
Hasse diagrams for classes of deterministic
bottom-up tree-to-tree-series transformations

Andreas Malettia

aFakultät Informatik, Technische Universität Dresden, D–01062 Dresden, Germany

Received 19 May 2004; accepted 9 February 2005

Communicated by Z. Ésik

Abstract

The relationship between classes of tree-to-tree-series and o-tree-to-tree-series transformations,
which are computed by restricted deterministic bottom-up weighted tree transducers, is investi-
gated. Essentially, these transducers are deterministic bottom-up tree series transducers, except
that the former are defined over monoids whereas the latter are defined over semirings and only
use the multiplicative monoid thereof. In particular, the common restrictions of nondeletion,
linearity, totality, and homomorphism can equivalently be defined for deterministic bottom-up
weighted tree transducers.

Using well-known results of classical tree transducer theory and also new results on deter-
ministic weighted tree transducers, classes of tree-to-tree-series and o-tree-to-tree-series trans-
formations computed by restricted deterministic bottom-up weighted tree transducers are ordered
by set inclusion. More precisely, for every commutative monoid and all sensible combinations
of the above mentioned restrictions, the inclusion relation of the classes of tree-to-tree-series and
o-tree-to-tree-series transformations is completely conveyed by means of Hasse diagrams.

Keywords: Tree Transducer, Semiring, Tree Series, Hasse Diagram

1. Introduction

Bottom-up tree series transducers [14, 21, 31, 20] were introduced as a generalization of
bottom-up tree transducers [35, 38, 12] and bottom-up weighted tree automata [37, 29, 6, 5].

Email address: maletti@tcs.inf.tu-dresden.de (Andreas Maletti)
1Supported by the German Research Foundation (DFG, GK 334/3)

c© 2005 Elsevier B.V. All rights reserved. doi: 10.1016/j.tcs.2005.02.005

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 201

The latter have been applied to code selection in compilers [18, 4] and tree pattern matching [36].
Moreover, a rich theory of bottom-up tree transducers was developed (cf. [12, 1, 13, 23, 24, 34, 8]
as seminal or survey papers and monographs) during the seventies, whereas bottom-up weighted
tree automata just recently received more attention (e.g., [36, 37, 29, 6, 5, 3, 10, 11, 17]).

In [14, 21, 22, 20] several generalizations of well-known theorems of the theory of tree trans-
ducers have been proved for bottom-up tree series transducers, e.g.,

• the generalization of the decomposition of the class of bottom-up tree transformations (cf.
Theorem 5.7 of [14] and page 220 of [12]); in its turn the result of [12] generalizes the
decomposition of gsm-mappings as proved in [33];

• the generalization of (some) composition hierarchy results for bottom-up tree transforma-
tion classes (cf. Theorem 6.24 of [20] and Corollary 8.13(iii) of [23]);

• the generalization of the equivalence of a rewrite semantics and the initial algebra seman-
tics for bottom-up tree transducers (cf. Theorem 5.10 of [22] and Lemma 5.6 of [12]).

Roughly speaking, a bottom-up tree series transducer is a bottom-up tree transducer in which
the transitions carry a weight; the weight is an element of some semiring. The rewrite seman-
tics works as follows. Suppose that the transducer has processed all direct subtrees of some
input tree, i.e., it (nondeterministically) computed output trees and their corresponding weights.
Then, according to the states in which the computation of the output trees ended, it selects a tree
and corresponding weight from its transition table. The selected tree and the output trees are
combined with the help of substitution and the weights are combined by means of the semi-
ring multiplication. If for some pair of input and output trees there is more than one computation
ending in a final state, then the weights of these computations are combined by means of the
semiring addition.

In this paper, we deal with deterministic bottom-up tree series transducers. In this case,
for every input tree there is at most one successful computation (cf. Proposition 3.12 of [14]),
i.e., at most one computed output tree and its corresponding weight. Thus the semiring addi-
tion is irrelevant and we base our investigations on so-called deterministic bottom-up weighted
tree transducers (for short: deterministic bu-w-tt) over some multiplicative monoid. Essentially,
these are deterministic bottom-up tree series transducers over some semiring, of which only the
multiplicative part is used.

Specifically, we deal with two modes of tree series substitution. The first is called pure
tree series substitution [7, 14] (for short: pure substitution) and represents a computational ap-
proach, i.e., the output trees represent values of computations, and the weight associated to an
output tree can be viewed as the cost of computing this value. When combining output trees,
their weights are simply multiplied to obtain the weight of the combined output tree. This is ir-
respective of the number of uses of an output tree, i.e., an output may be copied without penalty,
which represents the computational approach in the sense that a value is available and can be
reused without recomputation. On the other hand, we also investigate tree series substitution re-
specting occurrences [21] (for short: o-substitution), which represents a more material approach.
There the weights of the output trees are taken to the n-th power, if the corresponding output tree
is used in n copies. In this approach, an output tree stands for a composite, and the weight of an
output tree reflects the (monetary) cost of creating or obtaining this particular composite. When
combining composites into a new composite, its cost is obtained by multiplying the costs of its
components; each component taken as often as needed to assemble the composite.

202 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

In the same way as for deterministic bottom-up tree transducers or deterministic bottom-up
tree series transducers, we can also define restrictions for deterministic bu-w-tt, e.g., the restric-
tions of nondeletion, linearity, totality, and homomorphism (cf., e.g., [12]). The class of tree-to-
tree-series transformations, which is computed by deterministic bu-w-tt obeying the restrictions π
(e.g., being a nondeleting homomorphism) over the monoid A, is denoted by π–BOTmod(A)
where mod is either ε (the empty word) or o. In the former case, the semantics is defined using
pure substitution, whereas o-substitution is used in the latter case. We abbreviate each restriction
by its first letter, e.g., h abbreviates homomorphism, and use juxtaposition of the letters to denote
a combination of restrictions, e.g., hn for nondeleting homomorphism.

The monoids (A,�, 1) we employ have an absorbing element 0 ∈ A and are denoted by
(A,�, 1, 0). Our main results are present in the Hasse diagrams contained in Section 4 (cf. The-
orem 4.8, Theorem 4.16, Theorem 4.19, Theorem 4.23, and Theorem 4.25). Specifically, we
conclude that

• the monoids Z1 and Z2 are (up to isomorphism) the only monoids A such that, for every
combination π of restrictions, π–BOTo(A) = π–BOT(A) holds (cf. Corollary 4.6), and

• only in idempotent monoidsA the equality hn–BOTo(A) = hn–BOT(A) holds (cf. Corol-
lary 4.22).

Let us discuss the first item in some detail. It is rather clear that for Z1 and Z2 pure and
o-substitution coincide, and for all other monoidsA = (A,�, 1, 0) there is at least one element a
different from both 0 and 1. Consider an output tree weighted a and another one weighted 1. The
property, which separates pure and o-substitution in this case, is that pure substitution may tell
those two different output trees apart even when deleting them. This is due to the fact that, when
using pure substitution, the weight of the deleted output tree is still accounted, which is not the
case for o-substitution.

Considering the second item, it is again straightforward to observe the equality, because
an = a for all elements a of the idempotent monoid and n ≥ 1. In a non-idempotent monoid
the property a , a2 can be used to separate pure and o-substitution with the help of a copying
homomorphism bu-w-tt. Therefore, imagine an output tree with weight a. If this output is used
in a transition which copies it, then pure substitution accounts a just once while o-substitution
accounts a twice.

In the following let us consider combinations π of restrictions which do not contain the ho-
momorphism restriction. It turns out that

• π–BOTo(A) ⊆ π–BOT(A) for every periodic and commutative monoid A, whenever the
nondeletion restriction is present in π (cf. Lemma 4.12),

• π–BOT(A) ⊆ π–BOTo(A) for every periodic and commutative monoid A, whenever the
linearity restriction is present in π (cf. Lemma 4.12),

• π–BOT(A) ⊆ π–BOTo(A) for every periodic, commutative, and regular monoid A (cf.
Lemma 4.17), and

• π–BOTo(A) = π–BOT(A) for every periodic and commutative groupA (cf. Lemma 4.24).

All four results build on the properties of periodicity and commutativity, of which the former
allows us to keep track of the weights in the states (because there are only finitely many different
powers of any element), and the latter allows us to reorder the factors. Furthermore, the results

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 203

mentioned above do not hold for π containing the homomorphism restriction, because of the
additional states required for the book-keeping.

In the situation encountered in the first item, the weight a of an output tree is taken to the
n-th power by means of o-substitution where n ≥ 1. Pure substitution does account for the
weight a of the output tree exactly once, but the remaining an−1 can be remembered in the state
and applied to the transition weight. The nondeletion property is necessary, because otherwise
a might be raised to the 0-th power by o-substitution, thereby essentially neglecting a. However,
pure substitution again accounts a once, and in general, it is not possible to “divide” by a. Given
a group, the mentioned division is possible, which is explains why π–BOTo(A) ⊆ π–BOT(A) in
the fourth result.

The situation is quite similar for the second result. Pure substitution accounts the weight a
of an output tree exactly once and o-substitution may account a once or not at all, because of
the linearity restriction. Due to periodicity and commutativity we can keep track of the missing
factor a and apply it to the transition weight, in case a is not accounted by o-substitution. Finally,
if the linearity condition is absent, then o-substitution may account the weight a more often than
pure substitution. In general there is no way to get rid of this additional factor unless the monoid
is regular, which explains the third result and the direction π–BOT(A) ⊆ π–BOTo(A) in the last
result.

Moreover, for every monoid A we have π–BOTo(A) = π–BOT(A), if both the nondeletion
and linearity restriction are present in π (cf. Theorem 5.5 of [21] and Proposition 4.4). In
the remaining cases for commutative monoids A and combinations π of restrictions we have
that π–BOTo(A) and π–BOT(A) are incomparable with respect to set inclusion. In particular,
if the monoid A is non-periodic, then, for every combination π of restrictions not containing
both the nondeletion and linearity restriction, we obtain the incomparability of π–BOTo(A) and
π–BOT(A) (cf. Lemma 4.7).

This paper is structured as follows. Section 2 reviews the relevant basic mathematical notions
and notations, in particular partial orders, trees and bottom-up tree transducers, monoids and
semirings, and substitutions of formal tree series. Section 3 recalls the definition of deterministic
bottom-up tree series transducers from [14] and introduces deterministic bu-w-tt along with the
aforementioned restrictions. Moreover, we relate the notions of deterministic bottom-up tree
series transducer, deterministic bu-w-tt, and deterministic tree transducer. Finally, Section 4
details the Hasse diagrams obtained for the various subclasses of tree-to-tree-series and o-tree-
to-tree-series transformations computed by restricted deterministic bu-w-tt. The Hasse diagrams
will be complete in the sense that we present a Hasse diagram for every commutative monoid
with an absorbing element 0.

2. Preliminaries

In this section we present some basic notions and notations required in the sequel. The first
subsection recalls partial orders [9] and associated notions. Words, trees, and tree transducers
[32, 23, 24] are considered in the second subsection, whereas the third subsection is dedicated to
algebraic structures and, in particular, monoids [27, 28] and semirings [30, 26, 25]. Finally, the
section is concluded by the presentation of formal tree series [2, 30, 7] and tree series substitution
[7, 14, 21].

The set {0, 1, 2, . . .} of all non-negative integers is denoted by N, and the set {1, 2, . . .} of all
positive integers is denoted by N+. For every i, j ∈ N the interval { k ∈ N | i ≤ k ≤ j } is

204 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

abbreviated by [i, j]. In particular, we use the shorthand [j] instead of [1, j]. Recall that card(S)
denotes the cardinality, i.e., the number of elements, of a finite set S , hence card([j]) = j. The
power set of a set S is the set of all its subsets, i.e., P(S) = { S ′ | S ′ ⊆ S }, and the set of all
finite subsets is Pf(S) = { S ′ ⊆ S | S ′ is finite }. We write f : S 1 −→ S 2 for a total mapping
from the nonempty set S 1 into the nonempty set S 2. The range of f is then defined to be the set
{ f (s1) | s1 ∈ S 1 }.

2.1. Partial orders

Given a nonempty set S , a binary relation ≤ ⊆ S × S is called partial order (on S), if ≤ is
(i) reflexive, i.e., for every s ∈ S we have s ≤ s, (ii) antisymmetric, i.e., for every s1, s2 ∈ S the
facts s1 ≤ s2 and s2 ≤ s1 imply s1 = s2, and (iii) transitive, i.e., for every s1, s2, s3 ∈ S with
s1 ≤ s2 and s2 ≤ s3 also s1 ≤ s3 holds.

A partial order ≤ ⊆ S × S , which fulfils for every s1, s2 ∈ S the condition that s1 ≤ s2 or
s2 ≤ s1, is said to be a total order. Contrary, whenever neither s1 ≤ s2 nor s2 ≤ s1, then s1 and s2
are said to be incomparable. As usual, the strict order < ⊆ S × S is derived from ≤ by setting
s1 < s2, if and only if s1 ≤ s2 and s1 , s2. Moreover, we define the covering relation l ⊆ S × S
derived from ≤ by setting s1 l s2, if s1 < s2 and for every s ∈ S the condition s1 ≤ s < s2
implies s = s1.

Finite partial orders can be visualized by means of Hasse diagrams [9]. A Hasse diagram is
a (directed, acyclic, and unlabelled) graph G = (S ,l) with the set S of vertices and the set l of
edges, i.e., there is a directed edge from vertex s1 ∈ S to vertex s2 ∈ S , if and only if s1 l s2.
In pictorial expressions, the vertices are displayed by naming the element of S , and the edges
are drawn as line segments connecting vertices. We generally assume that all edges are directed
upwards, and a line segment is only supposed to intersect with a vertex, if the vertex is either its
starting or ending point.

Finally, a binary relation ≡ ⊆ S × S is said to be an equivalence relation, if ≡ is (i) reflexive,
(ii) transitive, and (iii) symmetric, i.e., for every s1, s2 ∈ S the property s1 ≡ s2 implies s2 ≡ s1.
The equivalence class of s ∈ S (with respect to ≡) is the set [s]≡ = { s′ ∈ S | s ≡ s′ }.

2.2. Words, trees, and bottom-up tree transducers

By a word of length n ∈ N we mean an element of the n-fold Cartesian product S n = S×· · ·×S
of a set S . The set of all words over S is denoted by S ∗, where the particular element () ∈ S 0,
called the empty word, is displayed as ε, and the length of a word w ∈ S ∗ is denoted by |w|; thus
|ε| = 0.

Every nonempty and finite set S is called alphabet, of which elements are termed symbols.
A ranked alphabet is defined to be a pair (Σ, rk), of which Σ is an alphabet and rk : Σ −→ N
associates to every symbol of Σ its rank. For every n ∈ N we use Σ(n) to denote the set of symbols
having rank n, i.e., Σ(n) = {σ ∈ Σ | rk(σ) = n }. In the following, we usually assume rk to be
implicitly given, identify (Σ, rk) with Σ, and specify the ranked alphabet by listing the elements
of Σ with their ranks put in parentheses as superscripts as, for example, in {σ(2), α(0)}.

