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Abstract. We generalize the classical Myhill-Nerode theorem for fi-
nite automata to the setting of sequential transducers over unique GCD-
monoids, which are cancellative monoids in which every two non-zero
elements admit a unique greatest common (left) divisor. We prove that
a given formal power series is sequential, if and only if it is directed
and our Myhill-Nerode equivalence relation has finite index. As in
the classical case, our Myhill-Nerode equivalence relation also admits
the construction of a minimal (with respect to the number of states)
sequential transducer recognizing the given formal power series.

1 Introduction

Deterministic finite automata (e.g., [10, 20, 24]) and sequential transducers
[7, 22, 3, 8] are applied, for example, in lexical analysis [1, 2], digital im-
age manipulation [9], and speech processing [16]. In the latter application
area also very large sequential transducers, i.e., transducers having several
million states, over various monoids are encountered [16], so without min-
imization algorithms [21, 23, 15] the applicability of sequential transducers
would be severely hampered.

In [16, 17] efficient algorithms for the minimization of sequential trans-
ducers are presented in case the weight is taken out of the monoid (∆∗, ·, ε)
of words over ∆ with the operation of concatenation or out of the monoid
(IR+,+, 0) of non-negative reals with the usual addition. A Myhill-
Nerode theorem also allowing minimization is well-known for sequential
transducers over groups [6, 4] and in [13, 5] the authors prove Myhill-
Nerode theorems for bottom-up finite tree automata and determinis-
tic bottom-up weighted finite tree automata over arbitrary commutative
groups, respectively. We present a generalization of the classical Myhill-
Nerode [18, 19] congruence relation to the setting of sequential trans-
ducers over unique GCD-monoids [11, 12], in which every two non-zero
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elements admit a unique greatest common divisor. Roughly speaking, a
sequential transducer M = (Q, q0, F, Σ, δ,A, a0, µ) comprises of

(i) a non-empty and finite set Q of states,
(ii) an initial state q0 ∈ Q in which the computation is started,
(iii) a set F ⊆ Q of final states marking the end of successful computations,
(iv) a finite set Σ, also called input alphabet, of symbols over which the

input words are formed,
(v) a mapping δ : Q×Σ −→ Q yielding the next state provided the current

state and input symbol,
(vi) a monoid A = (A,�,1) with an absorbing element 0,
(vii) a non-zero element a0 ∈ A \ {0} standing for the weight of the empty

word, and
(viii) a mapping µ : Q × Σ −→ A which assigns a weight to each state

transition.

At any given time the sequential transducer M is in a certain state of Q
and has accumulated a weight of A. Initially, its internal state is q0 and
the weight is set to a0. Then M is presented the input word w one symbol
at a time, changes its internal state according to δ, and updates the accu-
mulated weight by multiplying it with the weight obtained from µ. After
the word w has been completely processed, M is either in a final state,
which means that M accepts the word w and outputs the accumulated
weight, or M rejects the word w and outputs 0. Hence M computes a
mapping from Σ∗ to A, which is then called sequential.

More formally, the mappings δ̂ : Σ∗ −→ Q and µ̂ : Σ∗ −→ A are re-
cursively defined for every w ∈ Σ∗ and σ ∈ Σ by

(i) δ̂(ε) = q0 and µ̂(ε) = a0, and
(ii) δ̂(w·σ) = δ(δ̂(w), σ) and µ̂(w·σ) = µ̂(w)� µ(δ̂(w), σ).

Then the mapping SM : Σ∗ −→ A computed by M (or equivalently the
power series recognized by M) is defined as

SM (w) =

{
µ̂(w) , if δ̂(w) ∈ F

0 , otherwise
.

We will prove that a given power series S, i.e., a mapping S : Σ∗ −→ A
into a monoid (A,�,1) with absorbing element 0, is sequential, if and only
if (i) our Myhill-Nerode equivalence relation has finite index, and in
addition, (ii) S(w) = gcdu∈Σ∗, S(w·u) 6=0 S(w·u) whenever S(w) 6= 0. More-
over, in case S is sequential, the equivalence relation will also permit the



construction of a minimal (with respect to the number of states) sequential
transducer recognizing S.

