N | 1 6 i 6 k } simply by [k]. Given sets A and I, we
write AI for the set of all mappings f : I −→ A. Occasionally, we use the family notation (f(i))i∈I
for f , and moreover, if I = [k], then we generally write (f(1), . . . , f(k)) or just f(1) · · · f(k). A
set Σ which is nonempty and finite is also called alphabet, and the elements thereof are called
symbols. We use Σ∗ =

⋃
n∈N Σn for the set of all words (over Σ). Given a word w ∈ Σ∗, we write

|w| for the unique n ∈ N, also called length of w, such that w ∈ Σn.
Let A be a set. A partition of A is a family (Ai)i∈I of Ai ⊆ A for some index set I such that:

(i)
⋃
i∈I Ai = A and (ii) for every i, j ∈ I with i 6= j we have Ai ∩ Aj = ∅. (Note that we do not

require that Ai 6= ∅ for every i ∈ I.)

2.1 Trees

A ranked alphabet is an alphabet Σ together with a mapping rkΣ : Σ −→ N associating to
each symbol its rank. We use the denotation Σk to represent the set of symbols (of Σ) having
rank k; i. e., Σk = {σ ∈ Σ | rkΣ(σ) = k }. Furthermore, we use the sets X = { xi | i ∈ N+ }
and Z = { zi | i ∈ N+ } of (formal) variables and the finite subsets Xk = { xi | i ∈ [k] } and
Zk = { zi | i ∈ [k] }. Given a ranked alphabet Σ and V ⊆ X ∪ Z, the set of Σ-trees indexed by V ,
denoted by TΣ(V), is inductively defined to be the smallest set T such that (i) V ⊆ T and (ii) for
every k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . Since we generally assume that
Σ∩ (X∪Z) = ∅, we write α instead of α() whenever α ∈ Σ0. Moreover, we also write TΣ to denote
TΣ(∅).

We use variables of X to represent input trees and variables of Z to represent output trees. In
particular, we never mix variables of X and Z; i. e., any tree t ∈ TΣ(V) that we consider is either in
TΣ(X) or TΣ(Z). So let (i) V = X and v = x or (ii) V = Z and v = z. For every t ∈ TΣ(V), we denote
by |t|i the number of occurrences of vi in t, and in addition, we use var(t) = { i ∈ N+ | |t|i > 1 }.
Moreover, for every finite I ⊆ N+ and family (ti)i∈I of ti ∈ TΣ(V), the expression t[ti]i∈I denotes
the result of substituting in t every vi by ti for every i ∈ I. If I = [n], then we simply write
t[t1, . . . , tn]. Let I ⊆ N+ be finite. We say that t ∈ TΣ(V) is linear in I (respectively, nondeleting
in I), if vi occurs at most once (respectively, at least once) in t for every i ∈ I.

Any subset L ⊆ TΣ(V) is called tree language. We define var(L) =
⋃
t∈L var(t) for every

L ⊆ TΣ(V). Tree languages L1, L2 ⊆ TΣ(V) are called variable-disjoint, if var(L1) ∩ var(L2) = ∅.
Let I ⊆ N+ be finite and L,Li ⊆ TΣ(V) for every i ∈ I. We lift substitution to tree languages by
stating that L[Li]i∈I = { t[ti]i∈I | t ∈ L, (∀i ∈ I) : ti ∈ Li }.

2.2 Semirings

A semiring is an algebraic structure A = (A,+, ·, 0, 1) consisting of a commutative monoid (A,+, 0)
and a monoid (A, ·, 1) such that (i) · distributes over + and (ii) 0 is absorbing with respect to · .
The semiring is called commutative, if · is commutative. We say that a ∈ A is multiplicatively
idempotent, if a2 = a. Clearly, the neutral elements 0 and 1 are always multiplicatively idempotent.
As usual we use

∑
i∈I ai (respectively,

∏
i∈I ai for I ⊆ N) for sums (respectively, products) of

families (ai)i∈I of ai ∈ A where for only finitely many i ∈ I we have ai 6= 0 (respectively, ai 6= 1).

3

For products the order of the factors is given by the order 0 < 1 < · · · on the index set I. We say
that A is complete, whenever it is possible to define an infinitary sum operation

∑
I for each index

set I such that for every family (ai)i∈I of ai ∈ A the following three conditions are satisfied.

(i)
∑
I(ai)i∈I = aj , if I = {j}, and

∑
I(ai)i∈I = aj1 + aj2 , if I = {j1, j2} with j1 6= j2.

(ii)
∑
I(ai)i∈I =

∑
J

(∑
Ij

(ai)i∈Ij

)
j∈J for all partitions (Ij)j∈J of I.

(iii)
∑
I(a · ai · a′)i∈I = a ·

(∑
I(ai)i∈I

)
· a′ for all a, a′ ∈ A.

In the sequel, we simply write the accustomed
∑
i∈I ai instead of the cumbersome

∑
I(ai)i∈I ,

and when speaking about a complete semiring, we implicitly assume
∑
I to be given. For the rest

of the paper, let A = (A,+, ·, 0, 1) be a commutative semiring with infinite summation
∑
I such

that A is complete with respect to
∑
I . Well-known complete semirings are the Boolean semiring

B = ({⊥,>},∨,∧,⊥,>) with disjunction and conjunction and the semiring of the nonnegative real
numbers R+ = (R+ ∪ {∞},+, ·, 0, 1).

2.3 Tree Series

Let S be a set. A (formal) power series ϕ is a mapping ϕ : S −→ A. Given s ∈ S, we denote ϕ(s)
also by (ϕ, s) and write ϕ as

∑
s∈S(ϕ, s) s. The support of ϕ is supp(ϕ) = { s ∈ S | (ϕ, s) 6= 0 }.

Power series with finite support are called polynomials, and power series with at most one support
element are also called monomials. We denote the set of all power series ϕ : S −→ A by A〈〈S〉〉.
We call ϕ ∈ A〈〈S〉〉 boolean, if (ϕ, s) = 1 for every s ∈ supp(ϕ). The boolean monomial with
empty support is denoted by 0̃. Power series ϕ,ϕ′ ∈ A〈〈S〉〉 are summed componentwise; i. e.,
(ϕ + ϕ′, s) = (ϕ, s) + (ϕ′, s) for every s ∈ S. Finally, we also multiply the power series ϕ with a
coefficient a ∈ A componentwise; i. e., (a · ϕ, s) = a · (ϕ, s) for every s ∈ S.

In this paper, we only consider power series in which the set S is a set of trees. Such power
series are also called tree series. A tree series ϕ ∈ A〈〈TΣ(V)〉〉 is said to be linear (respectively,
nondeleting) in I ⊆ N+, if every t ∈ supp(ϕ) is linear (respectively, nondeleting) in I. Finally,
var(ϕ) =

⋃
t∈supp(ϕ) var(t).

Let ∆ be a ranked alphabet. Moreover, let ϕ ∈ A〈〈T∆(Z)〉〉, I ⊆ N+ be finite, and ψi ∈ A〈〈T∆(Z)〉〉
for every i ∈ I. The pure tree series substitution (for short: pure substitution) (of (ψi)i∈I
into ϕ) [6, 10], denoted by ϕ←− (ψi)i∈I , is defined by

ϕ←− (ψi)i∈I =
∑

t∈T∆(Z),
(∀i∈I): ti∈T∆(Z)

(ϕ, t) ·
∏
i∈I

(ψi, ti) t[ti]i∈I .

2.4 Tree Series Transducers

Let Q be an alphabet, and Σ and ∆ be ranked alphabets. We abbreviate { q(u) | q ∈ Q, u ∈ U }
by Q(U) for every set U . A tree representation µ (over Q, Σ, ∆, and A) [21, 10] is a family
(µk(σ))k∈N,σ∈Σk

of matrices µk(σ) ∈ A〈〈T∆(Z)〉〉Q×Q(Xk)∗ such that (i) µk(σ)q,w 6= 0̃ for only
finitely many (q, w) ∈ Q×Q(Xk)∗ and (ii) µk(σ)q,w ∈ A〈〈T∆(Zn)〉〉 where n = |w| for every q ∈ Q
and w ∈ Q(Xk)∗. A tree representation µ is said to be:

• polynomial (respectively, boolean), if for every k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗ the
tree series µk(σ)q,w is polynomial (respectively, boolean);

• input-nondeleting (respectively, input-linear), if for every k ∈ N, σ ∈ Σk, q ∈ Q, and
w ∈ Q(Xk)∗ with µk(σ)q,w 6= 0̃ we have that w is nondeleting (respectively, linear) in [k];

• output-nondeleting (respectively, output-linear), if for every k ∈ N, σ ∈ Σk, q ∈ Q, and
w ∈ Q(Xk)∗ the entry µk(σ)q,w is nondeleting (respectively, linear) in [n] where n = |w|;

• nondeleting (respectively, linear), if µ is input- and output-nondeleting (respectively, input-
and output-linear);

4

• bottom-up, if for every k ∈ N, σ ∈ Σk, q ∈ Q, and w ∈ Q(Xk)∗ with µk(σ)q,w 6= 0̃ we have
that w = q1(x1) · · · qk(xk) for some q1, . . . , qk ∈ Q;

• top-down, if µ is output-nondeleting and output-linear;

• bu-deterministic (respectively, bu-total), if for every k ∈ N, σ ∈ Σk, and w ∈ Q(Xk)∗, there
exists at most one (respectively, at least one) (q, t) ∈ Q×T∆(Z) such that t ∈ supp(µk(σ)q,w);
and

• td-deterministic (respectively, td-total), if for every k ∈ N, σ ∈ Σk, and q ∈ Q, there exists at
most one (respectively, at least one) (w, t) ∈ Q(Xk)∗ × T∆(Z) such that t ∈ supp(µk(σ)q,w).