Henceforth, let Σ be a ranked alphabet and X = { xi | i ∈ N+ } be a fixed countable set of
(formal) variables. The set of (finite, labelled, and ordered) Σ-trees indexed by V ⊆ X, denoted
by TΣ(V), is inductively defined to be the smallest set T such that (i) V ⊆ T and (ii) for every
k ∈ N, σ ∈ Σ(k), and s1, . . . , sk ∈ T also σ(s1, . . . , sk) ∈ T . Since we generally assume that
Σ ∩ X = ∅, we write α instead of α() for every α ∈ Σ(0). The set TΣ of ground trees is an

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 205

abbreviation for TΣ(∅). Moreover, given s ∈ TΣ(V) and unary γ ∈ Σ(1), we abbreviate

γ(γ(· · · (γ(s)) · · ·))︸ ︷︷ ︸
n-times γ

simply by γn(s). Note that γ0(s) = s.
The number of occurrences of a given variable or symbol z ∈ V ∪ Σ in s ∈ TΣ(V) is denoted

by |s|z. For every n ∈ N we denote {x1, . . . , xn} by the shorthand Xn (note that X0 = ∅). Given
n ∈ N, s ∈ TΣ(Xn), and t1, . . . , tn ∈ TΣ(V), the expression s[t1, . . . , tn] denotes the result of
replacing (in parallel) for every i ∈ [n] every occurrence of xi in s by ti, i.e., xi[t1, . . . , tn] = ti for
every i ∈ [n] and

σ(s1, . . . , sk)[t1, . . . , tn] = σ(s1[t1, . . . , tn], . . . , sk[t1, . . . , tn])

for every k ∈ N, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ(Xn). Moreover, for tree languages L ⊆ TΣ(Xk) and
L1, . . . , Lk ⊆ TΣ we use

L[L1, . . . , Lk] = { s[t1, . . . , tk] | s ∈ L, t1 ∈ L1, . . . , tk ∈ Lk } .

Let Y ⊂ X be finite and let s ∈ TΣ(X). The tree s is called nondeleting in Y (respectively,
linear in Y), if every y ∈ Y occurs at least once, i.e., |s|y ≥ 1, (respectively, at most once, i.e.,
|s|y ≤ 1) in s. We recursively define size, height : TΣ(V) −→ N+ by the following equalities:

• for every v ∈ V we have size(v) = 1 = height(v),

• for every k ∈ N, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ(V) we have

size(σ(s1, . . . , sk)) = 1 +
∑
i∈[k]

size(si)

height(σ(s1, . . . , sk)) = 1 + max
i∈[k]

height(si) .

Let Σ be a ranked alphabet in which just one symbol is non-nullary, i.e.,
⋃

n∈N+
Σ(n) = {σ}. The set

of fully balanced (and symmetric) trees (over Σ) is defined to be the smallest subset T ⊆ TΣ such
that Σ(0) ⊆ T , and given a fully balanced tree s ∈ T , the tree σ(s, . . . , s) ∈ T is fully balanced.
Note that if card(Σ(0)) = 1, then the height of a fully balanced tree already characterizes the tree
uniquely.

Finally, we shortly recall the concept of a deterministic bottom-up tree transducer [35, 38,
12, 23] (splitting up a rule into its state behavior and the computed output in an obvious way).
A deterministic bottom-up tree transducer is a tuple M = (Q,Σ,∆, F, δ, µ), where Q and F ⊆ Q
are finite sets of states and final states, respectively, Σ and ∆ are the input and output ranked
alphabet, respectively, δ = (δk

σ : Qk −→ Q)k∈N,σ∈Σ(k) is a family of transition mappings, and
(µk

σ : Qk −→ Pf(T∆(Xk)))k∈N,σ∈Σ(k) is a family of output mappings. Additionally, for every k ∈ N,
σ ∈ Σ(k), and q1, . . . , qk ∈ Q we require card(µk

σ(q1, . . . , qk)) ≤ 1. The semantics of deterministic
bottom-up tree transducers is defined inductively as follows. Let δ̂ : TΣ −→ Q be the mapping
with δ̂(σ(s1, . . . , sk)) = δk

σ (̂δ(s1), . . . , δ̂(sk)) for every k ∈ N, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ.
Further, let µ̂ : TΣ −→ Pf(T∆) with

µ̂(σ(s1, . . . , sk)) = µk
σ (̂δ(s1), . . . , δ̂(sk))[̂µ(s1), . . . , µ̂(sk)] .

206 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

The tree transformation computed by M is τM : TΣ −→ Pf(T∆) defined by

τM(s) = { t ∈ µ̂(s) | δ̂(s) ∈ F } .

Note that card(τM(s)) ≤ 1 for every s ∈ TΣ. The class of tree transformations computable by
deterministic bottom-up tree transducers is denoted by d–BOTtt.

2.3. Monoids and semirings

A monoid is an algebraic structure A = (A,⊗, 1) consisting of a carrier (set) A together
with a binary operation ⊗ : A2 −→ A and a constant element 1 ∈ A, such that the operation ⊗ is
associative, i.e., for every a1, a2, a3 ∈ A the equality a1⊗(a2⊗a3) = (a1⊗a2)⊗a3 is satisfied, and 1
is the unit element with respect to ⊗, i.e., for every a ∈ A we demand 1⊗a = a = a⊗1. A monoid
(B,�, 1) is a submonoid of A, if B ⊆ A and for every b1, b2 ∈ B it holds that b1 � b2 = b1 ⊗ b2.
The submonoid generated by A′ ⊆ A, denoted by 〈A′〉⊗, is the smallest submonoid (B,�, 1) ofA
such that A′ ⊆ B. Further, A is said to be commutative, if for every a1, a2 ∈ A the equality
a1 ⊗ a2 = a2 ⊗ a1 is fulfilled. The monoidA possesses an absorbing element 0 ∈ A, if for every
a ∈ A the equality a ⊗ 0 = 0 = 0 ⊗ a holds. If an absorbing element exists, then it is necessarily
unique. Moreover, it can be adjoined to every monoid not possessing an absorbing element. To
show this, let (A,⊗, 1) be a monoid and 0 < A. Then (A ∪ {0},�, 1) with a1 � a2 = a1 ⊗ a2, if
a1, a2 ∈ A, and otherwise a1 � a2 = 0 is a monoid with an absorbing element, namely 0. We
denote a monoid (A,�, 1) possessing the absorbing element 0 by (A,�, 1, 0). For the sake of
simplicity, we assume that, for no monoid considered, the element 1 is an absorbing element,
i.e., we ignore the trivial monoid with the singleton carrier set.

Let A = (A,⊗, 1) be a monoid. As usual, for every a ∈ A and n ∈ N we denote by an the
n-fold product a ⊗ · · · ⊗ a and set a0 = 1. Further, given n ∈ N and a family (ai)i∈[n] of ai ∈ A,
we also use the product (notation)

∏
i∈[n] ai = a1 ⊗ · · · ⊗ an, where the order is determined by the

total order 1 < 2 < · · · on the index set. Note that
∏

i∈[0] ai = 1. Next we define some common
properties of monoids. The monoidA is said to be

• finite, if A is finite,

• idempotent, if for every a ∈ A we have a ⊗ a = a,

• periodic, if for every a ∈ A there exist i, j ∈ N such that i , j and ai = a j.

• regular, if for every a ∈ A there exists an a′ ∈ A, also called a weak inverse of a, such that
a ⊗ a′ ⊗ a = a, and

• a group, if for every a ∈ A there exists an a′ ∈ A, also called the inverse of a, such that
a ⊗ a′ = 1 = a′ ⊗ a.

We denote groups by (A,⊗, (·)−1, 1), where (·)−1 : A −→ A maps each element to its (unique)
inverse. Furthermore, we say that a monoid A = (A,�, 1, 0) with an absorbing 0 is a group
(with an absorbing zero) and denote this by (A,�, (·)−1, 1, 0), if for every a ∈ A \ {0} there exists
an inverse element. The following proposition collects some trivial interrelations between the
aforementioned properties.

Proposition 2.1. LetA = (A,⊗, 1) be a monoid. We observe the following implications between
properties ofA.

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 207

Table 1: Various monoids and their properties.
monoid commutative finite idempotent periodic regular group

N yes NO NO NO NO NO
Z∞ yes NO NO NO yes yes
Z2 yes yes yes yes yes yes
Z3 yes yes NO yes yes yes
Z4 yes yes NO yes NO NO
Z6 yes yes NO yes yes NO
Rmax yes NO yes yes yes NO
LS NO NO NO NO NO NO

(i) Finiteness implies periodicity.
(ii) Idempotency implies periodicity and regularity.

(iii) If A is a group, then A is also regular and for every a ∈ A the equality a = a2 implies
a = 1.

Important monoids possessing an absorbing element include

• the multiplicative monoid of the non-negative integers N = (N, ·, 1, 0) with the common
operation of multiplication,

• the additive group of the integers Z∞ = (Z ∪ {+∞},+, 0, (+∞)) with the usual addition on
integers Z extended to (+∞) such that (+∞) is an absorbing element,

• the multiplicative group Z2 = ([0, 1], ·, 1, 0),

• the multiplicative group Z3 = ([0, 2], ·, 1, 0) with multiplication modulo 3,

• the multiplicative monoid Z4 = ([0, 3], ·, 1, 0) with multiplication modulo 4,

• the multiplicative monoid Z6 = ([0, 5], ·, 1, 0) with multiplication modulo 6,

• the max-monoid over the reals Rmax = (R∪{+∞,−∞},max, (−∞), (+∞)) with the standard
maximum operation on the reals R, and

• the language monoid LS = (P(S ∗), ◦, {ε}, ∅) for some alphabet S with concatenation of
words lifted to sets of words as multiplication.

The properties of the introduced monoids are summarized in Table 1, where we assume that
S is a non-trivial alphabet, i.e., card(S) > 1, otherwise LS is commutative.

A semiring (with one and absorbing zero) is an algebraic structure A = (A,⊕,�, 0, 1) with
the operations of addition ⊕ : A2 −→ A and multiplication � : A2 −→ A, of which (A,⊕, 0), also
called the additive monoid, and (A,�, 1, 0), also called the multiplicative monoid, are monoids.
Additionally, the former monoid is required to be commutative, the latter possesses 0 as an
absorbing element, and the monoids are connected via the distributivity laws, i.e., for every
a1, a2, a3 ∈ A the equalities a1�(a2⊕a3) = (a1�a2)⊕(a1�a3) and (a1⊕a2)�a3 = (a1�a3)⊕(a2�a3)
hold. A commutative semiring A = (A,⊕,�, 0, 1) is defined to be a semiring, in which the
monoid (A,�, 1, 0) is commutative.

208 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

In semirings we use the product notation of the multiplicative monoid and the sum (nota-
tion)

∑
i∈I ai for every index set I such that only finitely many ai ∈ A with i ∈ I are different

from 0. Note that the order is obviously irrelevant due to commutativity, and note further that∑
i∈[0] ai = 0. By convention, we assume that multiplication has a higher (binding) priority than

addition, e.g., we read a1 ⊕ a2 � a3 as a1 ⊕ (a2 � a3). Examples of semirings can be found, for
example, in [26, 25].

Proposition 2.2. There exists a monoid (A,�, 1, 0) with an absorbing 0 such that there does not
exist a semiring (A,⊕,�, 0, 1).

Proof. We firstly provide the operation table of such a monoid ({0, 1, a, b},�, 1, 0), which is even
commutative.

� 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a b
b 0 b b a

Suppose there exists a commutative monoid ({0, 1, a, b},⊕, 0) such that ({0, 1, a, b},⊕,�, 0, 1)
is a semiring. Consider the sum 1 ⊕ b.

1. Let 1⊕b ∈ {1, a}. Then by distributivity a� (1⊕b) = a⊕b = a, but b� (1⊕b) = b⊕a = b.
Hence a ⊕ b , b ⊕ a which is contradictory.

2. Let 1⊕b = b. Then again by distributivity a�(1⊕b) = a⊕b = b, but b�(1⊕b) = b⊕a = a.
Hence a ⊕ b , b ⊕ a which is contradictory.

3. Let 1 ⊕ b = 0. Then

(1 ⊕ b) ⊕ a = a , 1 = 1 ⊕ a � 0 = 1 ⊕ a � (1 ⊕ b) = 1 ⊕ a ⊕ b = 1 ⊕ (b ⊕ a) ,

which is a contradiction to associativity. �

However, we can always embed the multiplicative monoid (A,�, 1, 0) into a semiring as
follows. Let ⊥ < A and let A′ = A ∪ {⊥}. Further, define ⊕,⊗ : A′ × A′ −→ A′ for every
a1, a2 ∈ A′ by

a1 ⊕ a2 =

0 , if a1, a2 ∈ A
a1 , if a2 = ⊥

a2 , otherwise
and a1 ⊗ a2 =

a1 � a2 , if a1, a2 ∈ A
⊥ , otherwise .

Then (A′,⊕,⊗,⊥, 1) is a semiring (with a new zero).

2.4. Formal tree series

Let ∆ be a ranked alphabet and additionally V ⊆ X. Every ϕ : T∆(V) −→ A into a nonempty
set A is called formal tree series (over ∆, V, and A). We use A〈〈T∆(V)〉〉 to denote the set of
all formal tree series over ∆, V , and A. Given t ∈ T∆(V), we usually write (ϕ, t), termed the
coefficient of t, instead of ϕ(t) and

∑
t∈T∆(V)(ϕ, t) t instead of ϕ, in order to follow the established

conventions. For example,
∑

t∈T∆(V) size(t) t is the tree series which associates to every tree its

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 209

size. In addition, if there is an a ∈ A such that for every t ∈ T∆(V) the coefficient (ϕ, t) = a is
constant, then ϕ is said to be constant, and we use ã to abbreviate such ϕ.

Let (A,�, 1, 0) be a monoid with an absorbing 0 and ϕ ∈ A〈〈T∆(V)〉〉. The support of ϕ is
defined to be the set supp(ϕ) = { t ∈ T∆(V) | (ϕ, t) , 0 }. Whenever supp(ϕ) is finite, we say that
ϕ is a polynomial, and moreover, a polynomial ϕ is said to be a monomial, if card(supp(ϕ)) ≤ 1.
Clearly, a monomial ϕ obeys ϕ = a t for some a ∈ A and t ∈ T∆(V). The set of all monomial
(respectively, polynomial) formal tree series (over ∆, V , and A) is denoted by A[T∆(V)] (respec-
tively, A〈T∆(V)〉). A tree series ϕ ∈ A〈〈T∆(V)〉〉 is said to be boolean, if for every t ∈ T∆(V) the
coefficient obeys (ϕ, t) ∈ {0, 1}. Provided L ⊆ T∆(V), we define the characteristic tree series of
L by

(char(L), t) =

1 , if t ∈ L
0 , otherwise

for every t ∈ T∆(V). Note that char(L) is boolean and char(L) ∈ A〈T∆(V)〉 if and only if
L ∈ Pf(T∆(V)). Moreover, char(L) ∈ A[T∆(V)] if and only if L ∈ Pf(T∆(V)) and card(L) ≤ 1.

Provided that (A,⊕,�, 0, 1) is a semiring, we define the sum of ψ1, ψ2 ∈ A〈〈T∆(V)〉〉 pointwise
by (ψ1 ⊕ ψ2, t) = (ψ1, t) ⊕ (ψ2, t) for every t ∈ T∆(V). Tree substitution can then be generalized
to tree languages as well as to tree series over semirings. Let (A,⊕,�, 0, 1) be a semiring, n ∈ N,
ϕ ∈ A〈T∆(Xn)〉, and ψ1, . . . , ψn ∈ A〈T∆(V)〉. In [7, 14] the authors define an IO-substitution
[16, 15], i.e., for two occurrences of a variable x ∈ X the same tree is to be substituted, on tree
series. (Pure) substitution of (ψ1, . . . , ψn) into ϕ, denoted by ϕ←− (ψ1, . . . , ψn), is defined by

ϕ←− (ψ1, . . . , ψn) =
∑

t∈supp(ϕ),
(∀i∈[n]): ti∈supp(ψi)

(
(ϕ, t) �

∏
i∈[n]

(ψi, ti)
)

t[t1, . . . , tn] .