The paper is structured as follows. Section 2 reviews the mathematical
foundations required in the sequel. In particular, it formally introduces
the key notions of unique GCD-monoids and sequential transducers. In
Section 3 we present our generalization of the Myhill-Nerode theorem
along with the minimization of sequential transducers using a construction
similar to [17]. Finally, Section 4 contains conclusions. We present the
constructions in the main part of the paper, while most proof details can
be found in the appendix.

2 Preliminaries

Sets, Relations, and Words The set {0, 1, 2, . . .} of all non-negative
integers is denoted by IN and we let IN+ = IN\{0}. We write card(A) for the
cardinality of a set A. Any subset ρ ⊆ A×A is called relation on A. Usually
we prefer to write a1 ρ a2 instead of (a1, a2) ∈ ρ. Given a relation ≡ on A,
we say that ≡ is an equivalence relation, if ≡ is (i) reflexive, i.e., for every
a ∈ A we have a ≡ a, (ii) symmetric, i.e., a1 ≡ a2 if and only if a2 ≡ a1 for
every a1, a2 ∈ A, and (iii) transitive, i.e., for every a1, a2, a3 ∈ A the facts
a1 ≡ a2 and a2 ≡ a3 imply a1 ≡ a3. The set [a]≡ = { a′ ∈ A | a ≡ a′ } is
called the equivalence class of a (with respect to ≡). Furthermore, we let
[A′]≡ = { [a]≡ | a ∈ A′ } for every A′ ⊆ A. The index of ≡ is defined as
index(≡) = card([A]≡).

A non-empty and finite set Σ is also called alphabet. In the following let
Σ be an alphabet. Every finite sequence of elements of Σ is called a word
over Σ and the set of all words over Σ is denoted by Σ∗. We use w1·w2 to
denote the word obtained by concatenation of the two words w1, w2 ∈ Σ∗.
In particular, we write ε for the empty word, i.e., the sequence of length 0.

Monoids A monoid is defined to be an algebraic structure A = (A,�,1)
with carrier set A, an associative operation � : A2 −→ A, i.e., we have
a1 � (a2 � a3) = (a1 � a2) � a3 for every a1, a2, a3 ∈ A, and an element
1 ∈ A such that 1�a = a = a�1 for every a ∈ A. Commutative monoids
additionally satisfy a1 � a2 = a2 � a1 for every a1, a2 ∈ A, and if there
exists an element 0 ∈ A which acts as an absorbing element, i.e., for every
a ∈ A we have a� 0 = 0 = 0� a, then this element is clearly unique and
we use (A,�,1,0) to denote a monoid with the absorbing element 0. In
case A has no absorbing element an absorbing element may be adjoined.



The monoid (A,�,1,0) is zero-divisor free, if a1 � a2 = 0 implies a1 = 0
or a2 = 0. In the sequel let A = (A,�,1,0) be a monoid such that 0 6= 1.

Let a, a1, a2 ∈ A such that a 6= 0. The monoid A is termed (restricted)
cancellation monoid, if each of the two statements a � a1 = a � a2 and
a1�a = a2�a implies a1 = a2. We say that a1 is a (left) divisor of a2, in
symbols a1|a2, if there exists an a ∈ A such that a1 � a = a2. Note that
the element a is unique in a cancellation monoid, so that a−1

1 �a2 denotes
it provided that a1|a2. Given two elements a1 6= 0 6= a2, an element a ∈ A
is called greatest common (left) divisor (gcd) of a1 and a2, if (i) a|a1,
(ii) a|a2, and (iii) for every a′ ∈ A satisfying a′|a1 and a′|a2 we have a′|a.
Although greatest common divisors are neither guaranteed to exist nor
unique, according to tradition we write gcd(a1, a2) to denote any gcd of
a1 and a2. Dually to the notion of greatest common divisors the concept
of least common multiples is defined. Precisely, a is a least common (left)
multiple (lcm) of a1 and a2, if (i) a1|a, (ii) a2|a, and (iii) for every a′ ∈ A
with a1|a′ and a2|a′ we have a|a′. A unique GCD-monoid is a cancellation
monoid (A,�,1,0) in which (i) a|1 implies a = 1, (ii) a gcd exists for
every two non-zero elements, and (iii) an lcm exists for every two non-
zero elements having a common multiple. In particular this yields that
every gcd is indeed unique. We extend the definition of a gcd to arbitrary
many elements as follows. Let k ∈ IN+ and {a1, . . . , ak} ⊆ A \ {0}.