Usually when we specify a tree representation µ, we just specify some entries of µk(σ) and im-
plicitly assume the remaining entries to be 0̃. Moreover, when we are concerned with bottom-up
tree representations we just write µk(σ)q,q1···qk

instead of µk(σ)q,q1(x1)···qk(xk). A tree series trans-
ducer [10, 15] is a sextuple M = (Q,Σ,∆,A, F, µ) consisting of:

• an alphabet Q of states;

• ranked alphabets Σ and ∆, also called input and output ranked alphabet, respectively;

• a complete semiring A = (A,+, ·, 0, 1);

• a vector F ∈ A〈〈T∆(Z1)〉〉Q of nondeleting and linear tree series representing top-most outputs;
and

• a tree representation µ over Q, Σ, ∆, and A.

Tree series transducers inherit the properties from their tree representation; e. g., a tree series
transducer with a polynomial bottom-up tree representation would be called polynomial bottom-up
tree series transducer. Moreover, we omit the prefix “bu” when we consider bottom-up tree series
transducers and likewise we omit “td” when we consider top-down devices; i. e., a deterministic
bottom-up tree series transducer is a tree series transducer that is bottom-up and bu-deterministic.
Finally, we say that the (bottom-up or top-down) tree series transducer M is a homomorphism, if
Q = {?}, F? = 1 z1, and µ is deterministic and total.

Let M = (Q,Σ,∆,A, F, µ) be a tree series transducer. Then the tree series transformation
computed by M , typed ‖M‖ : A〈〈TΣ〉〉 −→ A〈〈T∆〉〉, is defined as follows. For every k ∈ N, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ we define the mapping hµ : TΣ −→ A〈〈T∆〉〉Q componentwise for every q ∈ Q
by

hµ
(
σ(t1, . . . , tk)

)
q

=
∑

w∈Q(Xk)∗,
w=q1(xi1)···qn(xin)

µk(σ)q,w ←− (hµ(tij)qj)j∈[n] .

Moreover, hµ(ϕ)q =
∑
t∈TΣ

(ϕ, t) · hµ(t)q for every ϕ ∈ A〈〈TΣ〉〉. Then for every ϕ ∈ A〈〈TΣ〉〉 the
tree series transformation computed by M is

‖M‖(ϕ) =
∑
q∈Q

Fq ←− (hµ(ϕ)q) .

By BOT(A) [respectively, TOP(A)] we denote the class of tree series transformations computable
by bottom-up (respectively, top-down) tree series transducers over A. Similarly, we also use
p–BOT(A) [respectively, b–BOT(A), l–BOT(A), n–BOT(A), d–BOT(A), and h–BOT(A)] for
the class of tree series transformations computable by polynomial (respectively, boolean, linear,
nondeleting, deterministic, and homomorphism) bottom-up tree series transducers over A. Com-
binations of restrictions are handled in the usual manner; i. e., let x–BOT(A) and y–BOT(A) be
two classes of tree series transformations, then

xy–BOT(A) = x–BOT(A) ∩ y–BOT(A) .
Likewise we also use the corresponding classes of tree series transformations induced by restricted
top-down tree series transducers.

5

According to custom, we write ; for function composition; so given two tree series transforma-
tions τ1 : A〈〈TΣ〉〉 −→ A〈〈TΓ〉〉 and τ2 : A〈〈TΓ〉〉 −→ A〈〈T∆〉〉, then for every ϕ ∈ A〈〈TΣ〉〉 we have that
(τ1 ; τ2)(ϕ) = τ2(τ1(ϕ)). This composition is extended to classes of transformations in the standard
manner.

In the sequel we use the notation [y] where y is one of the abbreviations of restrictions (i. e.,
y ∈ {p,b, l,n,d,h}) in equalities to mean that this restriction is optional; i. e., throughout the
statement [y] can be substituted by the empty word or by y. For example,

[l]p–BOT(A) = nlp–BOT(A) ; [l]h–BOT(A)
states that the class of tree series transformations computable by polynomial (respectively, linear,
polynomial) bottom-up tree series transducers coincides with the composition of the class of tree
series transformations computable by nondeleting, linear, polynomial bottom-up tree series trans-
ducers with the class of tree series transformations computable by homomorphism (respectively,
linear, homomorphism) bottom-up tree series transducers.

3 Distributivity, Linearity, and Associativity

In this section we establish basic properties of pure substitution. In particular, we discuss dis-
tributivity, linearity, and associativity, which are the main properties required for our composi-
tion results. Distributivity and linearity are already handled in the literature [10, Propositions
2.8 and 2.9]. For the rest of this section, let I ⊆ N+ be a finite set, J a set, and Ji be a set for
every i ∈ I. Moreover, let ∆ be a ranked alphabet.

We first recall three properties of paramount importance from [15, Proposition 3.4]. In the
sequel we use these basic properties without explicit mention.

Observation 3.1 (Proposition 3.4 of [15]) Let ψ,ψi ∈ A〈〈T∆(Z)〉〉 for every i ∈ I.

• If I = ∅, then ψ←−(ψi)i∈I = ψ.

• If ψ = 0̃, then ψ←−(ψi)i∈I = 0̃.

• If ψi = 0̃ for some i ∈ I, then ψ←−(ψi)i∈I = 0̃. �

For tree languages L ⊆ T∆(Zk) and L1, . . . , Lk ⊆ T∆ we naturally have L[Li]i∈[k] = L[Li]i∈[k]\{j}
for every j ∈ [k] such that j /∈ var(L) and Lj 6= ∅. A similar statement can be presented for pure
substitution.

Observation 3.2 Let ψ,ψi ∈ A〈〈T∆(Z)〉〉 for every i ∈ I. Then for every j ∈ I such that j /∈ var(ψ)
and ψj = 1 u for some u ∈ T∆(Z)

ψ←−(ψi)i∈I = ψ←−(ψi)i∈I\{j} .

Proof: The proof is straightforward and hence omitted. �

The first central result is that pure substitution is distributive and linear [10, Propositions
2.8 and 2.9]. We present the corresponding propositions of [10].

Proposition 3.3 (Proposition 2.9 of [10]) Let ψj ∈ A〈〈T∆(Z)〉〉 for every j ∈ J , and for every
i ∈ I and ji ∈ Ji let ψji ∈ A〈〈T∆(Z)〉〉.∑

j∈J,
(∀i∈I) : ji∈Ji

ψj←−(ψji)i∈I =
(∑
j∈J

ψj

)
←−

(∑
ji∈Ji

ψji

)
i∈I

(1)
�

Proposition 3.4 (Proposition 2.8 of [10]) Let a ∈ A, and ψ ∈ A〈〈T∆(Z)〉〉. Moreover, let
ψi ∈ A〈〈T∆(Z)〉〉 and ai ∈ A for every i ∈ I.

a ·
∏
i∈I

ai ·
(
ψ←−(ψi)i∈I

)
= (a · ψ)←−(ai · ψi)i∈I (2)

�

6

Next let us investigate associativity. Pure substitution generalizes IO-substitution on tree
languages, which is not associative. Thus we cannot establish associativity in general. How-
ever, in [11, Lemma 2.4.3] it was shown that for every k, n ∈ N with k > 1 and L ⊆ T∆(Zk),
L1, . . . , Lk ⊆ T∆(Zn), and L′1, . . . , L

′
n ⊆ T∆(Z)(

L[L1, . . . , Lk]
)
[L′1, . . . , L

′
n] = L

[
L1[L′1, . . . , L

′
n], . . . , Lk[L

′
1, . . . , L

′
n]
]

holds, whenever all L′1, . . . , L
′
n are singletons or L1, . . . , Lk are pairwise variable-disjoint. For

k = 0 to be eligible, we have to demand that L′i 6= ∅ for every i ∈ [n]. Now we extend the
variable-disjointness condition including the case k = 0 to tree series. Let I, J ⊆ N+ be finite and
Ψ = (ψj)j∈J be a family of ψj ∈ A〈〈T∆(Z)〉〉. Finally, let I = (Ij)j∈J be a partition of I. The
partition I is said to conform to Ψ, if for every j ∈ J the condition var(ψj) ⊆ Ij holds. Note that
for every family Ψ = (ψj)j∈J with J 6= ∅ of pairwise variable-disjoint tree series a partition of I
conforming to Ψ exists. Further, if J = ∅ then such a partition only exists when I = ∅.