Irrespective of the number of occurrences of xi for some i ∈ [n], the coefficient (ψi, ti) is taken
into account exactly once, even if xi does not appear at all in t. This particularity led to the
introduction of a different notion of substitution, which is also an IO-substitution, defined in [21]
as follows.

ϕ
o

←− (ψ1, . . . , ψn) =
∑

t∈supp(ϕ),
(∀i∈[n]): ti∈supp(ψi)

(
(ϕ, t) �

∏
i∈[n]

(ψi, ti)|t|xi
)

t[t1, . . . , tn]

This notion of substitution, called o-substitution, takes (ψi, ti) into account as often as the cor-
responding xi appears in t. However, both notions are defined only for formal tree series over
semirings. Next, we restrict the substitutions to monomials and thereby obtain notions of substi-

tutions also defined for monoids. Note that
mod
←− refers to←− =

ε
←−, if mod = ε, and to

o
←−, if

mod = o.
Let (A,�, 1, 0) be a monoid, ϕ ∈ A[T∆(Xn)], ψ1, . . . , ψn ∈ A[T∆(V)] be an n-tuple of mono-

mials, and mod ∈ {ε, o} be a modifier. The mod-substitution of (ψ1, . . . , ψn) into ϕ, denoted

by ϕ
mod
←−? (ψ1, . . . , ψn), is defined for every a, a1, . . . , an ∈ A \ {0}, t ∈ T∆(Xn), i ∈ [n], and

t1, . . . , tn ∈ T∆(V) by the following axioms.

ϕ
mod
←−? () = ϕ (1)

0̃
mod
←−? (ψ1, . . . , ψn) = 0̃ (2)

210 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

ϕ
mod
←−? (ψ1, . . . , ψi−1, 0̃, ψi+1, . . . , ψn) = 0̃ (3)

a t ←−? (a1 t1, . . . , an tn) =
(
a �

∏
i∈[n]

ai

)
t[t1, . . . , tn] (4)

a t
o

←−? (a1 t1, . . . , an tn) =
(
a �

∏
i∈[n]

a
|t|xi
i

)
t[t1, . . . , tn] (5)

This way (1)–(4) characterize pure substitution on monomials, and (1)–(3) and (5) character-
ize o-substitution on monomials. It is easily seen using Proposition 3.4 of [21], that these are
really the restrictions of the respective notions of substitution, which are defined for semirings
(A,⊕,�, 0, 1), to their multiplicative monoid (A,�, 1, 0), i.e.,

ϕ
mod
←− (ψ1, . . . , ψn) = ϕ

mod
←−? (ψ1, . . . , ψn) .

Henceforth, we drop the star from the substitution on monomials.
Finally, we mention that [6, 31] introduce a notion of substitution based on the OI-substitution

approach [16, 15], in which different trees may be substituted for different occurrences of one
variable. There the number of occurrences of a certain formal variable is taken into account as
well. In this paper, we only deal with the IO-substitution approach.

3. Deterministic bottom-up weighted tree transducers

In this section, we recall the notion of a deterministic bottom-up tree series transducer [14,
21]. Then we present another model called deterministic bottom-up weighted tree transducer
(abbreviated deterministic bu-w-tt), and show that deterministic bu-w-tt over the multiplicative
monoid (A,�, 1, 0) of a semiring A = (A,⊕,�, 0, 1) are equivalent to deterministic bottom-up
tree series transducers over A. The main advantage of deterministic bu-w-tt is the fact that
they are defined over a monoid (A,�, 1, 0) only, and hence that we can deal with more general
algebraic structures (cf. Proposition 2.2). We present the necessary definitions in a compact style
and refer the reader to [14, 21] for an elaborated introduction into general tree series transducers
and weighted tree transducers.

Before we proceed with the definition of deterministic bottom-up tree series transducers, we
recall some basic notions concerning matrices. Let I and J be countable index sets and let S be
a set of entries. An (I × J)-matrix over S is a mapping K : I × J −→ S . The set of all matrices
over S with indices of I × J is denoted by S I×J . The element K(i, j) is called the (i, j)-entry of
the matrix K and also written as Ki, j. If it is understood that the matrix K is a row-vector or
column-vector (i.e., I or J is a singleton set, respectively), then we generally omit the element of
the singleton set when indexing elements of the matrix K. Accordingly, we write, for example,
K I instead of K I×{1}, whenever we do not want to stress that the matrix K is a column-vector.

Given a finite set Q of states, input and output ranked alphabets Σ and ∆, respectively, and a
semiringA = (A,⊕,�, 0, 1), a deterministic bottom-up tree representation (over Q, Σ, ∆, andA)
is a family (µk)k∈N of mappings, where for every k ∈ N the mapping µk has type

µk : Σ(k) −→ A[T∆(Xk)]Q×Qk
.

Moreover, for every k ∈ N, σ ∈ Σ(k), and w ∈ Qk there exists at most one q ∈ Q such that
µk(σ)q,w , 0̃. A deterministic bottom-up tree series transducer (over Σ and ∆) is defined as a
six-tuple M = (Q,Σ,∆,A, F, µ), where

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 211

• Q and F ⊆ Q are nonempty, finite sets of states and final states, respectively,

• Σ and ∆ are the input and output ranked alphabet, respectively; both disjoint to Q;

• A = (A,⊕,�, 0, 1) is a semiring, and

• µ is a deterministic bottom-up tree representation over Q, Σ, ∆, andA.

For every mod ∈ {ε, o}, k ∈ N, and σ ∈ Σ(k) the deterministic bottom-up tree representation
µ induces µk(σ)

mod
: (A〈T∆〉

Q)k −→ A〈T∆〉
Q defined componentwise for every q ∈ Q and

R1, . . . ,Rk ∈ A〈T∆〉
Q by

µk(σ)
mod

(R1, . . . ,Rk)q =
∑

q1,...,qk∈Q

µk(σ)q,(q1,...,qk)
mod
←−

(
(R1)q1 , . . . , (Rk)qk

)
.

Note that (A〈T∆〉
Q, (µk(σ)

mod
)k∈N,σ∈Σ(k)) defines a Σ-algebra, and TΣ is the initial Σ-algebra. There

exists a unique homomorphism hmod
µ : TΣ −→ A〈T∆〉

Q, which is defined for every k ∈ N, σ ∈ Σ(k),
and s1, . . . , sk ∈ TΣ by

hmod
µ (σ(s1, . . . , sk)) = µk(σ)

mod
(hmod
µ (s1), . . . , hmod

µ (sk)) .

It can easily be proved by structural induction that hmod
µ (s) ∈ A[T∆]Q for every s ∈ TΣ, hence we

can replace A〈T∆〉
Q by A[T∆]Q in the types of µk(σ)

mod
and hmod

µ . Finally, the mod-tree-to-tree-
series transformation, for short: mod-t-ts transformation, computed by M is τmod

M : TΣ −→ A[T∆]
specified for every s ∈ TΣ by τmod

M (s) =
∑

q∈F hmod
µ (s)q.

Definition 3.1. A deterministic bottom-up weighted tree transducer (over A), abbreviated de-
terministic bu-w-tt, is defined as M = (Q,Σ,∆,A, F, δ, µ) where

• Q and F ⊆ Q are finite and nonempty sets of states and final states, respectively,

• Σ and ∆ are the input and output ranked alphabet, respectively; both disjoint to Q;

• A = (A,�, 1, 0) is a monoid with an absorbing element 0,

• δ = (δk
σ : Qk −→ Q)k∈N,σ∈Σ(k) is a family of state transition mappings, and

• µ = (µk
σ : Qk −→ A[T∆(Xk)])k∈N,σ∈Σ(k) is a family of output mappings.

The deterministic bu-w-tt M is boolean, if for every k ∈ N and σ ∈ Σ(k) every monomial in the
range of µk

σ is boolean. We also make use of the following syntactic restrictions of deterministic
bu-w-tt. Let M = (Q,Σ,∆,A, F, δ, µ) be a deterministic bu-w-tt; we say that M is

• nondeleting (respectively, linear), if for every k ∈ N, q1, . . . , qk ∈ Q, and σ ∈ Σ(k) every
variable x ∈ Xk appears at least once, i.e., |t|x ≥ 1, (respectively, at most once, i.e., |t|x ≤ 1)
in any t ∈ supp(µk

σ(q1, . . . , qk)),

• total, if F = Q and µk
σ(q1, . . . , qk) , 0̃ for every k ∈ N, σ ∈ Σ(k), and q1, . . . , qk ∈ Q, and

• a homomorphism, if M is total and Q is a singleton.

212 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

In case M is a deterministic homomorphism bu-w-tt, we just say that M is a homomorphism
bu-w-tt. Finally, we should assign a formal semantics to deterministic bu-w-tt. In fact, we
define two different semantics, namely the tree-to-tree-series transformation, abbreviated t-ts
transformation, and the o-tree-to-tree-series transformation, abbreviated o-t-ts transformation.
Both are defined in the very same manner except for the type of substitution being used.

Definition 3.2. Let mod ∈ {ε, o} and M = (Q,Σ,∆,A, F, δ, µ) be a deterministic bu-w-tt over
A = (A,�, 1, 0). For every s ∈ TΣ we define δ̂ : TΣ −→ Q and µ̂mod : TΣ −→ A[T∆]
by structural recursion as follows. For every k ∈ N, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ we let
δ̂(σ(s1, . . . , sk)) = δk

σ (̂δ(s1), . . . , δ̂(sk)) and

µ̂mod(σ(s1, . . . , sk)) = µk
σ (̂δ(s1), . . . , δ̂(sk))

mod
←− (̂µmod(s1), . . . , µ̂mod(sk)) .

The mod-tree-to-tree-series transformation computed by M is the mapping τmod
M : TΣ −→ A[T∆]

specified for every s ∈ TΣ by

τmod
M (s) =

µ̂mod(s) , if δ̂(s) ∈ F
0̃ , otherwise .

Example 3.3. The deterministic bu-w-tt Msize = ({?},Σ,Σ,Z∞, {?}, δ, µ) with input and output
ranked alphabet Σ = {σ(2), α(0)}, state transition mappings δ = (δ2

σ, δ
0
α), and output mappings

µ = (µ2
σ, µ

0
α) is defined by

δ2
σ(?,?) = δ0

α() = ? , µ2
σ(?,?) = 1 σ(x1, x2) , and µ0

α() = 1 α .

We observe that for every s ∈ TΣ we have τMsize (s) = τo
Msize

(s) = size(s) s. Moreover, Msize is a
linear and nondeleting homomorphism bu-w-tt, which is not boolean.

In the sequel, we investigate the computational power of various subclasses of deterministic
bu-w-tt and compare their computational power by means of set inclusion. The next definition
establishes shorthands for such classes of mod-t-ts transformations also taking the two different
notions of substitution into account.

Definition 3.4. Let mod ∈ {ε, o} and A = (A,�, 1, 0) be a monoid. Further, let Pref = {n, l, t, h}
be a set of abbreviations standing for nondeleting, linear, total, and homomorphism, respectively.
Moreover, let r ⊆ Pref. The class dr–BOTmod(A) denotes the class of all mod-t-ts transforma-
tions τ : TΣ −→ A[T∆] such that there exists a deterministic bu-w-tt

M = (Q,Σ,∆,A, F, δ, µ)

with τmod
M = τ, and M obeys all the restrictions abbreviated in r. Henceforth, we omit the set

braces and the separating commata and just list the letters in r. We say that r is a prefix.
We generally omit the d and the prefix t (standing for deterministic and total) in case the prefix

h (standing for homomorphism) is present, because homomorphism tree transducers are deter-
ministic and total by definition. We define the set Π = {d, dn, dl, dt, h, dnl, dnt, hn, dlt, hl, dnlt, hnl}
of sensible combinations and the restrictions Πr = { π ∈ Π | r ∈ π } for every r ∈ Pref.

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 213

We note that all the restrictions and classes have been defined for deterministic bottom-up tree
series transducers [14, 21] as well. Next, we establish relations between deterministic bu-w-tt,
deterministic bottom-up tree series transducers, and deterministic bottom-up tree transducers.

Let us start by showing that deterministic bu-w-tt over multiplicative monoids of semirings
compute the same class of mod-t-ts transformations as deterministic bottom-up tree series trans-
ducers. Let A = (A,⊕,�, 0, 1) be a semiring, M1 = (Q1,Σ,∆,A, F1, µ1) be a deterministic
bottom-up tree series transducer, and M2 = (Q2,Σ,∆, (A,�, 1, 0), F2, δ2, µ2) be a deterministic
bu-w-tt over the multiplicative monoid of A. The device M1 is related to M2, if Q1 = Q2,
F1 = F2, and for every k ∈ N, σ ∈ Σ(k), and q, q1, . . . , qk ∈ Q1 we have (µ1)k(σ)q,(q1,...,qk) , 0̃
implies

(δ2)k
σ(q1, . . . , qk) = q and (µ2)k

σ(q1, . . . , qk) = (µ1)k(σ)q,(q1,...,qk) ,

as well as (µ1)k(σ)(δ2)k
σ(q1,...,qk),(q1,...,qk) = (µ2)k

σ(q1, . . . , qk). A straightforward induction on the
structure of s ∈ TΣ then shows for every mod ∈ {ε, o} that

(µ̂2)mod(s) = hmod
µ1

(s)δ̂2(s)

and thus τmod
M1

(s) = τmod
M2

(s), whenever M1 is related to M2. Note that M1 obeys the restrictions of
π ∈ Π, if and only if M2 obeys the restrictions of π.

Proposition 3.5. Let A = (A,⊕,�, 0, 1) be a semiring. Then for every π ∈ Π and mod ∈ {ε, o}
we have

π–BOTmod
t-ts (A) = π–BOTmod((A,�, 1, 0)) ,

where π–BOTmod
t-ts (A) denotes the class of all mod-t-ts transformations computable by bottom-up

tree series transducers obeying all the restrictions of π (cf. [14, 21]).

Next, we transfer the obvious relationship between deterministic bottom-up tree transducers
on the one hand and deterministic bottom-up tree series transducers over the Boolean semiring
B = ({0, 1},∨,∧, 0, 1) on the other hand (cf. Corollary 4.7 of [14] and Corollary 5.9 of [21]) to the
corresponding relationship between deterministic bottom-up tree transducers and deterministic
bu-w-tt over Z2. Let S = { L ∈ Pf(T∆) | card(L) ≤ 1 } and ∼ ⊆ Z2[T∆]× S be the relation defined
by ϕ ∼ L, if and only if L = supp(ϕ). Indeed the relation ∼ is a bijection. Consequently, for
every τ1 : TΣ −→ Z2[T∆] and τ2 : TΣ −→ S , let τ1 ∼ τ2 if and only if for every s ∈ TΣ we have
τ1(s) ∼ τ2(s). Moreover, let ∼ also be defined on classes of mappings in the obvious way.

Proposition 3.6. For every π ∈ Π and modifier mod ∈ {ε, o} we have

π–BOTmod(Z2) ∼ π–BOTtt ,

where π–BOTtt denotes the class of all tree transformations computable by bottom-up tree trans-
ducers obeying all the restrictions of π (cf. [12]).