gcd
i∈{1,...,k}

ai = gcd(a1, gcd(a2, . . . , gcd(ak−1, ak) . . .)) (1)

with gcdi∈{1} ai = a1. Given an infinite set I and a family ( ai )i∈I , we
define gcdi∈I ai = gcdj∈J aj , if there exists a finite set J ⊆ I such that
for every i ∈ I there exists a j ∈ J with aj |ai. Otherwise, we define
gcdi∈I ai = 1 and call this gcd flawed. For completeness we also define
gcdi∈∅ ai = 1.

Several important monoids are unique GCD-monoids such as

– the monoid (IN ∪ {∞},+, 0,∞) of non-negative integers,
– the monoid (IN, ·, 1, 0) of non-negative integers,
– the monoid (IR+ ∪ {0,∞},+, 0,∞) of non-negative reals,
– the monoid (∆∗, ·, ε,∞) of words with the absorbing element ∞,
– the monoid (IN[

√
2], ·, 1, 0) of real numbers of the form n1 + n2 ·

√
2

with n1, n2 ∈ IN (cf. [11, 12]), and
– generally every commutative factorial monoid with a single unit ele-

ment is a unique GCD-monoid [11, 12].

Lemma 1. Let A = (A,�,1,0) be a cancellation monoid and a, b, c ∈ A
such that a 6= 0 6= b.



(i) Then a−1 � (b−1 � c) = (b� a)−1 � c.
(ii) If b|a, then b−1 � (a� c) = (b−1 � a)� c.
(iii) If b|a, then a−1 � (b� c) = (b−1 � a)−1 � c.
(iv) The monoid A is zero-divisor free.

Formal Power Series and Sequential Transducers Any mapping
S : Σ∗ −→ A is also called (formal) power series [14, 4]. The set of all
such power series is denoted by A〈〈Σ∗〉〉. We write (S, w) instead of S(w)
for S ∈ A〈〈Σ∗〉〉 and w ∈ Σ∗. The support supp(S) of S is defined by
supp(S) = {w ∈ Σ∗ | (S, w) 6= 0 }.

A sequential transducer [7, 22] is a tuple M = (Q, q0, F, Σ, δ,A, a0, µ)
where (i) Q is a non-empty, finite set of states, (ii) q0 ∈ Q is an initial state,
(iii) F ⊆ Q is a set of final states, (iv) Σ is an alphabet, (v) δ : Q×Σ −→ Q
is a transition mapping, (vi)A = (A,�,1,0) is a monoid, (vii) a0 ∈ A\{0}
is a non-zero initial weight, and (viii) µ : Q×Σ −→ A is a weight mapping.
For every q ∈ Q the mappings δ̂q : Σ∗ −→ Q and µ̂q : Σ∗ −→ A are
recursively defined by (i) δ̂q(ε) = q and µ̂q(ε) = 1, and for every w ∈ Σ∗

and σ ∈ Σ (ii) δ̂q(w·σ) = δ(δ̂q(w), σ) and µ̂q(w·σ) = µ̂q(w)� µ(δ̂q(w), σ).
Finally, the power series SM ∈ A〈〈Σ∗〉〉 recognized by M is then defined
to be (SM , w) = a0 � µ̂q0(w), if δ̂q0(w) ∈ F , otherwise 0. We call a
power series S ∈ A〈〈Σ∗〉〉 sequential (with respect to A), if there exists a
sequential transducer M such that S = SM .