In [10, Proposition 2.10] an associativity-like law for monomials was proved and [14, Proposi-
tion 2.5] presents a generalized version. We present yet another straightforward generalization for
pairwise variable-disjoint tree series. To increase the readability of the statements of this section,
we assume a finite I ⊆ N+, ψ ∈ A〈〈T∆(Z)〉〉, and a finite set J ⊆ N+ such that var(ψ) ⊆ J . Moreover,
let (Ij)j∈J be a family of Ij ⊆ I such that

⋃
j∈J Ij = I, (ψj)j∈J be a family of ψj ∈ A〈〈T∆(Z)〉〉

such that var(ψj) ⊆ Ij for every j ∈ J , and (τi)i∈I be a family of τi ∈ A〈〈T∆(Z)〉〉.

Proposition 3.5 (cf. Proposition 2.5 of [14]) If (Ij)j∈J is a partition of I conforming to
(ψj)j∈J , then(

ψ←−(ψj)j∈J
)
←−(τi)i∈I = ψ←−

(
ψj←−(τi)i∈Ij

)
j∈J . (3)

Proof: Note that J = ∅ implies that I = ∅.(
ψ←−(ψj)j∈J

)
←−(τi)i∈I

=
∑

u∈supp(ψ),
(∀j∈J) : uj∈supp(ψj)

(
(ψ, u) u←−

(
(ψj , uj) uj

)
j∈J

)
←−(τi)i∈I

(by Proposition 3.3)

=
∑

u∈supp(ϕ),
(∀j∈J) : uj∈supp(ψj)

(ψ, u) u←−
(
(ψj , uj) uj←−(τi)i∈Ij

)
j∈J

(by [15, Proposition 2.4] and the fact that (Ij)j∈J conforms to (ψj)j∈J)

= ψ←−
(
ψj←−(τi)i∈Ij

)
j∈J

(by Proposition 3.3) �

This concludes our consideration of the case that the ψj are variable-disjoint. According to [11,
Lemma 2.4.3] there is a second sufficient condition, namely that the τi are monomials. This case
is considered in the next lemma.

Lemma 3.6 Let τi be monomial for every i ∈ I. If (τi, vi) is multiplicatively idempotent for every
vi ∈ T∆(Z) and i ∈ I, then(

ψ←−(ψj)j∈J
)
←−(τi)i∈I = ψ←−

(
ψj←−(τi)i∈Ij

)
j∈J . (4)

Proof: Firstly, let J = ∅. Then also I = ∅ and both sides of (4) are ψ. Secondly, let supp(τi) = ∅
for some i ∈ I. It follows that J 6= ∅ and hence both sides of (4) are 0̃. Finally, we assume that
J 6= ∅, and for every i ∈ I let supp(τi) = {vi} for some vi ∈ T∆(Z).(

ψ←−(ψj)j∈J
)
←−(τi)i∈I

7

=
∑

u∈supp(ψ),
(∀j∈J) : uj∈supp(ψj)

(
(ψ, u) ·

∏
j∈J

(ψj , uj) ·
∏
i∈I

(τi, vi)
)
u[uj]j∈J [vi]i∈I

=
∑

u∈supp(ψ),
(∀j∈J) : uj∈supp(ψj)

(
(ψ, u) ·

∏
j∈J

(
(ψj , uj) ·

∏
i∈Ij

(τi, vi)
))

u
[
uj [vi]i∈Ij

]
j∈J

(because A is commutative, J 6= ∅, var(uj) ⊆ var(ψj) ⊆ Ij for every j ∈ J ,
and (τi, vi) is multiplicatively idempotent for every i ∈ I)

= ψ←−
(
ψj←−(τi)i∈Ij

)
j∈J �

Note that if we set Ij = I for every j ∈ J , then we obtain associativity. Moreover, if the tree
series τi are boolean, then every (τi, ui) is automatically multiplicatively idempotent.

4 Compositions of Bottom-up Tree Series Transformations

First let us review what is known about compositions of bottom-up tree series transformations.
Bottom-up tree transformations (i. e., polynomial bottom-up tree series transformations over the
Boolean semiring, [see 10, Section 4]) are closed under left-composition with linear bottom-up tree
transformations (see [1, Theorem 6] and [9, Theorem 4.5]); i. e.,

lp–BOT(B) ; p–BOT(B) = p–BOT(B) .
This result was generalized to bottom-up tree series transformations over commutative and com-
plete semirings in [20, 10]. More precisely, [20, Theorem 2.4] yields that

nl–BOT(A) ; nl–BOT(A) = nl–BOT(A) .
In fact it is shown for nondeleting, linear top-down tree series transducers [10], but nondeleting,
linear top-down tree series transducers and nondeleting, linear bottom-up tree series transducers
are equally powerful [see 10, Theorem 5.24]. Moreover, nl–BOT(A) ; h–BOT(A) ⊆ BOT(A) [10,
Corollary 5.5]. So taking those results together and a decomposition [10, Lemma 5.6], we obtain
the following result.

Theorem 4.1 For every commutative and complete semiring A

nlp–BOT(A) ; p–BOT(A) = p–BOT(A) . (5)

Proof: The direction p–BOT(A) ⊆ nlp–BOT(A) ; p–BOT(A) is trivial, so it remains to prove
nlp–BOT(A) ; p–BOT(A) ⊆ p–BOT(A).

nlp–BOT(A) ; p–BOT(A)
⊆ nlp–BOT(A) ; nlp–BOT(A) ; h–BOT(A) [10, Lemma 5.6]
⊆ nlp–BOT(A) ; h–BOT(A) [20, Theorem 2.4]
⊆ p–BOT(A) [10, Corollary 5.5] �

We should like to obtain a result like l–BOT(A) ; BOT(A) = BOT(A) for all commutative
and complete semirings A. We try to follow the classical (unweighted) construction, so we first
extend hµ such that it can treat variables (of X). We extend hµ to TΣ(X) by supplying, for
some J ⊆ N+, a mapping q ∈ QJ , which associates a state q(j), usually written as qj , to the
variable xj for j ∈ J . Intuitively speaking, the state qj represents the initial state, with which the
computation should be started at the leaves labeled xj in the input tree. For all states q ∈ Q differ-
ent from qj it should not be possible to start a (meaningful) computation at xj (i. e., hqµ(xj)q = 0̃).
This mapping is then extended to TΣ(X) in a manner analogous to hµ.

8

Definition 4.2 Let (Q,Σ,∆,A, F, µ) be a bottom-up tree series transducer. For every finite
J ⊆ N+ and q ∈ QJ we define the mapping hqµ : TΣ(X) −→ A〈〈T∆(Z)〉〉Q componentwise for every
q ∈ Q as follows. For every j ∈ J , n ∈ N+ \ J , k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(X)

hqµ(xn)q = 1 zn (6)

hqµ(xj)q =

{
1 zj if q = qj ,

0̃ otherwise
(7)

hqµ(σ(t1, . . . , tk))q =
∑

q1,...,qk∈Q
µk(σ)q,q1···qk

←−(hqµ(ti)qi)i∈[k] . (8)

The mapping hqµ : A〈〈TΣ(X)〉〉 −→ A〈〈T∆(Z)〉〉Q is given for every ϕ ∈ A〈〈TΣ(X)〉〉 by

hqµ(ϕ)q =
∑

t∈TΣ(X)

(ϕ, t) · hqµ(t)q .
�

On subtree:
t′

a′=⇒M1 u′
b′=⇒M2 v′

Deletion:

t t′

a′a′′=⇒M1

u u′

b′′=⇒M2

v

Figure 1: Computation of M ′ followed by M ′′.