Proof. In the same spirit as ∼, a relation between deterministic bottom-up tree transducers and
deterministic bu-w-tt over the group Z2 can be established (cf. Corollary 4.7 of [14]). More
precisely, a deterministic bottom-up tree transducer M1 = (Q1,Σ,∆, F1, δ1, µ1) is related to a
deterministic bu-w-tt M2 = (Q2,Σ,∆,Z2, F2, δ2, µ2), if Q1 = Q2, F1 = F2, δ1 = δ2, and for every
k ∈ N, σ ∈ Σ(k), and q1, . . . , qk ∈ Q1 the following condition holds.

(µ1)k
σ(q1, . . . , qk) = supp((µ2)k

σ(q1, . . . , qk))

214 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

Note that for every combination π ∈ Π we have that M1 obeys the restrictions of π, if and only if
M2 obeys them. Moreover, if M1 is related to M2, then τM1 ∼ τ

mod
M2

(cf. Corollary 4.7 of [14] and
Corollary 5.9 of [21]). The proof of the last statement is straightforward and left to the reader. �

Thus, deterministic bottom-up tree transducers and deterministic bu-w-tt over the group Z2
are equally powerful, which allows us to treat deterministic bottom-up tree transducers as if they
were deterministic bu-w-tt over the group Z2 in order to have a unique presentation.

Corollary 3.7. For every combination π ∈ Π we have

π–BOTo(Z2) = π–BOT(Z2) .

4. Hasse diagrams

In this section, we investigate the relation between classes of t-ts and o-t-ts transformations
computed by deterministic bu-w-tt with respect to set inclusion. We derive several Hasse di-
agrams displaying the relationships given certain properties of the underlying monoid. As a
starting point, we state the well-known Hasse diagram for deterministic bu-w-tt over the group
Z2, i.e., for deterministic bottom-up tree transducers. Figure 1 displays the Hasse diagram for
all classes of t-ts and o-t-ts transformations defined in Definition 3.4 (for A = Z2). In order
to present concise diagrams, we shorten the denotation of the classes from π–BOTmod(A) to
just πmod for every combination π ∈ Π and mod ∈ {ε, o}. Moreover, we use π= to express that
π–BOTo(A) = π–BOT(A).

Let A = (A,�, 1, 0) be a commutative monoid with at least three elements. In Section 4.1,
we derive some statements which hold for every such monoidA. In the sequel, we consider the
case thatA is non-periodic (cf. Section 4.2). Section 4.3 is dedicated to periodic, but non-regular
monoidsA. Automatically, such a monoidA is non-idempotent and no group with an absorbing
element by Proposition 2.1. The next case, which is handled in Section 4.4, additionally assumes
that A is regular, but still not idempotent and no group with an absorbing element. Thereafter,
we consider the case in whichA is idempotent. This again excludes the case thatA is actually a
group with an absorbing element. The final case of groups (with an absorbing element) is taken
care of in Section 4.6.

Theorem 4.1. Figure 1 is the Hasse diagram of the displayed classes of t-ts and o-t-ts transfor-
mations over Z2 ordered by set inclusion.

Proof. The equalities are concluded from Corollary 3.7 and all the inclusions hold by definition.
Finally, the following four statements are sufficient to prove strictness and incomparability.

dnlt–BOT(Z2) * h–BOT(Z2) (6)
dnl–BOT(Z2) * dt–BOT(Z2) (7)
hn–BOT(Z2) * dl–BOT(Z2) (8)
hl–BOT(Z2) * dn–BOT(Z2) (9)

The inequalities (6) and (7) are trivial, and (8) and (9) are due to Theorem 3.3 of [19]. �

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 215

d=

dn= dl= dt=

dnl= dnt= dlt= h=

dnlt= hn= hl=

hnl=

Figure 1: Hasse diagram for the group Z2.

4.1. Results for arbitrary monoids
In this section, we derive some statements which hold irrespective of the underlying monoid

A = (A,�, 1, 0). We show how to use the results of the Hasse diagram in Figure 1 in order
to obtain incomparability results for classes of t-ts and o-t-ts transformations over monoids A
different from Z2. Roughly speaking, we show that all inequalities present in Figure 1 are pre-
served in the transition from Z2 toA. This is mainly due to the fact that Z2 is a submonoid (with
absorbing 0) of A. Hence we take a counterexample in Z2, i.e., a mod1-t-ts transformation τ
which is in the class π1–BOTmod1 (Z2), but not in the class π2–BOTmod2 (Z2) for some modifiers
mod1,mod2 ∈ {ε, o} and π1, π2 ∈ Π. Then we prove that τ is also a counterexample for the
inclusion π1–BOTmod1 (A) ⊆ π2–BOTmod2 (A), i.e., τ is trivially in π1–BOTmod1 (A) because Z2 is
a submonoid ofA, but still not in π2–BOTmod2 (A).

For the purpose of the next lemma, we restrict the counterexample τ to be computed by a
total deterministic bu-w-tt M = (Q,Σ,∆,Z2, F, δ, µ). Now assume that τ ∈ π2–BOTmod2 (A),
i.e., there exists a deterministic bu-w-tt M′ = (Q′,Σ,∆,A, F′, δ′, µ′) such that τmod2

M′ = τ. It
follows from the totality of M that for every s ∈ TΣ there exists a unique t ∈ T∆ such that
τ(s) = 1 t. Moreover, it follows that all reachable states of M′ must be final and that for every
k ∈ N, σ ∈ Σ(k), and all reachable states q1, . . . , qk ∈ Q′ of M′ we have that (µ′)k

σ(q1, . . . , qk)
is boolean. Then we can easily drop the states which are not reachable from M′ and obtain a
boolean total deterministic bu-w-tt M′′ with τmod2

M′′ = τ. However, boolean deterministic bu-w-tt
compute solely in Z2, and therefore, M′′ can equivalently be specified as deterministic bu-w-tt
over Z2, which is a contradiction to the assumption that τ < π2–BOTmod2 (Z2).

Lemma 4.2. LetA = (A,�, 1, 0) be a monoid and mod1,mod2 ∈ {ε, o}. Furthermore, let π1 ∈ Πt
and π2 ∈ Π. If π1–BOTmod1 (Z2) * π2–BOTmod2 (Z2), then π1–BOTmod1 (A) * π2–BOTmod2 (A).

Proof. Let τ ∈ π1–BOTmod1 (Z2) \ π2–BOTmod2 (Z2) be a mod1-t-ts transformation, hence there
exists a deterministic bu-w-tt M′ obeying the restrictions π1 such that τ = τmod1

M′ . Obviously,

216 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

π1–BOTmod1 (Z2) ⊆ π1–BOTmod1 (A), because Z2 is a submonoid of A. Thus there exists a
total deterministic bu-w-tt M1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the restrictions of π1 such that
τmod1

M1
= τ. Note that µ̂1mod1

(s) , 0̃ for every s ∈ TΣ.
Now we prove by contradiction that τ < π2–BOTmod2 (A). Therefore, let τ ∈ π2–BOTmod2 (A),

i.e., there exists a deterministic bu-w-tt M2 = (Q2,Σ,∆,A, F2, δ2, µ2) obeying the restrictions
of π2 with τmod2

M2
= τ. The remaining proof first shows that there also exists a boolean deter-

ministic bu-w-tt M′′ obeying the restrictions of π2 such that τmod2
M′′ = τ. The final step then

shows that the existence of M′′ would yield that τ ∈ π2–BOTmod2 (Z2) contrary to the fact that
τ < π2–BOTmod2 (Z2). Hence τ < π2–BOTmod2 (A).

We construct a boolean deterministic bu-w-tt M′′ = (Q2,Σ,∆,A, F2, δ2, µ
′′) obeying the

restrictions π2 and τmod2
M′′ = τmod2

M2
= τ. Let µ′′ = ((µ′′)k

σ)k∈N,σ∈Σ(k) and for every k ∈ N, σ ∈ Σ(k),
and q1, . . . , qk ∈ Q2 let

(µ′′)k
σ(q1, . . . , qk) = char(supp((µ2)k

σ(q1, . . . , qk))) .

Obviously, M′′ is boolean and obeys the restrictions of π2. For our subgoal, it remains to show
that τmod2

M′′ = τmod2
M2

. Therefore we obviously have to prove that µ̂′′mod2
(s) = µ̂2mod2

(s) for every
s ∈ TΣ. We perform induction over the structure of s.

Let s = σ(s1, . . . , sk) for some k ∈ N, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ. We distinguish two
separate cases.

(i) Let i ∈ [k] be such that µ̂2mod2
(si) = 0̃ or (µ2)k

σ(δ̂2(s1), . . . , δ̂2(sk)) = 0̃. Then τmod2
M2

(s) = 0̃,
but contrary τmod2

M2
(s) = τmod1

M1
(s) , 0̃ because M1 is boolean and total.

(ii) Assume that for every i ∈ [k] we have µ̂2mod2
(si) , 0̃ and

(µ2)k
σ(δ̂2(s1), . . . , δ̂2(sk)) = a t

for some a ∈ A \ {0} and t ∈ T∆(Xk). By induction hypothesis also µ̂2mod2
(si) = µ̂′′mod2

(si)
holds, and consequently, µ̂2mod2

(si) = 1 ti for some ti ∈ T∆ because M′′ is boolean. Then

µ̂2mod2
(σ(s1, . . . , sk))

= (µ2)k
σ(δ̂2(s1), . . . , δ̂2(sk))

mod2
←− (µ̂2mod2

(s1), . . . , µ̂2mod2
(sk))

= a t
mod2
←− (1 t1, . . . , 1 tk)

= a t[t1, . . . , tk] .

Since τmod1
M1

(s) , 0̃ we conclude that τmod2
M2

(s) = µ̂2mod2
(s). Further, M1 is boolean, so also

µ̂2mod2
(s) is boolean, and we continue with

µ̂2mod2
(σ(s1, . . . , sk))

= a t[t1, . . . , tk]
= 1 t[t1, . . . , tk]

= 1 t
mod2
←− (1 t1, . . . , 1 tk)

= (µ′′)k
σ(δ̂2(s1), . . . , δ̂2(sk))

mod2
←− (µ̂′′mod2

(s1), . . . , µ̂′′mod2
(sk))

= µ̂′′mod2
(σ(s1, . . . , sk)) .

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 217

Hence there also exists a boolean deterministic bu-w-tt M′′ obeying the restrictions of π2
such that τmod2

M′′ = τ. Immediately, we obtain that

M = (Q2,Σ,∆,Z2, F2, δ2, µ
′′)

is a deterministic bu-w-tt obeying all the restrictions of π2 over Z2 such that τmod2
M = τ. However,

this is contradictory to the assumption, because τ was chosen such that τ < π2–BOTmod2 (Z2),
which finally proves the lemma. �

Thus we can derive inequality for classes of t-ts and o-t-ts transformations over the monoid
A = (A,�, 1, 0) simply by observing inequality for the respective classes of t-ts and o-t-ts trans-
formations over the group Z2. Roughly speaking, these latter inequalities are based solely on
a deficiency in the tree output component of one class. For example, for any mod ∈ {ε, o} the
mod-t-ts transformation which maps each input tree to a fully balanced binary tree of the same
height with whatever nonzero cost cannot be computed by a linear deterministic bu-w-tt. In order
to generate the fully balanced binary trees, one definitely needs the copying of output trees. An-
other example is totality. The mod-t-ts transformation which maps every input tree to 0̃ obviously
cannot be computed by a total deterministic bu-w-tt.

The following lemma presents the conclusions of Figure 1 and Lemma 4.2. Moreover, it adds
the missing case of totality, which is straightforward using the remark of the previous paragraph.

Lemma 4.3. Let A = (A,�, 1, 0) be a monoid and mod1,mod2 ∈ {ε, o}. For every π1, π2 ∈ Π

such that there exists r ∈ Pref which occurs in π2 but not in π1, i.e., r ∈ π2 \ π1, we have

π1–BOTmod1 (A) * π2–BOTmod2 (A) .

Proof. We distinguish two cases.

(i) Let r , t. Apparently, r < π1 ∪ {t}, so let π′1 = π1 ∪ {t}. From Figure 1, we can check
that π′1–BOTmod1 (Z2) * π2–BOTmod2 (Z2) and with the help of Lemma 4.2 we conclude
π′1–BOTmod1 (A) * π2–BOTmod2 (A). Trivially, π′1–BOTmod1 (A) ⊆ π1–BOTmod1 (A), hence

π1–BOTmod1 (A) * π2–BOTmod2 (A) .

(ii) Let r = t. Moreover, let Σ = {α(0)}. We construct the linear and nondeleting deterministic
bu-w-tt M = ({?},Σ,Σ,A, {?}, δ, µ) with transition mappings δ = (δ0

α) and output map-
pings µ = (µ0

α) specified by δ0
α() = ? and µ0

α() = 0̃. Apparently, τmod1
M ∈ π1–BOTmod1 (A)

and τmod1
M < π2–BOTmod2 (A), because t ∈ π2. Hence

π1–BOTmod1 (A) * π2–BOTmod2 (A) .

�

Due to the previous corollary, we can restrict our attention to the comparison of classes of t-ts
transformations with the corresponding classes of o-t-ts transformations. As a first comparison
we restate the equality of the classes of t-ts and o-t-ts transformations for all restrictions which
contain both the nondeletion as well as the linearity restriction. This equality was shown for tree
series transducers in [21], but can also be seen from the definition of pure and o-substitution,
because both notions coincide whenever the participating tree series are nondeleting and linear.

218 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

Proposition 4.4. LetA = (A,�, 1, 0) be a monoid. Then

π–BOTo(A) = π–BOT(A)

for every π ∈ {dnl, dnlt, hnl}.

The final result of this section shows two inequality results. Essentially, we prove that the
classes of t-ts transformations and o-t-ts transformations computed by linear homomorphism
bu-w-tt are incomparable. Due to the Hasse diagram presented in Figure 1, we cannot prove this
result for every monoid with absorbing element, but rather we require that the monoid (A,�, 1, 0)
has at least three elements, i.e., 0 , 1, and it is not isomorphic to Z2.

Since we often deal with homomorphism bu-w-tt, of which the state behaviour is completely
determined, in the sequel, we do not explicitly specify the state transition mappings δ, but as-
sume that they are specified in the only possible way. The result hl–BOT(A) * h–BOTo(A) is
proved essentially by exploiting the property that pure substitution can distinguish two output
trees with different weights, although it deletes them. On the other hand, this distinction van-
ishes in o-substitution, and we cannot use the state to signal the difference, because we consider
homomorphism bu-w-tt. The same properties are used to prove hl–BOTo(A) * h–BOT(A).

Lemma 4.5. LetA = (A,�, 1, 0) be a monoid and A , {0, 1}. Then

hl–BOT(A) * h–BOTo(A) and hl–BOTo(A) * h–BOT(A) .

Proof. Let us prove the former statement. We choose a ∈ A \ {0, 1} arbitrarily. Suppose that
Σ = {γ(1), α(0), β(0)} and M1 = ({?},Σ,Σ,A, {?}, δ1, µ1) is the linear homomorphism bu-w-tt with
µ1 = ((µ1)1

γ, (µ1)0
α, (µ1)0

β) specified by

(µ1)1
γ(?) = 1 α , (µ1)0

α() = a α , (µ1)0
β() = 1 β .