Example 2. LetA = (IN∪{∞},+, 0,∞) and Σ = {a, b}. Then the sequen-
tial transducer M = ({?}, ?, {?}, Σ, δ,A, 0, µ) with δ(?, a) = δ(?, b) = ?
and µ(?, a) = µ(?, b) = 1 recognizes the power series S, which maps each
word to its length.

3 Myhill-Nerode Equivalence Relation and Minimization

In this section we construct an equivalence relation ≡S for a given power
series S ∈ A〈〈Σ∗〉〉, where A = (A,�,1,0) is a unique GCD-monoid and
Σ is an arbitrary alphabet. Moreover, whenever S is sequential then the
index of≡S will be finite. Therefore, we firstly define a certain normal form
of sequential transducers and show that each sequential transducer M with
k states can be transformed into a normalized sequential transducer M ′

with at most (k + 1) states such that SM = SM ′ . Roughly speaking, a
sequential transducer is normalized, if there exists a distinguished dead
state ⊥ ∈ Q \ F such that every transition from q ∈ Q using σ ∈ Σ with
weight µ(q, σ) = 0 leads to ⊥, i.e., δ(q, σ) = ⊥.



Definition 3. Let M = (Q, q0, F, Σ, δ,A, a0, µ) be a sequential trans-
ducer. We say that M is normalized, if there exists a state ⊥ ∈ Q \ F
with ⊥ 6= q0 such that for every σ ∈ Σ we have δ(⊥, σ) = ⊥ and for every
q ∈ Q we have µ(q, σ) = 0 ⇐⇒ δ(q, σ) = ⊥.

Proposition 4. For every non-normalized sequential transducer M =
(Q, q0, F, Σ, δ,A, a0, µ) there exists a normalized sequential transducer M ′

with at most
(
card(Q) + 1

)
states such that SM = SM ′.

Proof (of Proposition 4). Let ⊥ /∈ Q and Q′ = Q ∪ {⊥}. The mappings
δ′ : Q′ ×Σ −→ Q′ and µ′ : Q′ ×Σ −→ A are defined for every q ∈ Q′ and
σ ∈ Σ by

(i) δ′(q, σ) = δ(q, σ) and µ′(q, σ) = µ(q, σ) whenever q ∈ Q, µ(q, σ) 6= 0,
(ii) δ′(q, σ) = ⊥ and µ′(q, σ) = 0 otherwise.

Then M ′ = (Q′, q0, F, Σ, δ,A, a0, µ
′) is a normalized sequential transducer

such that SM ′ = SM . The construction is standard, so we leave the proof
details to the reader. ut

The main beneficial property of normalized sequential transducers is
stated in the following lemma. Since cancellation monoids are zero-divisor
free (cf. Proposition 1(iv)), we have that the accumulated weight is zero,
if and only if the sequential transducer is in a dead state. Henceforth, we
will use ⊥ to stand for a dead state.

Lemma 5. Let M = (Q, q0, F, Σ, δ,A, a0, µ) be a normalized sequential
transducer. Then for every w ∈ Σ∗ and q ∈ Q \ {⊥}

µ̂q(w) = 0 ⇐⇒ δ̂q(w) = ⊥ . (2)

Inspired by the Myhill-Nerode congruence relation [18, 19], we now
define a similar relation for sequential transducers over unique GCD-
monoids. We let S ∈ A〈〈Σ∗〉〉 be a power series in the sequel. Moreover,
we will simply write that there exists a ∈ A \ {0} such that a−1 � b = c
to mean that there exists an a such that a|b and a � c = b. Finally, for
every w ∈ Σ∗ let g(w) = gcdu∈Σ∗, w·u∈supp(S)(S, w·u).

Definition 6. We define the Myhill-Nerode relation ≡S ⊆ Σ∗ × Σ∗

for every w1, w2 ∈ Σ∗ as follows. We let w1 ≡S w2, if and only if there
exist a1, a2 ∈ A \ {0} such that the following statements are well-formed
and satisfied for every w ∈ Σ∗.

w1·w ∈ supp(S) ⇐⇒ w2·w ∈ supp(S) (3)
a−1

1 � g(w1·w) = a−1
2 � g(w2·w) (4)



Having defined ≡S we now turn to its properties. Firstly, we observe
that ≡S is an equivalence relation on Σ∗ (cf. Proposition 7) and secondly,
whenever two words w1 and w2 are equivalent, then for every word w also
w1·w and w2·w are equivalent (cf. Lemma 8).