Let M ′ = (Q′,Σ,Γ,A, F ′, µ′) and M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′) be bottom-up tree series trans-
ducers. Then, similar to the (unweighted) product construction of bottom-up tree transducers,
we translate the entries of µ′ with the help of µ′′. Let k ∈ N, σ ∈ Σk, p, p1, . . . , pk ∈ Q′, and
q, q1, . . . , qk ∈ Q′′. Roughly speaking, we obtain the entry µk(σ)(p,q),(p1,q1)···(pk,qk) in the tree rep-
resentation µ of the composition of M ′ and M ′′ by applying the extended mapping hq1···qk

µ′′ to the
entry µ′k(σ)p,p1···pk

. Thereby, we process the output trees of supp(µ′k(σ)p,p1···pk
) with the help

of M ′′ starting the computation at the variables x1, . . . , xk in states q1, . . . , qk.
However, there is a small problem which does not arise in the unweighted case. We depict the

problem in Figures 1 and 2. Let us suppose that M ′ translates an input tree t ∈ TΣ into an output
tree u ∈ TΓ with weight a ∈ A. During the translation, M ′ decides to delete the translation u′ ∈ TΓ

with weight a′ ∈ A of an input subtree t′ ∈ TΣ. Then due to the definition of pure substitution the
weight a′ of u′ contributes to the weight a of u, whereas u′ does not contribute to u. Furthermore,
let us suppose that M ′′ would transform u into v ∈ T∆ at weight b ∈ A and u′ into v′ ∈ T∆ at
weight b′ ∈ A. Since M ′′ does not process u′, the weight b′ does not contribute to b. However,
the composition of M ′ and M ′′, when processing the input subtree t′, transforms t′ into u′ at
weight a′ using the rules of M ′ and immediately also transforms u′ into v′ at weight b′ using the
rules of M ′′. If the composition tree series transducer now deletes the translation v′ of t′, then
a′ and b′ still contribute to the weight of the overall transformation. This contrasts the situation
encountered when M ′ and M ′′ run separately, because there only a′ contributed to the weight of
the overall transformation. In the classical case of tree transducers, b′ could only be 0 or 1, so
that one just had to avoid that b′ = 0. In principle, this is achieved by requiring M ′′ to be total
(however, by adjoining a dummy state, each bottom-up tree transducer can be turned into a total
one computing the same tree transformation). The construction we propose here is similar, but
has the major disadvantage that, for example, determinism is not preserved.

9

On subtree:
t′

a′b′=⇒M1◦M2 v′

Deletion:

t t′

a′a′′b′b′′=⇒M1◦M2

v v′

Figure 2: Computation of M ′ ;M ′′.

Specifically, we address the aforementioned problem by manipulating the second transducer M ′′

such that it has a state ⊥ which transforms each input tree into some output tree α ∈ ∆0 at
weight 1. Note that ⊥ is no final state; i. e., its top-most output is 0̃. Then we compose M ′ and
M ′′ by processing those subtrees, which M ′ decided to delete, in the state ⊥.

Definition 4.3 Let M = (Q,Σ,∆,A, F, µ) be a bottom-up tree series transducer. A state ⊥ ∈ Q
is called blind, if there exists an α ∈ ∆0 such that:

• F⊥ = 0̃;

• for every k ∈ N and σ ∈ Σk we have µk(σ)⊥,⊥···⊥ = 1 α; and

• for every k ∈ N, σ ∈ Σk, q, q1, . . . , qk ∈ Q with µk(σ)q,q1···qk
6= 0̃

q = ⊥ ⇐⇒ (∀i ∈ [k]) : qi = ⊥ . �

To every bottom-up tree series transducer M we can adjoin a blind state ⊥ and thereby obtain
a bottom-up tree series transducer M ′. It should be clear that ‖M‖ = ‖M ′‖.

Observation 4.4 Let M be a bottom-up tree series transducer. There exists a bottom-up tree
series transducer M ′ with blind state ⊥ such that ‖M‖ = ‖M ′‖.

Proof: Let M = (Q,Σ,∆,A, F, µ) and ⊥ /∈ Q and α ∈ ∆0. We construct M ′ = (Q′,Σ,∆,A, F ′, µ′)
with Q′ = Q∪{⊥}, F ′

q = Fq for every q ∈ Q and F ′
⊥ = 0̃. The tree representation µ′ is defined for

every k ∈ N, σ ∈ Σk, and q, q1, . . . , qk ∈ Q by

µ′k(σ)q,q1···qk
= µk(σ)q,q1···qk

(9)
µ′k(σ)⊥,⊥...⊥ = 1 α . (10)

Clearly, ⊥ is a blind state of M ′ and also ‖M‖ = ‖M ′‖. �

Note that the construction does not preserve determinism.

Definition 4.5 Let M ′ = (Q′,Σ,Γ,A, F ′, µ′) and M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′) be two bottom-up
tree series transducers such that ⊥ is a blind state of M ′′. The composition of M ′ and M ′′, denoted
byM ′ ;M ′′, is defined to be the bottom-up tree series transducerM ′ ;M ′′ = (Q′×Q′′,Σ,∆,A, F, µ)
with

F(p,q) =
∑
q′∈Q′′

F ′′
q′←−

(
hqµ′′

(
F ′
p

)
q′

)
(11)

µk(σ)(p,q),(p1,q1)···(pk,qk) = hq1···qk

µ′′

(∑
t∈TΓ(Zk),

(∀i∈[k]): i/∈var(t) ⇐⇒ qi=⊥

(
µ′k(σ)p,p1···pk

, t
)
t
)
q

(12)

10

µk(σ)(p,⊥),(p1,⊥)···(pk,⊥) = h⊥···⊥µ′′
(
µ′k(σ)p,p1···pk

)
⊥ (13)

for every k ∈ N, σ ∈ Σk, p, p1, . . . , pk ∈ Q′, q ∈ Q′′ \ {⊥}, and q1, . . . , qk ∈ Q′′. All the remaining
entries in F and µ are 0̃. �

It is quite clear that the compositionM ′ ;M ′′ does not always compute ‖M ′‖ ; ‖M ′′‖, because al-
ready for bottom-up tree transducers (i. e., polynomial bottom-up tree series transducers over B) it
can be shown that the computed transformations are not closed with respect to composition. How-
ever, we have already mentioned that p–BOT(B) is closed under left-composition with lp–BOT(B)
and under right-composition with d–BOT(B). The next proposition shows a central property of
restricted bottom-up tree series transducers. Roughly speaking, it presents sufficient conditions
that if imposed ensure that hµ distributes over substitutions t[u1, . . . , uk] for t ∈ TΣ(Xk) and
u1, . . . , uk ∈ TΣ.

Proposition 4.6 Let V ⊆ X be a finite set, and let M = (Q,Σ,∆,A, F, µ) be a bottom-up tree
series transducer, q ∈ Q, t ∈ TΣ(V), and ui ∈ TΣ for every i ∈ var(t).

hµ(t[ui]i∈var(t))q =
∑

q∈Qvar(t)

hqµ(t)q←−
(
hµ(ui)qi

)
i∈var(t)

,

provided that:

(a) M is boolean and deterministic; or

(b) t is linear.

Proof: We prove the statement by induction over t.
(i) First, let t = xj for some j ∈ N+. Clearly, var(t) = {j}.

hµ(xj [ui]i∈{j})q
= hµ(uj)q

(by tree substitution)
= 1 zj←−(hµ(ui)q)i∈{j}

(by definition of pure substitution)

=
∑

q∈Q{j}

hqµ(xj)q←−(hµ(ui)qi)i∈{j}

(because hqµ(xj)q = 0̃ for every q such that qj 6= q)

(ii) Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ(V).

hµ(σ(t1, . . . , tk)[ui]i∈var(t))q
= hµ(σ(t1[ui]i∈var(t1), . . . , tk[ui]i∈var(tk)))q

(by tree substitution)

=
∑

q1,...,qk∈Q
µk(σ)q,q1···qk

←−
(
hµ(tj [ui]i∈var(tj))qj

)
j∈[k]

(by definition of hµ)

=
∑

q1,...,qk∈Q
µk(σ)q,q1···qk

←−
(∑
q∈Qvar(tj)

hqµ(tj)qj
←−

(
hµ(ui)qi

)
i∈var(tj)

)
j∈[k]

(by induction hypothesis)

=
∑

q1,...,qk∈Q

∑
(∀j∈[k]) : q(j)∈Qvar(tj)

µk(σ)q,q1···qk
←−

(
hq(j)µ (tj)qj ←−(hµ(ui)q(j)i

)i∈var(tj)

)
j∈[k]

(by Proposition 3.3)

11

=
∑

q1,...,qk∈Q

∑
q∈Qvar(t)

µk(σ)q,q1···qk
←−

(
hqµ(tj)qj ←−(hµ(ui)qi

)i∈var(tj)

)
j∈[k]

(because
⋃
j∈[k] var(tj) = var(t) and by:

(a) determinism because there exists at most one p ∈ Q such that hµ(ui)p 6= 0̃; or
(b) linearity of t because var(tj1) ∩ var(tj2) = ∅ for j1 6= j2)

=
∑

q∈Qvar(t)

∑
q1,...,qk∈Q

(
µk(σ)q,q1···qk

←−(hqµ(tj)qj
)j∈[k]

)
←−(hµ(ui)qi

)i∈var(t)

(by
(a) Lemma 3.6 because hµ(ui)qi

is a boolean monomial; or
(b) Proposition 3.5 because (var(tj))j∈[k] is the required partition)

=
∑

q∈Qvar(t)

hqµ(σ(t1, . . . , tk))q←−(hµ(ui)qi
)i∈var(t)

(by definition of hqµ) �

With the help of this proposition we can show the correctness of the construction in Definition 4.5
for linear M ′; i. e., we can show that ‖M ′ ;M ′′‖ = ‖M ′‖ ; ‖M ′′‖ for linear M ′.