Let τ = τM1 . Clearly, τ ∈ hl–BOT(A), and moreover, τ(γ(α)) = a α and τ(γ(β)) = 1 α.
Now let us prove that τ < h–BOTo(A). We prove this statement by contradiction, so assume

that there exists a homomorphism bu-w-tt

M2 = ({?},Σ,Σ,A, {?}, δ2, µ2)

such that τo
M2

= τ. Trivially, δ2 = δ1 and µ2 = ((µ2)1
γ, (µ2)0

α, (µ2)0
β) with

(µ2)1
γ(?) = c t , (µ2)0

α() = a α , (µ2)0
β() = 1 β

for some c ∈ A and t ∈ TΣ(X1). Moreover, we readily observe t = α, otherwise we have
supp(τo

M2
(γ(β))) , {α}. Consequently, τo

M2
(γ(α)) = τo

M2
(γ(β)) = c α. Thus we obtain the contra-

diction a = 1 and conclude that τ < h–BOTo(A).
To show the latter statement, i.e., hl–BOTo(A) * h–BOT(A), let τo = τo

M1
. Obviously,

τo ∈ hl–BOTo(A), and moreover, τo(γ(α)) = τo(γ(β)) = 1 α. Let us prove that τo < h–BOT(A).
We prove this statement by contradiction, so suppose that there exists a homomorphism bu-w-tt

M3 = ({?},Σ,Σ,A, {?}, δ3, µ3)

such that τM3 = τo. Trivially, we see that δ3 = δ1 and µ3 = ((µ3)1
γ, (µ3)0

α, (µ3)0
β) with

(µ3)1
γ(?) = c t , (µ3)0

α() = a α , (µ3)0
β() = 1 β

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 219

for some c ∈ A and t ∈ TΣ(X1). Moreover, we again readily observe t = α, else we have
supp(τM3 (γ(β))) , {α}. Consequently,

τM3 (γ(α)) = (c � a) α = 1 α = c α = τM3 (γ(β)) ,

which yields c = 1 and hence also a = 1. This is contrary to the assumption that a ∈ A \ {0, 1}.
Thus we conclude that τo < h–BOT(A). �

In particular, the former lemma also proves that the classes of t-ts and o-t-ts transformations
computed by homomorphism bu-w-tt are incomparable for all monoids different from Z2. In
fact, it can be seen from the proof of the previous lemma that there is a single homomorphism
bu-w-tt M such that τM < h–BOTo(A) and τo

M < h–BOT(A).

Corollary 4.6. We haveA = Z2, if and only if the equality π–BOTo(A) = π–BOT(A) holds for
every π ∈ Π.

Proof. The equality in Z2 is shown in Theorem 4.1, and Lemma 4.5 proves the incomparability
of hl–BOTo(A) and hl–BOT(A) in all other monoids. �

However, without additional information about the monoid we are unable to prove further
comparability or incomparability results. Hence we consider monoids with certain properties in
subsequent sections. The properties are chosen such that we obtain a Hasse diagram for every
commutative monoid.

4.2. Non-periodic monoids

In this section, we show that for non-periodic monoids almost all classes of t-ts and o-t-
ts transformations (except the ones containing both the nondeletion and linearity restriction)
computed by restricted deterministic bu-w-tt are incomparable with respect to set inclusion. An
example of a non-periodic monoid is the multiplicative monoid of N. To be precise, we even
show that

π–BOT(A) * d–BOTo(A) and π–BOTo(A) * d–BOT(A)

for every π ∈ {hn, hl} and non-periodic monoidA.
The general idea of the proof is the following. Let a ∈ A be such that ai , a j, whenever i , j

where i, j ∈ N. We construct a homomorphism bu-w-tt M1, which computes a t-ts transforma-
tion τ in which arbitrarily large powers of a occur as weights in the range. Let us first consider
the result hl–BOTmod1 (A) * d–BOTmod2 (A) where mod1 and mod2 are different. Our input
ranked alphabet will have two unary symbols; encountering γ1 in the input we stack another a to
the weight computed so far and output a prolonged output tree, and encountering γ2 we delete
the computed output tree at no cost. Since every deterministic bu-w-tt M = (Q,Σ,∆,A, F, δ, µ),
which also computes τ but as a mod2-t-ts transformation, has only finitely many states, it must
permit at least one final state q which accepts infinitely many input trees. In particular, the tran-
sition from q to some state reading γ2 is interesting. In the case of mod2 = o, the weight of the
outputted tree is reset to the weight present in the monomial µ1

γ2
(q), which is to be defined. On the

other hand, pure substitution stacks another a to the weight of the output tree computed. It can
be shown that among those infinitely many input trees which q accepts, there are two for which
the weights an1 and an2 of their corresponding output trees is different (this is mainly due to the
fact that arbitrarily large powers of a can occur). Since all the powers of a are different, there is

220 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

no consistent way to define µ1
γ2

(q). Similarly, when mod2 = ε one encounters the problem that
o-substitution resets the weight to 1, whenever a γ2 is read in the input. The above remarks about
the weights an1 and an2 apply as well and in order to define µ1

γ2
(q) in this case there should be

an element b ∈ A such that an1 � b = 1 = an2 � b which is shown to be contradictory. Sum-
ming up, with pure substitution one can remember the number of γ2 encountered in the whole
input tree even if a part of the transformation of the input tree was deleted. On the other hand,
using o-substitution when deleting a computed output tree, we can easily reset the weight to a
determined value irrespective of the weight of the output tree computed so far.

The arguments required for the result on nondeleting homomorphism bu-w-tt are similar,
but use copying instead of deletion. In principle, pure substitution has the problem that it is
supposed to square the weight of the computed output tree. However, those output trees may
have infinitely many different weights, so that this information cannot be stored in the states and
there is no element b ∈ A which squares an1 and an2 , i.e., a2n1 = an1 � b and a2n2 = an2 � b, for
suitable n1, n2 ∈ N. Conversely, o-substitution squares the weight of the computed output tree
and therefore needs an element which when multiplied to a2n1 and a2n2 computes their square
roots. It is shown that for selected n1, n2 ∈ N such an element cannot exist.

Lemma 4.7. LetA be a non-periodic monoid. For every π ∈ {hn, hl} and {mod1,mod2} = {ε, o}
we have

π–BOTmod1 (A) * d–BOTmod2 (A) .

Proof. SinceA is non-periodic, there exists an a ∈ A such that for every i, j ∈ N we have ai = a j,
if and only if i = j. Further let ∆ = {γ(1), α(0)}. Let us prove the statement by case analysis on π.
Case (1) considers the case where π = hl and Case (2) supposes π = hn.

1. Let Γ = {γ(1)
1 , γ(1)

2 , α(0)}. We construct the linear homomorphism bu-w-tt

M1 = ({?},Γ,∆,A, {?}, δ1, µ1)

with µ1 = ((µ1)1
γ1
, (µ1)1

γ2
, (µ1)0

α) specified by

(µ1)1
γ1

(?) = a γ(x1) , (µ1)1
γ2

(?) = (µ1)0
α() = 1 α .

Moreover, we define l1 : TΓ −→ N recursively for every t ∈ TΓ as follows.

l1(γ1(t)) = l1(t) + 1 and l1(γ2(t)) = l1(α) = 0 .

Note that M1 computes the t-ts transformation τM1 : TΓ −→ A[T∆] mapping every s ∈ TΓ

to the monomial a|s|γ1 γl1(s)(α), and the o-t-ts transformation τo
M1

: TΓ −→ A[T∆] mapping
s to the monomial al1(s) γl1(s)(α).
Next, we prove that τmod1

M1
< d–BOTmod2 (A), which yields

hl–BOTmod1 (A) * d–BOTmod2 (A) .

Suppose there exists a deterministic bu-w-tt M = (Q,Γ,∆,A, F, δ, µ) with τmod2
M = τmod1

M1
.

We observe that for every s ∈ TΓ we have that τmod1
M1

(s) , 0̃, and thus, τmod2
M (s) = µ̂mod2 (s)

as well as δ̂(s) ∈ F. (Note that if an = 0 for some n ∈ N, then an = an+1 which
contradicts to our assumption.) Next we prove that there are q ∈ F and s1, s2 ∈ TΓ

such that δ̂(s1) = q = δ̂(s2) and |s1|γ1 , |s2|γ1 and l1(s1) , l1(s2). Therefore, we let

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 221

Γ′ = {γ(1)
1 , α(0)} ⊂ Γ, hence TΓ′ ⊆ TΓ. We show that s1 and s2 can actually be cho-

sen from TΓ′ . Clearly, there exist q ∈ F and an infinite set S ⊆ TΓ′ such that q = δ̂(s)
for every s ∈ S , because Q is finite whereas TΓ′ is infinite. For every s ∈ S we have
size(s) = |s|γ1 + 1 = l1(s) + 1, because S ⊆ TΓ′ . We observe that [s]≡size , where s ≡size s′

if and only if size(s) = size(s′), is finite for every s ∈ S , hence by the pigeon-hole prin-
ciple there must exist s1, s2 ∈ S such that size(s1) , size(s2), i.e., |s1|γ1 , |s2|γ1 and
l1(s1) , l1(s2).
Hence we can assume that there exist q ∈ F and s1, s2 ∈ TΓ such that δ̂(s1) = q = δ̂(s2)
and |s1|γ1 , |s2|γ1 and l1(s1) , l1(s2). Since

supp(τmod1
M1

(γ2(s1))) = supp(τmod1
M1

(γ2(s2))) = {α} ,

and
τmod2

M (γ2(si)) = µ̂mod2 (γ2(si)) = µ1
γ2

(q)
mod2
←− (̂µmod2 (si))

for every i ∈ [2], we have µ1
γ2

(q) , 0̃, and thereby, µ1
γ2

(q) = a′ t for some a′ ∈ A \ {0} and
t ∈ T∆(X1). Next we prove that t = α. Since τmod2

M = τmod1
M1

we have that

supp(τmod1
M1

(si)) = supp(̂µmod2 (si)) = supp(τmod2
M (si)) = {γl1(si)(α)} .

Then

α = supp(τmod1
M1

(γ2(si))) = supp(τmod2
M (γ2(si)))

= supp(µ1
γ2

(q)
mod2
←− (̂µmod2 (si)))

= t[γl1(si)(α)] .

Now using l1(s1) , l1(s2) we conclude |t|x1 = 0, thus finally, t = α.
We obtain for every i ∈ [2]

τmod2
M (γ2(si)) = a′ α

mod2
←− (τmod1

M1
(si))

=

(a′ � al1(si)) α , if mod2 = ε

a′ α , if mod2 = o .

Recall now that mod1 , mod2 and τM1 (γ2(si)) = a|si |γ1 α and

τo
M1

(γ2(si)) = al1(γ2(si)) α = 1 α .

Hence for every i ∈ [2] we derive the equation

a′ � al1(si) = 1 = (τo
M1

(γ2(si)), α) , if mod2 = ε

a′ = a|si |γ1 = (τM1 (γ2(si)), α) , if mod2 = o .

In case mod2 = o this yields a contradiction since a′ = a|s1 |γ1 = a|s2 |γ1 , which apparently
is contradictory due to a|s1 |γ1 , a|s2 |γ1 by |s1|γ1 , |s2|γ1 . Finally, in the other case, i.e.,
mod2 = ε, we effectively have

1 = a′ � al1(s1) = a′ � al1(s2) .

222 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

Now let y1 = min(l1(s1), l1(s2)), y2 = max(l1(s1), l1(s2)), and d = y2 − y1. Obviously,
y1 , y2 and thereby d , 0 by l1(s1) , l1(s2). We consider

1 = a′ � ay2 = a′ � ay1+d = a′ � ay1 � ad = 1 � ad = ad ,

however 1 = a0 = ad, if and only if 0 = d, which is a contradiction. Irrespective of
mod2 we have thus proved that there is no deterministic bu-w-tt M having the property
that τmod2

M = τmod1
M1

. Thus τmod1
M1
< d–BOTmod2 (A).

2. Let Σ = {σ(2), α(0)}. We define the nondeleting homomorphism bu-w-tt

M2 = ({?},∆,Σ,A, {?}, δ2, µ2)

with µ2 = ((µ2)1
γ, (µ2)0

α) given by

(µ2)1
γ(?) = a σ(x1, x1) , (µ2)0

α() = a α .

For every s ∈ T∆ let ts ∈ TΣ be the fully balanced output tree with height(ts) = height(s).
The t-ts transformation τM2 : T∆ −→ A[TΣ] computed by M2 maps s to asize(s) ts, whereas
the o-t-ts transformation τo

M2
: T∆ −→ A[TΣ] computed by M2 maps s to asize(ts) ts. Note

that size(ts) = 2size(s) − 1.
Let us prove τmod1

M2
< d–BOTmod2 (A), thereby showing

hn–BOTmod1 (A) * d–BOTmod2 (A) .

To derive a contradiction assume a deterministic bu-w-tt M = (Q,∆,Σ,A, F, δ, µ) such that
τmod2

M = τmod1
M2

.
We again observe that for every s ∈ T∆ we have τmod1

M2
(s) , 0̃, and thus, τmod2

M (s) = µ̂mod2 (s)
as well as δ̂(s) ∈ F. Moreover, T∆ is infinite. In contrast M has only a finite set of final
states F; hence there must exist a final state q ∈ F and s1, s2 ∈ T∆ with q = δ̂(si) and s1 , s2
such that tsi ∈ supp(̂µmod2 (si)) for i ∈ [2]. Since s1 , s2 we also have size(s1) , size(s2)
and ts1 , ts2 .

Apparently, µ̂mod2 (γ(si)) = µ1
γ(q)

mod2
←− (τmod1

M2
(si)), and furthermore, also τmod1

M2
(γ(si)) , 0̃,

hence δ̂(γ(si)) ∈ F and µ1
γ(q) , 0̃. Let µ1

γ(q) = a′ t for some a′ ∈ A \ {0} and t ∈ TΣ(X1).
Next, we observe that t = σ(x1, x1), which can easily be proved by contradiction as fol-
lows. Assume that t , σ(x1, x1). Then for some j ∈ [2] the tree t[ts j] is not fully balanced
or its height is not 1 + height(ts j), because ts1 , ts2 . Hence we obtain for every i ∈ [2]

τmod2
M (γ(si)) = a′ σ(x1, x1)

mod2
←− (τmod1

M2
(si))

=

(a′ � asize(tsi)) σ(tsi , tsi) , if mod2 = ε

(a′ � a2·size(si)) σ(tsi , tsi) , if mod2 = o .

Recall that

τM2 (γ(si)) = asize(si)+1 σ(tsi , tsi)
τo

M2
(γ(si)) = a2·size(tsi)+1 σ(tsi , tsi) .

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 223

d do

dt dl dn dno dlo dto

h dlt dnt dnl= dnto dlto ho

hl hn dnlt= hno hlo

hnl=

Figure 2: Hasse diagram for non-periodic monoids.

Hence for every i ∈ [2] we derive the equation

a′ � asize(tsi) = a2·size(tsi)+1 = (τo
M2

(γ(si)), σ(tsi , tsi)) , if mod2 = ε

a′ � a2·size(si) = asize(si)+1 = (τM2 (γ(si)), σ(tsi , tsi)) , if mod2 = o .

For every i ∈ [2] we let yi = size(tsi), if mod2 = ε, whereas we let yi = size(si) in case
mod2 = o. Note that in both cases y1 , y2. We continue with the equations

ay1+2·y2+1 = a′ � ay2 � ay1 = a2·y1+y2+1 , if mod2 = ε

ay1+2·y2+1 = a′ � a2·y1 � a2·y2 = a2·y1+y2+1 , if mod2 = o .

Thus in any case ay1+2·y2+1 = a2·y1+y2+1. Since ai , a j whenever i , j for all i, j ∈ N, we
conclude y1 + 2 · y2 + 1 = 2 · y1 + y2 + 1 and thereby y1 = y2 which contradicts to y1 , y2.
Consequently, irrespective of mod2 we have proved that there is no deterministic bu-w-tt
M having the property that τmod2

M = τmod1
M2

. Thus τmod1
M2
< d–BOTmod2 (A).