Proposition 7. The relation ≡S is an equivalence relation on Σ∗.

Lemma 8. Let w1, w2, w
′ ∈ Σ∗. If w1 ≡S w2 then also w1·w′ ≡S w2·w′.

As in the classical case we obtain that the number of equivalence
classes of ≡S , where S is a sequential power series recognized by a sequen-
tial transducer with k states, is at most (k + 1). Later on, we will show
how to construct a sequential transducer from ≡S provided that ≡S has
finite index and for every w ∈ supp(S) we have (S, w) = g(w). Moreover,
the constructed sequential transducer will have index(≡S) many states, so
together will the following proposition this shows that we can construct a
minimal sequential transducer.

Proposition 9. Let M be a sequential transducer with k states. If M is
non-normalized, then index(≡SM

) ≤ k + 1, whereas index(≡SM
) ≤ k, if

M is normalized.

Next we define directed power series, which are power series in which
a support element w is assigned a weight which is the gcd of the weight
of all support elements which have w as prefix. Clearly, every sequential
power series is directed, which is stated in Lemma 11, and Proposition 12
shows that no gcd in Definition 6 is flawed, if ≡S has finite index and
S is directed. In particular, together with the previous proposition this
means that any power series S, in which such a gcd is flawed, cannot be
sequential.

Definition 10. We call a power series S ∈ A〈〈Σ∗〉〉 directed, if for every
w ∈ supp(S) we have (S, w) = g(w).

Lemma 11. Every sequential power series is directed.

Proposition 12. If S is directed and ≡S has finite index, then there ex-
ists no w ∈ Σ∗ such that g(w) is flawed.

In the last proposition we show that we can actually implement ≡S

as a sequential transducer M , provided that S is directed and ≡S has
finite index. As in the classical construction, the state set of M will be
the set of equivalence classes of ≡S . Our construction basically follows the
construction of [17].



Proposition 13. If S ∈ A〈〈Σ∗〉〉 is directed and ≡S has finite index, then
there exists a sequential transducer M with index(≡S) states such that
SM = S.

Proof (of Proposition 13). In the proof we write [w] and [Σ∗] instead of
[w]≡S and [Σ∗]≡S , respectively, for every w ∈ Σ∗ in order to avoid too
many subscripts. We construct M = (Q, q0, F, Σ, δ,A, a0, µ) by setting for
every w ∈ Σ∗ and σ ∈ Σ

(i) Q = [Σ∗], q0 = [ε], F = { [w] | w ∈ supp(S) },
(ii) δ([w], σ) = [w·σ],
(iii) a0 = g(ε), and
(iv) µ([w], σ) = g(w)−1 � g(w·σ).

The proof of well-definedness and correctness, i.e., SM = S, can be found
in the appendix. ut

Finally, we are ready to state the main theorem. Note that in case
A = ({0, 1},∧, 1, 0) the classical Myhill-Nerode theorem coincides with
our theorem.

Theorem 14. Let A = (A,�,1,0) be a unique GCD-monoid, Σ be an
alphabet, and S ∈ A〈〈Σ∗〉〉. Then the following are equivalent.

(i) S is directed and ≡S has finite index.
(ii) S is sequential.

Proof (of Theorem 14). Proposition 13 proves the direction (i) ⇒ (ii),
whereas (ii) ⇒ (i) can be concluded from Proposition 9 and Lemma 11.

The minimal sequential transducer can be obtained from the construc-
tion presented in the proof of Proposition 13, which is formalized in the
final theorem.

Theorem 15. Let A = (A,�,1,0) be a unique GCD-monoid, Σ be an
alphabet, and S ∈ A〈〈Σ∗〉〉 be directed. If the index of ≡S is finite, then
the sequential transducer M constructed in the proof of Proposition 13
is minimal with respect to the number of states amongst all normalized
sequential transducers recognizing S.