Lemma 4.7 Let A be a commutative and complete semiring, M ′ = (Q′,Σ,Γ,A, F ′, µ′) and
M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′) be bottom-up tree series transducers, of which M ′ is linear and M ′′

has a blind state ⊥. Moreover, let M = (Q,Σ,∆,A, F, µ) be the composition of M ′ and M ′′

(see Definition 4.5). Then for every t ∈ TΣ, p ∈ Q′, and q ∈ Q′′

hµ′′
(
hµ′(t)p

)
q

= hµ(t)(p,q)
and ‖M‖ = ‖M ′‖ ; ‖M ′′‖.

Proof: We first claim that there exists an α ∈ ∆0 such that hµ′′(u)⊥ = 1 α for every u ∈ TΓ.
The proof of this claim is straightforward and left to the reader. The remaining proof is done by
induction on t and case analysis. Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and t1, . . . , tk ∈ TΣ.
(i) Let q = ⊥.

hµ′′
(
hµ′(σ(t1, . . . , tk))p

)
⊥

=
∑

p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]) : ui∈TΓ

(µ′k(σ)p,p1···pk
, u) ·

∏
i∈[k]

(hµ′(ti)pi
, ui) · hµ′′(u[u1, . . . , uk])⊥

(by definition of hµ′ and pure substitution)

=
∑

p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]) : ui∈TΓ

(µ′k(σ)p,p1···pk
, u) ·

∏
i∈[k]

(hµ′(ti)pi , ui) α

(by hµ′′(u[u1, . . . , uk])⊥ = 1 α; see claim)

=
∑

p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]) : ui∈TΓ

(µ′k(σ)p,p1···pk
, u) ·

∏
i∈[k]

(hµ′(ti)pi
, ui) ·

· h⊥...⊥µ′′ (u)⊥←−(hµ′′(u1)⊥, . . . , hµ′′(uk)⊥)

(by claim and pure substitution)

=
∑

p1,...,pk∈Q′

h⊥...⊥µ′′ (µ′k(σ)p,p1···pk
)⊥←−

(
hµ′′(hµ′(t1)p1)⊥, . . . , hµ′′(hµ′(tk)pk

)⊥
)

(by Proposition 3.3 and Proposition 3.4)

=
∑

p1,...,pk∈Q′

µk(σ)(p,⊥),(p1,⊥)···(pk,⊥)←−
(
hµ(t1)(p1,⊥), . . . , hµ(tk)(pk,⊥)

)

12

(by definition of µ and induction hypothesis)

=
∑

p1,...,pk∈Q′,
q1,...,qk∈Q′′

µk(σ)(p,⊥),(p1,q1)···(pk,qk)←−
(
hµ(t1)(p1,q1), . . . , hµ(tk)(pk,qk)

)
(since µk(σ)(p,⊥),(p1,q1)...(pk,qk) 6= 0̃, only if q1 = · · · = qk = ⊥)

= hµ(σ(t1, . . . , tk))p,⊥
(by the definition of hµ)

(ii) Now let q 6= ⊥.

hµ′′
(
hµ′(σ(t1, . . . , tk))p

)
q

=
∑

p1,...,pk∈Q′

hµ′′
(
µ′k(σ)p,p1···pk

←−(hµ′(t1)p1 , . . . , hµ′(tk)pk
)
)
q

(by definition of hµ′)

=
∑

p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]): ui∈TΓ

(µ′k(σ)p,p1···pk
, u) ·

∏
i∈[k]

(hµ′(ti)pi
, ui) · hµ′′(u[u1, . . . , uk])q

(by definition of pure substitution)

=
∑

p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]): ui∈TΓ

(µ′k(σ)p,p1···pk
, u) ·

∏
i∈[k]

(hµ′(ti)pi
, ui) ·

· hµ′′(u[x1, . . . , xk] [u1, . . . , uk])q
(by tree substitution)

=
∑

p1,...,pk∈Q′

∑
u∈TΓ(Zk),

(∀i∈[k]): ui∈TΓ

(µ′k(σ)p,p1···pk
, u) ·

∏
i∈[k]

(hµ′(ti)pi
, ui) ·

·
∑

q∈(Q′′)var(u)

hqµ′′(u)q←−
(
hµ′′(ui)qi

)
i∈var(u)

(by Proposition 4.6)

=
∑

p1,...,pk∈Q′,
q1,...,qk∈Q′′

∑
u∈TΓ(k),

(∀i∈[k]): ui∈TΓ,
qi=⊥ ⇐⇒ i/∈var(u)

(µ′k(σ)p,p1···pk
, u) ·

∏
i∈[k]

(hµ′(ti)pi
, ui) ·

· hq1,...,qk

µ′′ (u)q←−
(
hµ′′(u1)q1 , . . . , hµ′′(uk)qk

)
(by Observation 3.2 because hµ′′(ui)⊥ = 1 α)

=
∑

p1,...,pk∈Q′,
q1,...,qk∈Q′′

µk(σ)(p,q),(p1,q1)...(pk,qk)←−
(
hµ′′

(
hµ′(t1)p1

)
q1
, . . . , hµ′′

(
hµ′(tk)pk

)
qk

)

(by definition of µ, Propositions 3.3 and 3.4)

=
∑

p1,...,pk∈Q′,
q1,...,qk∈Q′′

µk(σ)(p,q),(p1,q1)...(pk,qk)←−
(
hµ(t1)(p1,q1), . . . , hµ(tk)(pk,qk)

)
(by induction hypothesis)

= hµ(σ(t1, . . . , tk))(p,q)
(by definition of hµ)

Now we can prove the main statement.

(‖M ′‖ ; ‖M ′′‖)(ϕ)

13

=
∑

p∈Q′,q′∈Q′′

F ′′
q′←−

(
hµ′′

(
F ′
p←−(hµ′(ϕ)p)

)
q′

)
(by the definition of ‖·‖ and Proposition 3.3)

=
∑

p∈Q′,q∈Q′′

(∑
q′∈Q′′

F ′′
q′←−

(
hqµ′′

(
F ′
p

)
q′

))
←−

(
hµ′′(hµ′(ϕ)p)q

)
(see [12, Lemma 6.5] and [20, Lemma 2.2])

=
∑

p∈Q′,q∈Q′′

F(p,q)←−(hµ(ϕ)(p,q))

(by hµ′′
(
hµ′(t)p

)
q

= hµ(t)(p,q) and definition of F(p,q))

= ‖M‖(ϕ)
(by definition of ‖·‖) �

It is easy to see that whenever M ′ and M ′′ are polynomial (respectively, nondeleting, linear),
then also M ′ ;M ′′ is polynomial (respectively, nondeleting, linear). Together with Lemma 4.7 this
yields the first main theorem.

Theorem 4.8 Let A be a commutative and complete semiring.

[p][n]l–BOT(A) ; [p][n][l]–BOT(A) = [p][n][l]–BOT(A) (14)

Proof: The statement follows directly from Lemma 4.7. �

We note that our construction does not preserve determinism [cf. 10, Corollary 5.5]. Thus,
neither hl–BOT(A) ; h–BOT(A) = h–BOT(A) nor hnl–BOT(A) ; h–BOT(A) = h–BOT(A) follows
from Lemma 4.7, because we introduce the blind state ⊥ and thus our composition M ′ ;M ′′, in
general, has more than one state. The correctness of the latter two statements thus remains open.