�

Together with the results of Section 4.1, we can already derive the Hasse diagram (cf. Fig-
ure 2) for non-periodic monoids. We observe that the classes of t-ts and o-t-ts transformations
are incomparable, whenever inclusion is not trivial by definition or given as a result of Proposi-
tion 4.4.

Theorem 4.8. Let A = (A,�, 1, 0) be a non-periodic monoid with an absorbing element 0.
Figure 2 is the Hasse diagram of the displayed classes of t-ts and o-t-ts transformations ordered
by set inclusion.

224 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

Proof. All the inclusions are trivial and the equalities are due to Proposition 4.4. Then for
every {mod1,mod2} = {ε, o} the following six statements are sufficient to prove strictness and
incomparability.

dnlt–BOT(A) * h–BOTmod1 (A) (10)
dnl–BOT(A) * dt–BOTmod1 (A) (11)

hn–BOTmod1 (A) * dl–BOTmod1 (A) (12)
hl–BOTmod1 (A) * dn–BOTmod1 (A) (13)
hl–BOTmod1 (A) * d–BOTmod2 (A) (14)
hn–BOTmod1 (A) * d–BOTmod2 (A) (15)

The inequalities (10)–(13) are proved in Lemma 4.3, whereas inequalities (14) and (15) follow
from Lemma 4.7. �

4.3. Periodic and commutative monoids

In this section, we consider monoids which are periodic and commutative. For example,
the monoid Z4 is periodic and commutative (without being regular). It is easily seen that in
commutative and periodic monoids A = (A,�, 1, 0) the carrier set 〈A′〉� of the least submonoid
with the absorbing element 0 generated from a finite set A′ ⊆ A is again finite. This property is
essential in the core construction of this section, because it allows us to keep track of the current
weight in the states.

Proposition 4.9. Let A = (A,�, 1, 0) be a commutative and periodic monoid. For every finite
A′ ⊆ A we have that 〈A′〉� is finite.

Proof. We first observe that 〈∅〉� = {0, 1}. Let A′ = {a1, . . . , ak} ⊆ A for some k ∈ N+. Then

〈A′〉� = { ai1
1 � · · · � aik

k | i1, . . . , ik ∈ N }
= { ai1

1 � · · · � aik
k | i1 ∈ [0, n1], . . . , ik ∈ [0, nk] } ,

where for every j ∈ [k] the integer n j ∈ N is the smallest non-negative integer such that there
exists m j ∈ N with m j < n j and an j

j = am j

j . Hence 〈A′〉� is a finite set. �

Given a deterministic bu-w-tt computing a t-ts transformation τ, we construct another de-
terministic bu-w-tt computing τ as o-t-ts transformation. Moreover, most of the restrictions de-
fined for deterministic bu-w-tt (namely nondeletion, linearity, and totality) are preserved by this
construction. However, a homomorphism bu-w-tt might yield a non-homomorphism bu-w-tt,
because the construction increases the state-space compared to the given bu-w-tt.

The next definition abstracts the central feature required to model one type of substitution
with the help of the other. We encapsulate this feature in a family of mappings in order to be able
to invoke the construction later under different premises. More precisely, in subsequent lemmata
we prove that such a family of mappings exists provided that the monoid has certain properties,
e.g., is a group.

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 225

Definition 4.10. Let A = (A,�, 1, 0) be a monoid, M = (Q,Σ,∆,A, F, δ, µ) be a deterministic
bu-w-tt, and mod ∈ {ε, o}. Further, let fM,mod = (f k

M,mod)k∈N be a family of mappings where for
every k ∈ N we have

f k
M,mod :

(⋃
σ∈Σ(k),q1,...,qk∈Q

supp(µk
σ(q1, . . . , qk))

)
× [k] × A −→ A .

If f satisfies for every t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q supp(µk

σ(q1, . . . , qk)), i ∈ [k], and a ∈ A the statements

(i) f k
M,mod(t, i, a) = 0, if a = 0,

(ii) f k
M,mod(t, i, a) � a|t|xi = a, if mod = ε, and

(iii) f k
M,mod(t, i, a) � a = a|t|xi , if mod = o,

then f is called a family of mod-translation mappings for M.

Let mod1,mod2 ∈ {ε, o}. For every deterministic bu-w-tt M1, for which there exists a family
of mod1-translation mappings, we can construct another deterministic bu-w-tt M2 computing the
mod2-t-ts transformation τmod2

M2
= τmod1

M1
. Due to the periodicity and commutativity of the monoid

A, the set of computable weights is finite (cf. Proposition 4.9). Let M1 = (Q1,Σ,∆,A, F1, δ1, µ1).
Given s ∈ TΣ, we have already seen that µ̂1mod1

(s) = at for some a ∈ A and t ∈ T∆. Since the set of
computable weights is finite, we can encode a into the state, i.e., we can construct a deterministic
bu-w-tt

M′1 = (Q′1,Σ,∆,A, F
′
1, δ
′
1, µ

′
1)

such that τmod1
M1

= τmod1
M′1

and δ̂′1(s) = (δ̂1(s), a) and µ̂′1mod1
(s) = a t.

Let us take a closer look at a family of translation mappings. Let mod1 = o. Then, when sub-
stituting an output tree weighted a into a tree t for variable xi, o-substitution accounts a exactly
|t|xi -times, whereas pure substitution accounts a exactly once. In Item (iii) of Definition 4.10 we
see that f k

M′1,o
(t, i, a) provides the factor which translates the pure substitution coefficient into the

o-substitution coefficient, because f k
M′1,o

(t, i, a) � a = a|t|xi . So we need to multiply f k
M′1,o

(t, i, a)
to the weight of the considered transition. This is possible, because a is encoded in the state, in
which the bu-w-tt M′1 processed the i-th direct input subtree of s. In this way we can define the
weight of the transitions using the weight of the subcomputations.

Lemma 4.11. LetA = (A,�, 1, 0) be a periodic, commutative monoid and mod1,mod2 ∈ {ε, o}.
Moreover, let M1 = (Q1,Σ,∆,A, F1, δ1, µ1) be a deterministic bu-w-tt obeying all the restrictions
of π ∈ Π \ Πh. If there exists a family of mod1-translation mappings fM1,mod1 = (f k

M1,mod1
)k∈N,

there also exists a deterministic bu-w-tt M2 = (Q2,Σ,∆,A, F2, δ2, µ2) obeying the restrictions of
π such that τmod1

M1
= τmod2

M2
.

Proof. If mod1 = mod2, then the statement becomes trivial. So it remains to prove the property
for distinct mod1 and mod2. Let

C = {0} ∪
{

((µ1)k
σ(q1, . . . , qk), t)

∣∣∣∣ k ∈ N, σ ∈ Σ(k), q1, . . . , qk ∈ Q1,

t ∈ supp((µ1)k
σ(q1, . . . , qk))

}
be the finite set of monoid elements occurring in the monomials in the range of µ1. Since A
is periodic and commutative, we conclude that 〈C〉� is finite. We construct the bu-w-tt M2 by

226 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

setting the set Q2 of states to Q2 = Q1 × 〈C〉� and the set F2 of final states to F2 = F1 × 〈C〉�.
Moreover, let k ∈ N, σ ∈ Σ(k), q1, . . . , qk ∈ Q1, and a1, . . . , ak ∈ 〈C〉�. Now we define a and the
monomial m as follows. If (µ1)k

σ(q1, . . . , qk) = 0̃ or for some i ∈ [k] we have ai = 0, then let
a = 0 and m = 0̃. Otherwise suppose that (µ1)k

σ(q1, . . . , qk) = a0 t for a0 ∈ C \ {0} and t ∈ T∆(Xk)
and let

a =

a0 � a1 � · · · � ak , if mod1 = ε

a0 � a
|t|x1
1 � · · · � a

|t|xk
k , if mod1 = o

and m = (f k
M1,mod1

(t, 1, a1) � · · · � f k
M1,mod1

(t, k, ak) � a0) t. Clearly, a ∈ 〈C〉�, so we let

(δ2)k
σ((q1, a1), . . . , (qk, ak)) = ((δ1)k

σ(q1, . . . , qk), a)
(µ2)k

σ((q1, a1), . . . , (qk, ak)) = m .

Obviously, M2 is nondeleting (respectively, linear and total), if M1 is nondeleting (respec-
tively, linear and total). Let s ∈ TΣ. Finally, suppose that µ̂1mod1

(s) = a t for some a ∈ 〈C〉� and
t ∈ T∆. We show that the following equalities hold.

µ̂2mod2
(s) = µ̂1mod1

(s) and δ̂2(s) = (δ̂1(s), a) .

1. Let s = α with α ∈ Σ(0). Then

µ̂2mod2
(s) = (µ2)0

α() = (µ1)0
α() = µ̂1mod1

(s) .

Moreover, δ̂2(s) = (δ2)0
α() = ((δ1)0

α(), a′) = (δ̂1(s), a′) where

a′ =

0 , if supp((µ1)0
α()) = ∅

((µ1)0
α, t
′) , if supp((µ1)0

α()) = {t′}

=

0 , if supp(µ̂1mod1
(α)) = ∅

(µ̂1mod1
, t′) , if supp(µ̂1mod1

(α)) = {t′}
= a .

2. Let s = σ(s1, . . . , sk) for some k ∈ N+, σ ∈ Σ(k), and s1, . . . , sk ∈ TΣ. Then we have

µ̂2mod2
(s)

= (µ2)k
σ(δ̂2(s1), . . . , δ̂2(sk))

mod2
←− (µ̂2mod2

(s1), . . . , µ̂2mod2
(sk))

= (µ2)k
σ(δ̂2(s1), . . . , δ̂2(sk))

mod2
←− (µ̂1mod1

(s1), . . . , µ̂1mod1
(sk)) .

For every i ∈ [k] let µ̂1mod1
(si) = ai ti for some ai ∈ 〈C〉� and ti ∈ T∆. By induction

hypothesis we have further that δ̂2(si) = (δ̂1(si), ai).
(a) In the first case, let (µ1)k

σ(δ̂1(s1), . . . , δ̂1(sk)) = 0̃ or for some i ∈ [k] let ai = 0. Then
by construction we obtain (µ2)k

σ(δ̂2(s1), . . . , δ̂2(sk)) = 0̃. Hence

µ̂1mod1
(s) = 0̃ = µ̂2mod2

(s) .

(b) Let a0 ∈ C \ {0} and t′ ∈ T∆(Xk) be such that

(µ1)k
σ(δ̂1(s1), . . . , δ̂1(sk)) = a0 t′ .

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 227

We deduce

µ̂2mod2
(s)

= (µ2)k
σ(δ̂2(s1), . . . , δ̂2(sk))

mod2
←− (µ̂1mod1

(s1), . . . , µ̂1mod1
(sk))

= (µ2)k
σ((δ̂1(s1), a1), . . . , (δ̂1(sk), ak))

mod2
←−

mod2
←− (µ̂1mod1

(s1), . . . , µ̂1mod1
(sk))

=
(∏

i∈[k]

f k
M1,mod1

(t′, i, ai) � a0

)
t′

mod2
←−

mod2
←− (µ̂1mod1

(s1), . . . , µ̂1mod1
(sk))

=
(∏

i∈[k]

f k
M1,mod1

(t′, i, ai) � a0 � am1
1 � · · · � amk

k

)
t′[t1, . . . , tk]

=
(∏

i∈[k]

(f k
M1,mod1

(t′, i, ai) � ami
i) � a0

)
t′[t1, . . . , tk]

where for every i ∈ [k] we let

mi =

1 , if mod2 = ε

|t′|xi , if mod2 = o .

Recall that our general assumption was mod1 , mod2, so we now distinguish two
cases, in each of which we take a closer look at the product f k

M1,mod1
(t′, i, ai) � ami

i

for every i ∈ [k]. Firstly, let mod1 = ε. Then f k
M1,ε

(t′, i, ai) � a
|t′ |xi
i = ai by Defini-

tion 4.10(ii). On the other hand, let mod1 = o. Immediately we obtain

f k
M1,o(t′, i, ai) � ai = a

|t′ |xi
i

by Definition 4.10(iii). Hence we continue with

µ̂2mod2
(s)

=
(∏

i∈[k]

(f k
M1,mod1

(t′, i, ai) � ami
i) � a0

)
t′[t1, . . . , tk]

= a0 t′
mod1
←− (a1 t1, . . . , ak tk)

= (µ1)k
σ(δ̂1(s1), . . . , δ̂1(sk))

mod1
←− (µ̂1mod1

(s1), . . . , µ̂1mod1
(sk))

= µ̂1mod1
(s) .

This concludes the proof of the first property.
Let µ̂1mod1

(s) = a t for some a ∈ 〈C〉� and t ∈ T∆. Thus it remains to show that
δ̂2(s) = (δ̂1(s), a). In a straightforward manner we derive

δ̂2(s) = (δ2)k
σ(δ̂2(s1), . . . , δ̂2(sk))

= (δ2)k
σ((δ̂1(s1), a1), . . . , (δ̂1(sk), ak))

= ((δ1)k
σ(δ̂1(s1), . . . , δ̂1(sk)), a′)

228 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

= (δ̂1(s), a′) ,

where a′ = 0, if (µ1)k
σ(δ̂1(s1), . . . , δ̂1(sk)) = 0̃ or for some i ∈ [k] we have ai = 0. Hence

a′ = a. Otherwise let (µ1)k
σ(δ̂1(s1), . . . , δ̂1(sk)) = a0 t′ for some a0 ∈ C \{0} and t′ ∈ T∆(Xk).

Consequently,

a′ =

a0 � a1 � · · · � ak , if mod1 = ε

a0 � a
|t′ |x1
1 � · · · � a

|t′ |xk
k , if mod1 = o .

Hence µ̂2mod2
(s) = µ̂1mod1

(s) = a′ t′[t1, . . . , tk] and a = a′, which concludes the proof of the
statement.

�

The next lemma shows that in case we have a nondeleting (respectively, linear) deterministic
bu-w-tt, then we can specify a family of mod-translation mappings with mod = o (respectively,
mod = ε) and then apply the previous lemma to obtain an inclusion result.

Lemma 4.12. LetA = (A,�, 1, 0) be a periodic, commutative monoid and mod1,mod2 ∈ {ε, o}.
We have π–BOTmod1 (A) ⊆ π–BOTmod2 (A) for every π ∈ P where

P =

Πn \ Πh , if mod1 = o
Πl \ Πh , if mod1 = ε .

Proof. Trivially the statement holds, if mod1 = mod2. Thus assume that mod1 and mod2 are
distinct.

1. Let mod1 = o and τo ∈ π–BOTo(A) for some π ∈ Πn \ Πh. Consequently, there exists a
nondeleting deterministic bu-w-tt

M1 = (Q1,Σ,∆,A, F1, δ1, µ1)

obeying the restrictions of π such that τo
M1

= τo. Let fM1,o = (f k
M1,o

)k∈N be the family of
mappings

f k
M1,o :

(⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)k
σ(q1, . . . , qk))

)
× [k] × A −→ A

defined for every k ∈ N, t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)k
σ(q1, . . . , qk)), i ∈ [k], and a ∈ A by

f k
M1,o(t, i, a) =

0 , if a = 0
a|t|xi−1 , otherwise .