Proof (of Theorem 15). Note that M itself is not necessarily normalized,
but the statement that every normalized sequential transducer recognizing
S has at least index(≡S) states was shown in Proposition 9.



Finally, we present an example showing an application of the above
theorems. The example is simplistic on purpose; realistic examples can be
found, e.g., in [16, 17].

Example 16. Let A = (IN, ·, 1, 0) be the unique GCD-monoid of the non-
negative integers and Σ = {a, b}. The power series S ∈ IN〈〈Σ∗〉〉 is defined
for every w ∈ Σ∗ by (S, w) = 2|w|a ·3|w|b where |w|σ denotes the number of
σ’s occuring in w. One easily verifies that supp(S) = Σ∗ and that S is di-
rected. Moreover, we observe that w1 ≡S w2 for every w1, w2 ∈ Σ∗. Hence
≡S has index 1. Note we again drop the actual equivalence relation from
the equivalence classes. According to the construction of Proposition 13
we obtain the sequential transducer M = ({[ε]}, [ε], {[ε]}, Σ, δ,A, g(ε), µ)
with

(i) δ([ε], a) = [a] = [ε] and δ([ε], b) = [b] = [ε],
(ii) g(ε) = (S, ε) = 2|ε|a · 3|ε|b = 1, and
(iii) µ([ε], a) = g(ε)−1 · g(a) = 2 and µ([ε], b) = g(ε)−1 · g(b) = 3,

which according to Proposition 13 recognizes S and is furthermore mini-
mal by Theorem 15.

4 Conclusions

We have presented a generalization of the classical Myhill-Nerode con-
gruence relation. Moreover, we proved that the properties of ≡S having
finite index and S being directed exactly characterize the sequential prop-
erty. As in the classical case, we also obtained a minimization for sequen-
tial transducers over unique GCD-monoids. We believe it worthwhile to
generalize these results to the class of GCD-monoids, which would include
all groups. Furthermore, a similar approach can also be applied to deter-
ministic bottom-up weighted finite tree automata (cf. [5]) and we would
like to see a generalized result also for formal tree series.
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Appendix

Proof (of Lemma 1). We prove the items separately.

(i) The following chain of equivalent statements shows the claim.

x = a−1 � (b−1 � c) ⇐⇒ a� x = b−1 � c ⇐⇒ b� a� x = c (5)
⇐⇒ x = (b� a)−1 � c (6)

(ii) This statement is trivial.
(iii) In the second line (8) we cancel b from the left.

x = a−1 � (b� c) ⇐⇒ b� c = b� (b−1 � a)� x (7)
⇐⇒ c = (b−1 � a)� x (8)
⇐⇒ x = (b−1 � a)−1 � c (9)

(iv) Let a1 � a2 = 0 for some a1, a2 ∈ A \ {0}. Then a1 � a2 = a1 � 0 and
by the cancellation property also a2 = 0, which is a contradiction to
the assumption.

ut

Proof (of Lemma 5). The direction δ̂q(w) = ⊥ implies µ̂q(w) = 0 is
trivial. We only note that δ̂q(ε) = q 6= ⊥. Now in order to prove the
converse, let µ̂q(w) = 0. Clearly, w 6= ε, because µ̂q(ε) = 1 and we
generally assumed that 0 6= 1. We prove the statement by induction on
the length of w. Let w be a sequence of length 1, then µ̂q(w) = µ(q, w)
and µ(q, w) = 0, if and only if δ(q, w) = ⊥ by Definition 3. Hence in this
case δ̂q(w) = ⊥. Now let w = u·σ for some u ∈ Σ∗ and σ ∈ Σ. Then
µ̂q(u·σ) = µ̂q(u) � µ(δ̂q(u), σ) = 0. By zero-divisor freeness we conclude
that (i) µ̂q(u) = 0 or (ii) µ(δ̂q(u), σ) = 0. The former yields by induction
hypothesis that δ̂q(u) = ⊥ and thus δ̂q(u·σ) = δ(δ̂q(u), σ) = δ(⊥, σ) = ⊥
by Definition 3. In case (ii) we conclude δ̂q(u·σ) = δ(δ̂q(u), σ) = ⊥, because
δ(δ̂q(u), σ) = ⊥, if and only if µ(δ̂q(u), σ) = 0 according to Definition 3.