Let us consider an example. Imagine a game to be played between two players. Player I moves
first and the moves of the players alternate. Each player can play one out of three potential moves
(called l, m, and r), however the second player may not play the same move as the first player just
played. We model this scenario by a game tree which contains three types of nodes. First there
are σ-nodes indicating that one of the players should make a move. Such a node has exactly three
successors, which represent the remaining game to be played in case the moving player chooses
to play l, m, and r, respectively. Second, there are α- and β-nodes indicating that Player I,
respectively Player II, has won the game. Third, l-, m-, and r-nodes represent that the player
played this option. (Randomized) strategies for both players can now be coded as bottom-up tree
series transducers (in fact, it is easier to code them as linear top-down tree series transducers, but
given such we can easily obtain a semantically equivalent linear bottom-up tree series transducer
[15, Theorem 5.26]). The composition of the two bottom-up tree series transducers (i. e., of the
two strategies) can then be applied to compute, for example, the chances of winning the game for
each player.

Example 4.9 Let Σ = Σ0 ∪ Σ3 with Σ3 = {σ} and Σ0 = {α, β}, Γ1 = {l,m, r}, and Γ = Γ1 ∪ Σ.
Moreover, let M ′ = (Q′,Σ,Γ,R+, F

′, µ′) be the bottom-up tree series transducer with Q′ = {⊥,>},
F ′
> = 1 z1 and F ′

⊥ = 0̃ and

µ′0(α)⊥ = µ′0(α)> = 1 α
µ′0(β)⊥ = µ′0(β)> = 1 β

µ′3(σ)>,⊥⊥⊥ = 0.1 l(z1) + 0.3 m(z2) + 0.6 r(z3)
µ′3(σ)⊥,>>> = 1 σ(z1, z2, z3) .

The first player’s strategy is modeled by M ′, and we represent a strategy of the second player by
M ′′ = (Q′′,Γ,Σ,R+, F

′′, µ′′) with Q′′ = Γ1 ∪ {>}, F ′′
> = 1 z1, F ′′

γ = 0̃ for every γ ∈ Γ1 and

µ′′0(α)γ = µ′′0(α)> = 1 α

14

µ′′0(β)γ = µ′′0(β)> = 1 β
µ′′1(γ)>,γ = 1 z1

µ′′3(σ)l,>>> = 0.4 z2 + 0.6 z3

µ′′3(σ)m,>>> = 0.5 z1 + 0.5 z3

µ′′3(σ)r,>>> = 0.7 z1 + 0.3 z2 .

Now let us consider the game tree t = σ
(
σ(α, β, α), β, σ(α, β, β)

)
. Then

‖M ′‖(1 t) = 0.1 l
(
σ(α, β, α)

)
+ 0.3 m(β) + 0.6 r

(
σ(α, β, β)

)
‖M ′′‖

(
‖M ′‖(1 t)

)
= 0.48 α+ 0.52 β ,

showing that for this particular game Player II has a slightly higher chance to win the game.
Let M2 be the bottom-up tree series transducer that is obtained by adjoining a blind state

to M ′′. Now let us compose M ′ and M2. The composition M ′ ;M2 = (Q,Σ,Σ,R+, F, µ) is defined
by Q = Q′ × (Q′′ ∪ {⊥}) and F(>,>) = 1 z1 and Fq = 0̃ for all q ∈ Q \ {(>,>)}. Finally, the tree
representation µ is defined for every p ∈ Q′, q ∈ Q′′, and γ ∈ Γ1 by

µ0(α)(p,q) = µ0(α)(p,⊥) = µ0(β)(p,⊥) = 1 α
µ0(β)(p,q) = 1 β

µ3(σ)(>,>),(⊥,l)(⊥,⊥)(⊥,⊥) = 0.1 z1

µ3(σ)(>,>),(⊥,⊥)(⊥,m)(⊥,⊥) = 0.3 z2

µ3(σ)(>,>),(⊥,⊥)(⊥,⊥)(⊥,r) = 0.6 z3

µ3(σ)(⊥,γ),(>,>)(>,>)(>,>) =


0.4 z2 + 0.6 z3 if γ = l ,
0.5 z1 + 0.5 z3 if γ = m ,

0.7 z1 + 0.3 z2 if γ = r ,

µ3(σ)(⊥,⊥),(>,⊥)(>,⊥)(>,⊥) = 1 α .

If we compute ‖M‖(1 t), it shows the expected result 0.48 α+ 0.52 β. �

Finally, let us consider the second result, which states that bottom-up tree transformations are
closed under right-composition with deterministic bottom-up tree transformations [9, Theorem 4.6]
and [1, Theorem 6]. This result was also generalized to BOT(A) ; bh–BOT(A) = BOT(A) [10,
Corollary 5.5]. Since we have already seen that our previous construction destroys determinism,
we simplify the construction to obtain a construction which is the analogue of the construction for
the unweighted case. Note that without loss of generality we may assume a bottom-up tree series
transducer to be total; the construction required to show this is the standard one (add a transition
into a trap state, if no transition is present).

Definition 4.10 Let M ′ = (Q′,Σ,Γ,A, F ′, µ′) and M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′) be tree series
transducers, of which M ′′ is bottom-up. The (simple) composition of M ′ and M ′′, denoted
by M ′ ;sM ′′, is defined to be the tree series transducer M ′ ;sM ′′ = (Q′ ×Q′′,Σ,∆,A, F, µ) with

F(p,q) =
∑
q′∈Q′′

F ′′
q′←−

(
hqµ′′

(
F ′
p

)
q′

)
(15)

µk(σ)(p,q),(p1,q1)(xi1)···(pn,qn)(xin) = hq1···qn

µ′′

(
µ′k(σ)p,p1(xi1)···pn(xin)

)
q

(16)

for every k, n ∈ N, σ ∈ Σk, p, p1, . . . , pn ∈ Q′, q, q1, . . . , qn ∈ Q′′, and i1, . . . , in ∈ [k]. �

It is easily seen that M ′ ;sM ′′ is bu-deterministic, whenever M ′ and M ′′ are bu-deterministic
and bottom-up. Moreover, M ′ ;sM ′′ is a homomorphism bottom-up tree series transducer, if
M ′ and M ′′ are homomorphism bottom-up tree series transducers and M ′′ is boolean. Note that,

15

in general, the restriction that M ′′ is boolean is necessary in the last statement, because otherwise
the composition M ′ ;sM ′′ might not be total.

The next observation shows that boolean, total, and deterministic bottom-up tree series trans-
ducers transform every input tree into an output tree with coefficient 1. This essentially means
that such transducers (at the level of hµ) cannot implement “checking”; i. e., selective rejection of
some input trees. They may still reject input trees by entering a state whose top-most output is 0̃.

Observation 4.11 (cf. Proposition 4.11 of [15]) Let M = (Q,Σ,∆,A, F, µ) be a determinis-
tic bottom-up tree series transducer. Then for every t ∈ TΣ there exists at most one q ∈ Q such
that hµ(t)q 6= 0̃. Moreover, if M is additionally total and boolean, then there exists a unique q ∈ Q
such that hµ(t)q = 1 u for some u ∈ T∆.

Proof: Essentially the proof can be found in the proof of [15, Proposition 4.11]. Zero-divisor
freeness is not required because M is boolean and it is straightforward to show that hµ(t)q is
boolean. �

Now we are ready to show correctness of the simple composition M ′ ;sM ′′ provided that
M ′ and M ′′ are bottom-up tree series transducers, of which M ′′ is boolean, total, and deter-
ministic. Moreover, we prove the correctness also for particular top-down tree series transducers.

Lemma 4.12 Let M ′ = (Q′,Σ,Γ,A, F ′, µ′) and M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′) be a tree series trans-
ducers, of which M ′′ is bottom-up. Moreover, let M = (Q,Σ,∆,A, F, µ) be the simple composition
of M ′ and M ′′. Then for every t ∈ TΣ, p ∈ Q′, and q ∈ Q′′

hµ′′
(
hµ′(t)p

)
q

= hµ(t)(p,q)
and ‖M ′‖ ; ‖M ′′‖ = ‖M‖ provided that:

(a) M1 is bottom-up and M2 is boolean, total, and deterministic; or

(b) M1 is top-down.