Each f k
M1,o

(t, i, a) is well-defined, because by the nondeletion restriction we have |t|xi ≥ 1
for every t ∈

⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)k
σ(q1, . . . , qk)) and i ∈ [k]. Consequently, the ex-

ponent is non-negative in the definition of f k
M1,o

(t, i, a). Moreover, fM1,o is trivially a
family of o-translation mappings. Thus, due to Lemma 4.11, there exists a nondelet-
ing deterministic bu-w-tt M2 obeying the restrictions of π such that τM2 = τo. Hence
π–BOTo(A) ⊆ π–BOT(A) for every π ∈ Πn \ Πh.

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 229

2. Secondly, let mod1 = ε and τ ∈ π–BOT(A) for some π ∈ Πl \ Πh. Consequently, there
exists a linear deterministic bu-w-tt

M1 = (Q1,Σ,∆,A, F1, δ1, µ1)

obeying the restrictions of π such that τM1 = τ. Let fM1,ε = (f k
M1,ε

)k∈N be the family of
mappings

f k
M1,ε

:
(⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)k
σ(q1, . . . , qk))

)
× [k] × A −→ A

defined for every k ∈ N, t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)k
σ(q1, . . . , qk)), i ∈ [k], and a ∈ A by

f k
M1,ε

(t, i, a) =

0 , if a = 0
a1−|t|xi , otherwise .

Each f k
M1,ε

(t, i, a) is well-defined, because by the linearity restriction we obtain |t|xi ≤ 1 for
every t ∈

⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)k
σ(q1, . . . , qk)) and i ∈ [k]. Consequently, the exponent

is non-negative in the definition of f k
M1,ε

(t, i, a). Moreover, fM1,ε is obviously a family
of translation mappings. Thus there exists a linear deterministic bu-w-tt M2 obeying the
restrictions of π such that τo

M2
= τ due to Lemma 4.11. Hence π–BOT(A) ⊆ π–BOTo(A)

for every π ∈ Πl \ Πh.

�

These are all the non-trivial inclusion results we are able to prove without requiring further
properties of the monoid. So it remains to show incomparability results similar to Lemma 4.7.
We start by showing that as long as the monoid is not regular, there exists a nondeleting homo-
morphism bu-w-tt computing a t-ts transformation, which cannot be computed by a determinis-
tic bu-w-tt as o-t-ts transformation. We finally note that periodicity is not even required for the
proof, which is similar to the proof of the corresponding statement in non-periodic semirings
(cf. Lemma 4.7).

Lemma 4.13. LetA = (A,�, 1, 0) be a commutative and non-regular monoid.

hn–BOT(A) * d–BOTo(A)

Proof. Since the monoid A is not regular, there exists an a ∈ A such that there is no b ∈ A
with b � a2 = a. Let M1 = ({?},Γ,Σ,A, {?}, δ1, µ1) be the homomorphism bu-w-tt speci-
fied by the input ranked alphabet Γ = {γ(1), α(0)}, output ranked alphabet Σ = {σ(2), α(0)}, and
µ1 = ((µ1)1

γ, (µ1)0
α).

(µ1)1
γ(?) = 1 σ(x1, x1) , (µ1)0

α() = a α .

Clearly, M1 is a nondeleting homomorphism bu-w-tt, so τM1 ∈ hn–BOT(A). Let τ = τM1 . For
every s ∈ TΓ let ts ∈ TΣ be the fully balanced output tree such that the heights of the trees s and ts

are equal. An easy calculation yields that for every s ∈ TΓ the equality τ(s) = a ts holds.
Next we prove that τ < d–BOTo(A). In order to derive a contradiction, assume that there is

a deterministic bu-w-tt M2 = (Q2,Γ,Σ,A, F2, δ2, µ2) such that τo
M2

= τ. Since for every s ∈ TΓ it

230 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

holds that τ(s) , 0̃ and M2 has only a finite set Q2 of states, there must exist a final state q ∈ F2
such that for two distinct s1, s2 ∈ TΓ, i.e., s1 , s2, we have δ̂2(s1) = q = δ̂2(s2). Consequently,
τo

M2
(si) = µ̂2o(si) for every i ∈ [2]. Moreover, also δ̂2(γ(si)) ∈ F, hence

τo
M2

(γ(si)) = µ̂2o(γ(si)) = (µ2)1
γ(δ̂2(si))

o
←− (µ̂2o(si)) = (µ2)1

γ(q)
o

←− (τ(si)) .

Trivially, (µ2)1
γ(q) , 0̃, otherwise τo

M2
(γ(si)) = 0̃. Let (µ2)1

γ(q) = b t for some b ∈ A and
t ∈ TΣ(X1). Moreover, recall that τ(si) = a tsi . We can readily conclude that t = σ(x1, x1), else
either t[ts1] or t[ts2] is not fully balanced or height(t[tsi]) , height(si) + 1 for some i ∈ [2]. We
continue with

τo
M2

(γ(si)) = (µ2)1
γ(q)

o
←− (τ(si)) = b σ(x1, x1)

o
←− (a tsi) = (b � a2) σ(tsi , tsi) .

According to τo
M2

= τ, we also derive

τo
M2

(γ(si)) = (b � a2) σ(tsi , tsi) = a σ(tsi , tsi) = τ(γ(si)) .

Consequently, we should have b � a2 = a, but a was chosen such that this is impossible. Thus
we arrived at a contradiction which yields τ < d–BOTo(A). �

Next we show that there exists an o-t-ts transformation τ computed by a linear homomor-
phism bu-w-tt such that there exists no deterministic bu-w-tt computing τ as t-ts transformation,
unlessA = (A,�, 1, 0) is actually a group with an absorbing element 0.

Lemma 4.14. LetA = (A,�, 1, 0) be a commutative monoid which is no group.

hl–BOTo(A) * d–BOT(A)

Proof. The monoidA is no group, hence there exists an a ∈ A\{0}, which cannot be inverted, i.e.,
there is no b ∈ A such that b � a = 1. Let M1 = ({?},Γ,Γ,A, {?}, δ1, µ1) be the homomorphism
bu-w-tt specified by the ranked alphabet Γ = {γ(1), α(0)} and output mappings µ1 = ((µ1)1

γ, (µ1)0
α).

(µ1)1
γ(?) = 1 α , (µ1)0

α() = a α .

Clearly, M1 is a linear homomorphism bu-w-tt, thus τo = τo
M1
∈ hl–BOTo(A). Straightforward

calculation yields τo(α) = a α and for every other s ∈ TΓ \ {α} the equality τo(s) = 1 α holds.
Next we prove that τo < d–BOT(A). In order to derive a contradiction, assume that there

exists a deterministic bu-w-tt M2 = (Q2,Γ,Γ,A, F2, δ2, µ2) such that τM2 = τo. Obviously,

a α = τo(α) = τM2 (α) = µ̂2(α) = (µ2)0
α() .

Since we also have τo(γ(α)) = 1 α we immediately obtain

τM2 (γ(α))
= µ̂2(γ(α))
= (µ2)1

γ(δ̂2(α))←− (µ̂2(α))

= (µ2)1
γ((δ2)0

α())←− (a α)
= b t ←− (a α)

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 231

= (b � a) t[α]

for some b ∈ A and t ∈ TΓ(X1). Moreover, we have that (b � a) t[α] = 1 α, so b � a = 1.
Contrary, a was chosen such that such an element b does not exist. Thus we derived the desired
contradiction and conclude τo < d–BOT(A). �

We have already seen in Lemma 4.13 that the class of all t-ts transformations computed by
nondeleting homomorphism bu-w-tt is not contained in the class of all o-t-ts transformations
computed by deterministic bu-w-tt as long as the monoidA is not regular, i.e.,

hn–BOT(A) * d–BOTo(A) .

It is furthermore clear that the class of all o-t-ts transformations computed by nondeleting ho-
momorphism bu-w-tt is properly contained in the class of all t-ts transformations computed by
deterministic bu-w-tt due to Lemma 4.12 (on periodic and commutative monoids), i.e.,

hn–BOTo(A) ⊆ d–BOT(A) .

However, the relation between the class of o-t-ts transformations computed by nondeleting homo-
morphism bu-w-tt and the class of t-ts transformations computed by nondeleting homomorphism
bu-w-tt is yet unsettled. The next lemma solves this question for all non-idempotent monoids.

Lemma 4.15. LetA = (A,�, 1, 0) be a non-idempotent monoid.

hn–BOTo(A) * h–BOT(A)

Proof. Let a ∈ A \ {0, 1} be such that a � a , a. Such an element exists due to the as-
sumption that A is non-idempotent. Further, let Γ = {γ(1), α(0), β(0)} and Σ = {σ(2), α(0)} and
M1 = ({?},Γ,Σ,A, {?}, δ1, µ1) be the nondeleting homomorphism bu-w-tt with

µ1 = ((µ1)1
γ, (µ1)0

α, (µ1)0
β)

specified by
(µ1)1

γ(?) = 1 σ(x1, x1) , (µ1)0
α() = a α , (µ1)0

β() = 1 α .

Let τo = τo
M1

. Clearly, τo ∈ hn–BOTo(A), and moreover, τo(γ(α)) = a2 σ(α, α) as well as
τo(γ(β)) = 1 σ(α, α).

Now let us prove that τo < h–BOT(A). We prove this statement by contradiction, so assume
that there exists a homomorphism bu-w-tt

M2 = ({?},Γ,Σ,A, {?}, δ2, µ2)

such that τM2 = τo. Trivially, δ2 = δ1 and µ2 = ((µ2)1
γ, (µ2)0

α, (µ2)0
β) with

(µ2)1
γ(?) = c t , (µ2)0

α() = a α , (µ2)0
β() = 1 α

for some c ∈ A and t ∈ TΣ(X1). Moreover, we readily observe t = σ(x1, x1). Consequently,
τM2 (γ(α)) = (c � a) σ(α, α) and τM2 (γ(β)) = c σ(α, α). Thus we obtain the equalities c = 1 and
c � a = a2, which yield a = a2. Contrary, a was chosen such that a , a2. Thus we derived the
desired contradiction and conclude that τo < h–BOT(A). �

232 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

d do

dn dlo

dno dl

dt dnl= dto

dnt dlto

dnto dlt

h dnlt= ho

hn hno hl hlo

hnl=

Figure 3: Hasse diagram for periodic, commutative, and non-regular monoids.

Finally, we are able to present the Hasse diagram for periodic and commutative monoidsA,
which are not regular. The latter restriction assures thatA is also neither idempotent nor a group.
Those cases are handled in subsequent sections.

Theorem 4.16. Let A = (A,�, 1, 0) be a periodic, commutative, and non-regular monoid with
an absorbing element 0. Figure 3 is the Hasse diagram of the displayed classes of t-ts and o-t-ts
transformations ordered by set inclusion.

Proof. All the inclusions are either trivial or follow from Lemma 4.12, whereas the equalities
are due to Proposition 4.4. The following eight statements are sufficient to prove strictness and
incomparability with mod ∈ {ε, o}.

dnlt–BOT(A) * h–BOTmod(A) (16)
dnl–BOT(A) * dt–BOTmod(A) (17)
hn–BOTo(A) * dl–BOTo(A) (18)

hl–BOT(A) * dn–BOT(A) (19)
hn–BOT(A) * d–BOTo(A) (20)
hl–BOTo(A) * d–BOT(A) (21)
hn–BOTo(A) * h–BOT(A) (22)

hl–BOT(A) * h–BOTo(A) (23)

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 233

The inequalities (16)–(19) are proved in Lemma 4.3, whereas we obtain (20) from Lemma 4.13,
(21) from Lemma 4.14, (22) from Lemma 4.15, and (23) from Lemma 4.5. �

4.4. Periodic, commutative, and regular monoids

In this section we consider monoids A = (A,�, 1, 0) which are periodic, commutative, and
regular. An example of a periodic, commutative, and regular monoid, which is neither idempo-
tent nor a group, is Z6. Specifically the regularity allows us to derive more inclusion results. The
next corollary states this formally. Roughly speaking, the classes of t-ts transformations become
subsets of the corresponding classes of o-t-ts transformations, except for the classes bearing the
homomorphism restriction.

Lemma 4.17. Let A = (A,�, 1, 0) be a periodic, commutative, and regular monoid. Then for
every π ∈ Π \ Πh we have π–BOT(A) ⊆ π–BOTo(A).

Proof. Let τ ∈ π–BOT(A) for some π ∈ Π \ Πh. Consequently, there exists a deterministic
bu-w-tt M1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the restrictions of π such that τM1 = τ. Moreover,
let fM1,ε = (f k

M1,ε
)k∈N be the family of mappings

f k
M1,ε

:
(⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)k
σ(q1, . . . , qk))

)
× [k] × A −→ A

defined for every k ∈ N, t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)k
σ(q1, . . . , qk)), i ∈ [k], and a ∈ A by

f k
M1,ε

(t, i, a) =

0 , if a = 0
a , if a , 0, |t|xi = 0
b|t|xi−1 , otherwise ,

where b ∈ A is such that a2 � b = a. Such b ∈ A exists for every a ∈ A due to regularity.
Each f k

M1,ε
(t, i, a) is well-defined, because in the case distinction every exponent is non-

negative in the definition of f k
M1,ε

(t, i, a). Moreover, it is straightforward to prove that fM1,ε is
a family of translation mappings for M1. Thus, due to Lemma 4.11, there exists a deterministic
bu-w-tt M2 obeying the restrictions π such that τo

M2
= τ. Hence π–BOT(A) ⊆ π–BOTo(A) for

every π ∈ Π \ Πh.

Since we cannot apply Lemma 4.13 to show that the classes of t-ts and o-t-ts transformations
computed by nondeleting homomorphism bu-w-tt are incomparable, but Lemma 4.15 already
delivers one half, we establish the remaining half in the next lemma.

Lemma 4.18. LetA = (A,�, 1, 0) be a commutative and regular, but non-idempotent monoid.

hn–BOT(A) * h–BOTo(A)

Proof. Since A is not idempotent, but regular, there exist a, b ∈ A \ {0, 1} such that a , a2 and
a2 � b = a. Let Γ = {γ(1), α(0)} and Σ = {σ(2), α(0)} and M1 = ({?},Γ,Σ,A, {?}, δ1, µ1) be the
nondeleting homomorphism bu-w-tt specified by

(µ1)1
γ(?) = a σ(x1, x1) , (µ1)0

α() = b α .

234 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

Let τ = τM1 . Clearly, τ ∈ hn–BOT(A), and moreover,

τ(γ(α)) = (a � b) σ(α, α)
τ(γ2(α)) = a σ(σ(α, α), σ(α, α))
τ(γ3(α)) = a2 σ(σ(σ(α, α), σ(α, α)), σ(σ(α, α), σ(α, α))) .

Now let us prove that τ < h–BOTo(A). We prove this statement by contradiction, so assume
that there exists a homomorphism bu-w-tt

M2 = ({?},Γ,Σ,A, {?}, δ2, µ2)

such that τo
M2

= τ. Trivially, δ2 = δ1, (µ2)1
γ(?) = c t, and (µ2)0

α() = b α for some c ∈ A and
t ∈ TΣ(X1). Moreover, we readily observe t = σ(x1, x1), otherwise supp(τo

M2
(γ(α))) , {σ(α, α)}

or supp(τo
M2

(γ2(α))) , {σ(σ(α, α), σ(α, α))}. Hence

τo
M2

(γ(α)) = (b2 � c) σ(α, α)

τo
M2

(γ2(α)) = (b4 � c3) σ(σ(α, α), σ(α, α))

τo
M2

(γ3(α)) = (b8 � c7) σ(σ(σ(α, α), σ(α, α)), σ(σ(α, α), σ(α, α))) .

Thus we obtain the equalities

b2 � c = a � b , b4 � c3 = a , b8 � c7 = a2 .