Proof: We prove the statement inductively, so let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk, and
t1, . . . , tk ∈ TΣ.

hµ′′
(
hµ′(σ(t1, . . . , tk))p

)
q

=
∑

w′∈Q′(Xk)∗,
w′=p1(xi1)···pn(xin)

hµ′′
(
µ′k(σ)p,w′←−(hµ′(tij)pj

)j∈[n]

)
q

(by definition of hµ′)

=
∑

w′∈Q′(Xk)∗,
w′=p1(xi1)···pn(xin)

∑
u∈supp(µ′k(σ)p,w′),

(∀j∈[n]): uj∈TΓ

(µ′k(σ)p,w′ , u) ·
∏
j∈[n]

(hµ′(tij)pj
, uj) · hµ′′(u[uj]j∈[n])q

(by definition of pure substitution)

=
∑

w′∈Q′(Xk)∗,
w′=p1(xi1)···pn(xin)

∑
u∈supp(µ′k(σ)p,w′),

(∀j∈[n]): uj∈TΓ

(µ′k(σ)p,w′ , u) ·
∏
j∈[n]

(hµ′(tij)pj
, uj) ·

·
∑

q∈(Q′′)var(u)

hqµ′′(u)q←−
(
hµ′′(uj)qj

)
j∈var(u)

(by Proposition 4.6(a) in Case (a) and Proposition 4.6(b) otherwise)

=
∑

w′∈Q′(Xk)∗,
w′=p1(xi1)···pn(xin)

∑
u∈supp(µ′k(σ)p,w′),

(∀j∈[n]): uj∈TΓ

(µ′k(σ)p,w′ , u) ·

·
∏
j∈[n]

(hµ′(tij)pj
, uj) ·

∑
q1,...,qn∈Q′′

hq1···qn

µ′′ (u)q←−
(
hµ′′(uj)qj

)
j∈[n]

16

(because
(a) Observation 3.2 is applicable due to Observation 4.11
(b) M ′ is top-down; i. e., var(u) = [n])

=
∑

w∈Q(Xk)∗,
w=(p1,q1)(xi1)···(pn,qn)(xin)

hq1···qn

µ′′ (µ′k(σ)p,p1(xi1)···pn(xin))q←−
(
hµ′′(hµ′(tij)pj

)qj

)
j∈[n]

(by Propositions 3.3 and 3.4)

=
∑

w∈Q(Xk)∗,
w=(p1,q1)(xi1)···(pn,qn)(xin)

µk(σ)(p,q),w←−
(
hµ(tij)(pj ,qj)

)
j∈[n]

(by definition of µk(σ)(p,q),w and induction hypothesis)
= hµ(σ(t1, . . . , tk))(p,q)

(by definition of hµ)

The proof of the second statement is literally the same as the proof of the second statement
of Lemma 4.7. �

Thus we obtain the following theorem for bottom-up tree series transducers [see 10, Corol-
lary 5.5]. It remains open to prove stronger statements for restricted semirings; e. g., for idempotent
semirings [18].

Theorem 4.13 Let A be a commutative and complete semiring.

[p][n][l][d][h]–BOT(A) ; [p][n][l][h]bd–BOT(A) = [p][n][l][d][h]–BOT(A) (17)

Proof: The statement follows from Lemma 4.12. �

5 Compositions of Top-down Tree Series Transformations

Let us first review the known results about compositions of top-down tree series transformations.
Note that top-down tree transducers are essentially polynomial top-down tree series transducers
over B (see [10, Section 4.3]) In [1, Theorem 1] it is shown that

p–TOP(B) ; pnl–TOP(B) ⊆ p–TOP(B) pt–TOP(B) ; pl–TOP(B) ⊆ p–TOP(B)
d–TOP(B) ; pn–TOP(B) ⊆ p–TOP(B) dt–TOP(B) ; p–TOP(B) ⊆ p–TOP(B) .

Some results were extended to arbitrary commutative and complete semirings A in [20, Theo-
rem 2.4], which shows that

nl–TOP(A) ; nl–TOP(A) = nl–TOP(A) ,
and in [10, Theorem 5.18], which shows that

[n][l]d–TOP(A) ; dnl–TOP(A) = [n][l]d–TOP(A)
[n][l]bdt–TOP(A) ; [n][l]d–TOP(A) = [n][l]d–TOP(A) .

Without any additional construction we can already generalize the former statement of [10, The-
orem 5.18]. We basically exploit the fact that nondeleting, linear top-down tree series transducers
are as powerful as nondeleting, linear bottom-up tree series transducers [see 10, Theorem 5.24].
Thus given two top-down tree series transducers M ′ and M ′′, of which M ′′ is nondeleting and
linear, we first construct a nondeleting, linear bottom-up tree series transducer M2 such that
‖M2‖ = ‖M ′′‖. Note that M2 is td-deterministic (but not necessarily bu-deterministic) whenever
M ′′ is td-deterministic. Then we can apply the simple composition to M ′ and M2 (see Defini-
tion 4.10) and obtain a tree series transducer M . It is easily seen that M is top-down, because M2

is nondeleting and linear. Moreover, M is td-deterministic if M ′ and M2 are td-deterministic.

17

Theorem 5.1 Let A be a commutative and complete semiring.
[n][l][d]–TOP(A) ; [d]nl–TOP(A) = [n][l][d]–TOP(A)

Proof: The decomposition is trivial, so it remains to check the composition. Let M ′ and M ′′ be
top-down tree series transducers such that M ′′ is nondeleting and linear. By [10, Theorem 5.24]
there exists a nondeleting, linear bottom-up tree series transducer M2 such that ‖M2‖ = ‖M ′′‖.
Moreover, the td-determinism property is preserved by this construction. Let M = M ′ ;sM2.
By Lemma 4.12 we have ‖M‖ = ‖M ′‖ ; ‖M2‖. Moreover, it is easily observed that M is in fact
top-down, because M2 is nondeleting and linear. Moreover, M is td-deterministic (respectively,
nondeleting, linear), if M ′ and M2 are td-deterministic (respectively, nondeleting, linear). �

Using the same apparatus, we should also like to generalize the latter statement of [10, Theo-
rem 5.18]; i. e.,

[n][l]bdt–TOP(A) ; [n][l]d–TOP(A) = [n][l]d–TOP(A) .
So let M ′ and M ′′ be top-down tree series transducers. The first step is to construct a bottom-up
tree series transducer M2, which is semantically-equivalent to M ′′. However, if M ′′ is not linear,
then, in general, such a tree series transducer need not exist [because p–TOP(B) 6⊆ p–BOT(B)].
Thus we restrict ourselves to linear M ′′. Consequently, let M ′ be boolean, deterministic, and
total, and let M ′′ be linear. We first construct a linear bottom-up tree series transducer M2 that
computes the same tree series transformation as M ′′ (we follow the construction found in [15,
Theorem 4.26]). The advantage of M2 is that Proposition 4.6 is applicable to it. Then we apply
the composition to M ′ and M2 and obtain a tree series transducer M1 that computes the tree
series transformation ‖M1‖ = ‖M ′‖ ; ‖M2‖. Finally, we observe an important property (namely,
that “checking followed by deletion” is not possible) and manipulate M1 such that we obtain a
top-down tree series transducer M that computes ‖M‖ = ‖M1‖. First we need an easy observation.

Observation 5.2 (cf. Proposition 4.12 of [15]) Let M = (Q,Σ,∆,A, F, µ) be a boolean, de-
terministic, and total top-down tree series transducer. Then for every t ∈ TΣ there exists a unique
q ∈ Q such that hµ(t)q = 1 u for some u ∈ T∆.

Proof: Essentially the proof can be found in the proof of [15, Proposition 4.12]. Zero-divisor
freeness is not required because M is boolean and it is straightforward to show that hµ(t)q is
boolean. �

Theorem 5.3 Let A be a commutative and complete semiring.
bdt–TOP(A) ; l–TOP(A) ⊆ TOP(A)

Proof: Let M ′ = (Q′,Σ,Γ,A, F ′, µ′) be a boolean, deterministic, and total top-down tree series
transducer, and let M ′′ = (Q′′,Γ,∆,A, F ′′, µ′′) be a linear top-down tree series transducer. First
we construct the linear bottom-up tree series transducer M2 = (Q2,Γ,∆,A, F2, µ2) from M ′′ as
presented in [15, Definition 4.24]. Clearly, ‖M2‖ = ‖M ′′‖ by [15, Lemma 5.25]. Moreover, it is
noteworthy that we have the following two properties. There is a state ⊥ ∈ Q2 and an α ∈ ∆0

such that:

(a) hµ2(t)⊥ = 1 α for every t ∈ TΓ; and

(b) for every k ∈ N, i ∈ [k], γ ∈ Γk, q, q1, . . . , qk ∈ Q2, and u ∈ supp((µ2)k(γ)q,q1···qk
)

i ∈ var(u) ⇐⇒ qi 6= ⊥ .

Now we may composeM ′ withM2 using the simple composition (see Definition 4.10). We obtain
the tree series transducer M1 = M ′ ;sM2 (actually M1 is a tree series transducer of type II [23])
withM1 = (Q1,Σ,∆,A, F1, µ1). We show thatM1 has the following properties (cf. [23, Lemma 2]):

(i) hµ1(t)(p,⊥) = 1 α for every t ∈ TΣ and p ∈ Q′;

18

(ii) supp((µ1)k(σ)q,w) is linear for every k ∈ N, σ ∈ Σk, q ∈ Q1, and w ∈ Q1(Xk)∗; and

(iii) for every k ∈ N, i ∈ [n], σ ∈ Σk, (p, q) ∈ Q1, w = (p1, q1)(xi1) · · · (pn, qn)(xin) ∈ Q1(Xk)∗,
and u ∈ supp((µ1)k(σ)(p,q),w)

i ∈ var(u) ⇐⇒ qi 6= ⊥ .

(i) By the proof of Lemma 4.12 we know that hµ1(t)(p,⊥) = hµ2(hµ′(t)p)⊥. By Observation 5.2 we
know that hµ′(t)p = 1u for some u ∈ TΓ. Moreover, by Property (a) we have that hµ2(1u)⊥ = 1α;
thus hµ1(t)(p,⊥) = 1 α.
(ii–iii) These properties are easily observed because M ′ is output-linear and output-nondeleting
and M2 is linear. For Property (iii) one also needs Statement (b).

Let n ∈ N. We define normn : T∆(Zn) −→ T∆(Zn) by normn(u) = normn(u, 1) for every
u ∈ T∆(Zn) where

normn(u, n) = u

normn(u, i) =

{
normn(u, i+ 1) if i ∈ var(u),
normn−1(u[zj−1]j∈[n]\[i], i) otherwise

for every i ∈ [n−1]. Thus norm3(z3) = z1. Further, we define the mapping del : Q1(X)∗ −→ Q1(X)∗

for every (p, q) ∈ Q1, i ∈ N+, and w ∈ Q1(X)∗ by

del(ε) = ε

del((p, q)(xi) · w) =

{
del(w) if q = ⊥,
(p, q)(xi) · del(w) if q 6= ⊥ .

We obtain M = (Q1,Σ,∆,A, F1, µ) as follows. For every k ∈ N, σ ∈ Σk, q ∈ Q1, and
w = q1(xi1) · · · qn(xin) ∈ Q1(Xk)∗ let

µk(σ)q,w =
∑

w′∈Q1(Xk)∗,del(w′)=w

(∑
u′∈T∆(Z)

((µ1)k(σ)q,w′ , u′) norm|w′|(u′)
)
.

Clearly, M is a top-down tree series transducer. We prove
hµ(t)(p,q) = hµ1(t)(p,q)

for every t ∈ TΣ and (p, q) ∈ Q1 such that q 6= ⊥. Let t = σ(t1, . . . , tk) for some k ∈ N, σ ∈ Σk,
and t1, . . . , tk ∈ TΣ.

hµ(σ(t1, . . . , tk))(p,q)

=
∑

w∈Q(Xk)∗,
w=(p1,q1)(xi1)···(pn,qn)(xin)

µk(σ)(p,q),w←−(hµ(tij)(pj ,qj))j∈[n]

(by definition of hµ)

=
∑

w∈Q(Xk)∗,
w=(p1,q1)(xi1)···(pn,qn)(xin)

µk(σ)(p,q),w←−(hµ1(tij)(pj ,qj))j∈[n]

(by induction hypothesis because qj 6= ⊥)

=
∑

w∈Q(Xk)∗,
w=(p1,q1)(xi1)···(pn,qn)(xin)

(∑
w′∈Q1(Xk)∗,del(w′)=w(∑

u′∈T∆(Z)

((µ1)k(σ)(p,q),w′ , u′) norm|w′|(u′)
))
←−(hµ1(tij)(pj ,qj))j∈[n]

(by definition of µk(σ)(p,q),w)

19

=
∑

w′∈Q1(Xk)∗,
del(w′)=(p1,q1)(xi1)···(pn,qn)(xin)

(∑
u′∈T∆(Z)

((µ1)k(σ)(p,q),w′ , u′) norm|w′|(u′)
)

←−(hµ1(tij)(pj ,qj))j∈[n]

=
∑

w′∈Q1(Xk)∗,
w′=(p1,q1)(xi1)···(pn,qn)(xin)

(µ1)k(σ)(p,q),w′←−(hµ1(tij)(pj ,qj))j∈[n]

(by Observation 3.2 because hµ1(tij)(pj ,⊥) = 1 α)

= hµ1(σ(t1, . . . , tk))(p,q)
(by definition of hµ1)

It follows that ‖M‖ = ‖M1‖ and thus the main statement is proved. �

Acknowledgements: The author wishes to express his deepest gratitude to the referees of the
conference version [22] of this paper. Their comments enabled the author to substantially improve
the presentation of the results.

References

[1] B. S. Baker. Composition of top-down and bottom-up tree transductions. Inform. Comput.,
41(2):186–213, 1979.

[2] J. Berstel and C. Reutenauer. Recognizable formal power series on trees. Theoret. Comput.
Sci., 18(2):115–148, 1982.

[3] B. Borchardt. Code selection by tree series transducers. In Proc. 9th Int. Conf. on Implemen-
tation and Application of Automata, volume 3317 of LNCS, pages 57–67. Springer, 2004.

[4] B. Borchardt and H. Vogler. Determinization of finite state weighted tree automata. J. Autom.
Lang. Combin., 8(3):417–463, 2003.

[5] S. Bozapalidis. Equational elements in additive algebras. Theory Comput. Systems, 32(1):
1–33, 1999.

[6] S. Bozapalidis. Context-free series on trees. Inform. Comput., 169(2):186–229, 2001.

[7] S. Bozapalidis and G. Rahonis. On the closure of recognizable tree series under tree homomor-
phism. In M. Droste and H. Vogler, editors, Weighted Automata—Theory and Applications,
page 34. Technische Universität Dresden, 2004.

[8] K. Culik II and J. Kari. Digital images and formal languages. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3 — Beyond Words, chapter 10, pages 599–
616. Springer, 1997.

[9] J. Engelfriet. Bottom-up and top-down tree transformations—a comparison. Math. Systems
Theory, 9(3):198–231, 1975.

[10] J. Engelfriet, Z. Fülöp, and H. Vogler. Bottom-up and top-down tree series transformations.
J. Autom. Lang. Combin., 7(1):11–70, 2002.

[11] J. Engelfriet and E. M. Schmidt. IO and OI I. J. Comput. System Sci., 15(3):328–353, 1977.

[12] Z. Ésik and W. Kuich. Formal tree series. J. Autom. Lang. Combin., 8(2):219–285, 2003.

20

[13] C. Ferdinand, H. Seidl, and R. Wilhelm. Tree automata for code selection. Acta Inform., 31
(8):741–760, 1994.

[14] Z. Fülöp, Z. Gazdag, and H. Vogler. Hierarchies of tree series transformations. Theoret.
Comput. Sci., 314:387–429, 2004.

[15] Z. Fülöp and H. Vogler. Tree series transformations that respect copying. Theory Comput.
Systems, 36(3):247–293, 2003.

[16] J. S. Golan. Semirings and their Applications. Kluwer Academic, Dordrecht, 1999.

[17] J. Graehl and K. Knight. Training tree transducers. In S. Dumais, D. Marcu, and S. Roukos,
editors, Proc. of the Human Language Technology Conf. of the North American Chapter of
the ACL, pages 105–112. Association for Computational Linguistics, 2004.

[18] U. Hebisch and H. J. Weinert. Semirings—Algebraic Theory and Applications in Computer
Science. World Scientific, Singapore, 1998.

[19] W. Kuich. Formal power series over trees. In S. Bozapalidis, editor, Proc. 3rd Int. Conf. on
Developments in Language Theory, pages 61–101. Aristotle University of Thessaloniki, 1997.

[20] W. Kuich. Full abstract families of tree series I. In J. Karhumäki, H. A. Maurer, G. Paun,
and G. Rozenberg, editors, Jewels are Forever, pages 145–156. Springer, 1999.

[21] W. Kuich. Tree transducers and formal tree series. Acta Cybernet., 14(1):135–149, 1999.

[22] A. Maletti. Compositions of bottom-up tree series transformations. In Z. Ésik and Z. Fülöp,
editors, Proc. 11th Int. Conf. Automata and Formal Languages, pages 187–199. University of
Szeged, 2005.

[23] A. Maletti. The power of tree series transducers of type I and II. In C. de Felice and A. Restivo,
editors, Proc. 9th Int. Conf. Developments in Language Theory, volume 3572 of LNCS, pages
338–349. Springer, 2005.

[24] M. Mohri. Finite-state transducers in language and speech processing. Comput. Linguist., 23
(2):269–311, 1997.

[25] W. C. Rounds. Mappings and grammars on trees. Math. Systems Theory, 4(3):257–287, 1970.

[26] J. W. Thatcher. Generalized2 sequential machine maps. J. Comput. System Sci., 4(4):339–367,
1970.

21