Now we compute as follows

a = b4 � c3 = (b2 � c) � (b2 � c) � c

= (a � b) � (a � b) � c = (a2 � b) � b � c = a � b � c

and a2 = b8 � c7 = (b4 � c3) � (b4 � c3) � c = a2 � c. Next we multiply the former equation
with a, which gives a2 = a2 � b � c = a � c, and the latter equation with b, which yields
a = a2 � b = a2 � b � c = a � c. Hence a = a2, which is a contradiction, because a was chosen
such that a , a2. Thus we conclude that τ < h–BOTo(A). �

At this point we have all the results necessary to derive the Hasse diagram for periodic,
commutative, and regular monoids, which are neither idempotent nor groups.

Theorem 4.19. Let A = (A,�, 1, 0) be a periodic, commutative, and regular monoid, which is
neither idempotent nor a group with an absorbing element 0. Figure 4 is the Hasse diagram of
the displayed classes of t-ts and o-t-ts transformations ordered by set inclusion.

Proof. All the inclusions are either trivial or follow from Lemma 4.12 and Lemma 4.17. The
used equalities are due to Proposition 4.4, Lemma 4.12, and Lemma 4.17. The following seven
statements are sufficient to prove strictness and incomparability. For every {mod1,mod2} = {ε, o}

dnlt–BOT(A) * h–BOTmod1 (A) (24)
dnl–BOT(A) * dt–BOTo(A) (25)

hn–BOTmod1 (A) * dl–BOTo(A) (26)

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 235

do

d dlo

dn= dl

dnl= dto

dt dlto

dnt= dlt

dnlt=

h ho

hn hno hl hlo

hnl=

Figure 4: Hasse diagram for periodic, commutative, and regular monoids, which are neither idempotent nor a group.

236 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

hl–BOT(A) * dn–BOT(A) (27)
hl–BOT(A) * h–BOTo(A) (28)

hl–BOTo(A) * d–BOT(A) (29)
hl–BOTmod1 (A) * d–BOTmod2 (A) . (30)

The inequalities (24)–(27) are proved in Lemma 4.3, whereas (28) follows from Lemma 4.5,
(29) follows from Lemma 4.14, and (30) follows from Lemmata 4.15 and 4.18. �

4.5. Commutative and idempotent monoids
This section is devoted to the study of commutative and idempotent monoids. The monoid

Rmax is an example of such a monoid. Clearly, an = a for every n ∈ N+ and a ∈ A of such a
monoid. Hence we easily derive the following observation.

Proposition 4.20. Let A = (A,�, 1, 0) be an idempotent monoid, k ∈ N, and ∆ be a ranked
alphabet. For every nondeleting (in Xk) t ∈ T∆(Xk), a ∈ A, and monomials m1, . . . ,mk ∈ A[T∆]
we have that

a t ←− (m1, . . . ,mk) = a t
o

←− (m1, . . . ,mk) .

Corollary 4.21. LetA be an idempotent monoid. For every π ∈ Πn we have

π–BOTo(A) = π–BOT(A) .

Corollary 4.22. For every monoid A, we have hn–BOTo(A) = hn–BOT(A) if and only if A is
idempotent.

Proof. The equality in idempotent monoids is proved in Corollary 4.21 and Lemma 4.15 proves
the inequality in all non-idempotent monoids. �

These are indeed all the new results necessary to prove the Hasse diagram. Note that idem-
potent monoids are trivially regular and periodic, so we apply some of the results derived in
Section 4.4.

Theorem 4.23. Let A = (A,�, 1, 0) be a commutative, idempotent monoid such that A , {0, 1}.
Figure 5 is the Hasse diagram of the displayed classes of t-ts and o-t-ts transformations ordered
by set inclusion.

Proof. All the inclusions are either trivial or follow from Lemma 4.17. The equalities are due
to Proposition 4.4 and Corollary 4.21. Then the following six statements are sufficient to prove
strictness and incomparability. For every mod ∈ {ε, o}

dnlt–BOT(A) * h–BOTmod(A) (31)
dnl–BOT(A) * dt–BOTo(A) (32)
hn–BOT(A) * dl–BOTo(A) (33)
hl–BOT(A) * dn–BOT(A) (34)
hl–BOT(A) * h–BOTo(A) (35)

hl–BOTo(A) * d–BOT(A) . (36)

The inequalities (31)–(34) are proved in Lemma 4.3, whereas (35) follows from Lemma 4.5 and
(36) follows from Lemma 4.14. �

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 237

do

d dlo

dn= dl

dnl= dto

dt dlto

dnt= dlt

dnlt=

h ho

hn= hl hlo

hnl=

Figure 5: Hasse diagram for commutative and idempotent monoids with at least three elements.

4.6. Periodic and commutative groups

Finally, in this last section we consider periodic and commutative groups with an absorbing
element 0. For example, the monoid Z3 fulfils all those restrictions. Note that all such monoids
(except Z2) are non-idempotent. Due to the existence of inverses we can now easily derive a final
lemma which follows from Lemma 4.11.

Lemma 4.24. Let A = (A,�, 1, 0) be a periodic, commutative group and mod1,mod2 ∈ {ε, o}.
For every π ∈ Π \ Πh

π–BOTmod1 (A) ⊆ π–BOTmod2 (A) .

Proof. The statement is trivial, if mod1 = mod2. Henceforth let mod1 and mod2 be distinct.
Let τ ∈ π–BOTmod1 (A) for some π ∈ Π \ Πh. Consequently, there exists a deterministic bu-w-tt
M1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the restrictions of π such that τmod1

M1
= τ. Moreover, let

fM1,mod1 = (f k
M1,mod1

)k∈N be the family of mappings

f k
M1,mod1

:
(⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)k
σ(q1, . . . , qk))

)
× [k] × A −→ A

238 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

d=

dn= dl= dt=

dnl= dnt= dlt= h ho

dnlt= hn hno hl hlo

hnl=

Figure 6: Hasse diagram for periodic and commutative groups with an absorbing element 0 and at least three elements.

defined for every k ∈ N, t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)k
σ(q1, . . . , qk)), i ∈ [k], and a ∈ A by

f k
M1,mod1

(t, i, a) =

0 , if a = 0
a1−|t|xi , if a , 0,mod1 = ε

a|t|xi−1 , if a , 0,mod1 = o .

Each f k
M1,mod1

(t, i, a) is trivially well-defined due to the existence of inverses. Moreover, it is
straightforward to prove that fM1,mod1 is a family of mod1-translation mappings. Thus there exists
a deterministic bu-w-tt M2 obeying the restrictions π such that τmod2

M2
= τ due to Lemma 4.11.

Hence we can conclude π–BOTmod1 (A) ⊆ π–BOTmod2 (A) for every π ∈ Π \ Πh. �

Since we demand that we have at least three elements, our group is non-idempotent, which
allows us to reuse some the results of earlier sections. Finally, we present the last Hasse diagram.

Theorem 4.25. Let A = (A,�, 1, 0) be a periodic and commutative group with an absorbing
element 0 such that A , {0, 1}. Figure 6 is the Hasse diagram of the displayed classes of t-ts and
o-t-ts transformations ordered by set inclusion.

Proof. All the inclusions are either trivial or follow from Lemma 4.24. The equalities are due
to Proposition 4.4 and Lemma 4.24. Then the following six statements are sufficient to prove
strictness and incomparability. For every {mod1,mod2} = {ε, o}

dnlt–BOT(A) * h–BOTmod1 (A) (37)
dnl–BOT(A) * dt–BOT(A) (38)

hn–BOTmod1 (A) * dl–BOT(A) (39)
hl–BOTmod1 (A) * dn–BOT(A) (40)
hn–BOTmod1 (A) * h–BOTmod2 (A) (41)

A. Maletti / Theoretical Computer Science 339 (2005) 200–240 239

hl–BOTmod1 (A) * h–BOTmod2 (A) . (42)

The inequalities (37)–(40) are proved in Lemma 4.3, whereas inequality (41) follows from Lem-
mata 4.15 and 4.18 and (42) follows from Lemma 4.5. �

5. Conclusions

We have investigated the power of deterministic bu-w-tt using pure and o-substitution. We
presented Hasse diagrams conveying the relation between classes of t-ts and o-t-ts transforma-
tions for all sensible combinations of the common restrictions and all commutative monoids. It
turned out that pure and o-substitution not only differ conceptually, but the induced classes of t-ts
and o-t-ts transformations are also different for most monoids.

In principle, we observe that o-substitution is more appropriate, if the weight is related to the
output tree, whereas pure substitution handles weights related to the input tree better. Concerning
applications, deterministic bu-w-tt can be used to compute, for example, the topmost leftmost
instance of a pattern in an input tree weighted by the size of the instance. For this purpose
we would use o-substitution. Deterministic bu-w-tt using pure substitution can be applied to
compute the same instance weighted by the size of the input tree.

Acknowledgements. The author is deeply indebted to the two anonymous referees for pointing
out the deficiencies of a draft of the paper. Their suggestions were much appreciated and greatly
improved the readability of the present paper.

[1] Baker, B. S., 1979. Composition of top-down and bottom-up tree transductions. Information and Control 41 (2),
186–213.

[2] Berstel, J., Reutenauer, C., 1982. Recognizable formal power series on trees. Theoretical Computer Science 18 (2),
115–148.

[3] Borchardt, B., 2003. The Myhill-Nerode theorem for recognizable tree series. In: 7th International Conference
on Developments in Language Theory, DLT 2003, Szeged, Hungary, July 7–11, 2003, Proceedings. Vol. 2710 of
Lecture Notes in Computer Science. Springer, pp. 146–158.

[4] Borchardt, B., 2004. Code selection by tree series transducers. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu,
S. (Eds.), 9th International Conference on Implementation and Application of Automata, CIAA 2004, Kingston,
Canada, July 22–24, 2004, Revised Selected Papers. Vol. 3317 of Lecture Notes in Computer Science. Springer,
pp. 57–67.

[5] Borchardt, B., Vogler, H., 2003. Determinization of finite state weighted tree automata. Journal of Automata,
Languages and Combinatorics 8 (3), 417–463.

[6] Bozapalidis, S., 1999. Equational elements in additive algebras. Theory of Computing Systems 32 (1), 1–33.
[7] Bozapalidis, S., 2001. Context-free series on trees. Information and Computation 169 (2), 186–229.
[8] Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M., 1997. Tree automata

techniques and applications. Available at: http://www.grappa.univ-lille3.fr/tata.
[9] Davey, B. A., Priestley, H. A., 2002. Introduction to Lattices and Order, 2nd Edition. Cambridge University Press.

[10] Droste, M., Pech, C., Vogler, H., 2005. A Kleene theorem for weighted tree automata. Theory of Computing
Systems 38 (1), 1–38.

[11] Droste, M., Vogler, H. (Eds.), 2003. 1st Workshop on Weighted Automata: Theory and Applications, Dresden,
Germany, March 4–8, 2002, Selected Papers. Vol. 8 of Journal of Automata, Languages and Combinatorics.

[12] Engelfriet, J., 1975. Bottom-up and top-down tree transformations — a comparison. Mathematical Systems Theory
9 (3), 198–231.

[13] Engelfriet, J., 1982. The copying power of one-state tree transducers. Journal of Computer and System Sciences
25 (3), 418–435.

[14] Engelfriet, J., Fülöp, Z., Vogler, H., 2002. Bottom-up and top-down tree series transformations. Journal of Au-
tomata, Languages and Combinatorics 7 (1), 11–70.

[15] Engelfriet, J., Schmidt, E., 1978. IO and OI. II. Journal of Computer and System Sciences 16 (1), 67–99.
[16] Engelfriet, J., Schmidt, E. M., 1977. IO and OI. I. Journal of Computer and System Sciences 15 (3), 328–353.
[17] Ésik, Z., Kuich, W., 2003. Formal tree series. In: [11], pp. 219–285.

240 A. Maletti / Theoretical Computer Science 339 (2005) 200–240

[18] Ferdinand, C., Seidl, H., Wilhelm, R., 1994. Tree automata for code selection. Acta Informatica 31 (8), 741–760.
[19] Fülöp, Z., 1991. A complete description for a monoid of deterministic bottom-up tree transformation classes.

Theoretical Computer Science 88 (2), 253–268.
[20] Fülöp, Z., Gazdag, Z., Vogler, H., 2004. Hierarchies of tree series transformations. Theoretical Computer Science

314 (3), 387–429.
[21] Fülöp, Z., Vogler, H., 2003. Tree series transformations that respect copying. Theory of Computing Systems 36 (3),

247–293.
[22] Fülöp, Z., Vogler, H., 2004. Weighted tree transducers. Journal of Automata, Languages and Combinatorics 9 (1),

31–54.
[23] Gécseg, F., Steinby, M., 1984. Tree Automata. Akadémiai Kiadó, Budapest.
[24] Gécseg, F., Steinby, M., 1997. Tree languages. In: Rozenberg, G., Salomaa, A. (Eds.), Beyond Words. Vol. 3 of

Handbook of Formal Languages. Springer, Ch. 1, pp. 1–68.
[25] Golan, J. S., 1999. Semirings and their Applications. Kluwer Academic Publishers, Dordrecht.
[26] Hebisch, U., Weinert, H. J., 1998. Semirings — Algebraic Theory and Applications in Computer Science. World

Scientific, Singapore.
[27] Jacobsen, N., 1985. Basic Algebra I, 2nd Edition. W. H. Freeman and Company, New York.
[28] Jacobsen, N., 1989. Basic Algebra II, 2nd Edition. W. H. Freeman and Company, New York.
[29] Kuich, W., 1997. Formal power series over trees. In: Bozapalidis, S. (Ed.), 3rd International Conference on Devel-

opments in Language Theory, DLT 1997, Thessaloniki, Greece, July 20–23, 1997, Proceedings. Aristotle Univer-
sity of Thessaloniki, pp. 61–101.

[30] Kuich, W., 1997. Semirings and formal power series: Their relevance to formal languages and automata. In: Rozen-
berg, G., Salomaa, A. (Eds.), Word, Language, Grammar. Vol. 1 of Handbook of Formal Languages. Springer,
Ch. 9, pp. 609–677.

[31] Kuich, W., 1999. Tree transducers and formal tree series. Acta Cybernetica 14 (1), 135–149.
[32] Mateescu, A., Salomaa, A., 1997. Formal languages: an introduction and a synopsis. In: Rozenberg, G., Salomaa,

A. (Eds.), Word, Language, Grammar. Vol. 1 of Handbook of Formal Languages. Springer, pp. 1–39.
[33] Nivat, M., 1968. Transduction des langages de Chomsky. Annales de l’Institut Fourier de l’Université de Grenoble

18 (1), 339–456.
[34] Nivat, M., Podelski, A., 1992. Tree Automata and Languages. Studies in Computer Science and Artificial Intelli-

gence. North-Holland.
[35] Rounds, W. C., 1970. Mappings and grammars on trees. Mathematical Systems Theory 4 (3), 257–287.
[36] Seidl, H., 1992. Finite tree automata with cost functions. In: Raoult, J.-C. (Ed.), 17th Colloquium on Trees in

Algebra and Programming, CAAP 1992, Rennes, France, February 26–28, 1992, Proceedings. Vol. 581 of Lecture
Notes in Computer Science. Springer, pp. 279–299.

[37] Seidl, H., 1994. Finite tree automata with cost functions. Theoretical Computer Science 126 (1), 113–142.
[38] Thatcher, J. W., 1970. Generalized2 sequential machine maps. Journal of Computer and System Sciences 4 (4),

339–367.