ut

Proof (of Proposition 7). Clearly, ≡S is reflexive (set a1 = 1 = a2) and
symmetric. Moreover, transitivity of (3) is also trivial, so it remains to
prove transitivity of (4). Let w1, w2, w3 ∈ Σ∗ be such that w1 ≡S w2

and w2 ≡S w3. Consequently, there exist a1, a2, a
′
2, a

′
3 ∈ A \ {0} such

that for every w ∈ Σ∗ we have a−1
1 � g(w1·w) = a−1

2 � g(w2·w) and
(a′2)

−1� g(w2·w) = (a′3)
−1� g(w3·w). Since A is a unique GCD-semiring,



we obtain that lcm(a2, a
′
2) exists because g(w2·w) is a common multiple

of a2 and a′2. We deduce

a2 �
(
a−1

1 � g(w1·w)
)

= (a′2)�
(
(a′3)

−1 � g(w3·w)
)

= a (10)

from the previous two equalities and observe that a2|a and a′2|a. Hence
also lcm(a2, a

′
2)|a. Let b2, b

′
2 ∈ A be such that b2 = a−1

2 � lcm(a2, a
′
2) and

b′2 = (a′2)
−1 � lcm(a2, a

′
2). Consequently, multiplying (10) from the left

with lcm(a2, a
′
2) we obtain

b−1
2 �

(
a−1

1 � g(w1·w)
)

= (b′2)
−1 �

(
(a′3)

−1 � g(w3·w)
)

(11)
(a1 � b2)−1 � g(w1·w) = (a′3 � b′2)

−1 � g(w3·w) , (12)

which establishes transitivity. Hence we have proved that ≡S is an equiv-
alence relation. ut

Proof (of Lemma 8). If w1 ≡S w2 then there exist a1, a2 ∈ A \ {0} such
that for every w ∈ Σ∗ Equations (3) and (4) hold. Consequently, also
w1·w′ ≡S w2·w′. ut

Proof (of Proposition 9). We will only prove the case for non-normalized
sequential transducers. The proof for normalized sequential transducers
simply omits the first step in the proof. Henceforth, let M be a non-
normalized sequential transducer. According to Proposition 4 there ex-
ists a normalized sequential transducer M ′ = (Q, q0, F, Σ, δ,A, a0, µ) such
that card(Q) ≤ k + 1 and SM ′ = SM . Clearly, the relation ≡ ⊆ Σ∗ ×Σ∗

defined for every w1, w2 ∈ Σ∗ by w1 ≡ w2, if and only if δ̂q0(w1) = δ̂q0(w2)
is an equivalence relation on Σ∗. We observe that index(≡) ≤ card(Q). So
it is sufficient to prove ≡ ⊆ ≡SM

in order to prove the statement. There-
fore, let w1 ≡ w2, i.e., δ̂q0(w1) = δ̂q0(w2). Furthermore, let a1 = µ̂q0(w1)
and a2 = µ̂q0(w2).

Case 1: Let a1 = 0. By Lemma 5 we conclude that δ̂q0(w1) = ⊥ = δ̂q0(w2)
where ⊥ is a dead state. Consequently, also a2 = 0, which yields that
for every w ∈ Σ∗ we have (SM , w1·w) = 0 = (SM , w2·w) and hence
w1 ≡SM

w2.

Case 2: Let a1 6= 0 and q = δ̂q0(w1) 6= ⊥. Immediately, we observe that
also a2 6= 0 by Lemma 5. Let gM (u) = gcdv∈Σ∗,u·v∈supp(SM )(SM , u·v) for
every u ∈ {w1, w2}. Then clearly µ̂q0(u)|gM (u) and for every i ∈ {1, 2}

a−1
i � gM (wi) = gcd

w∈Σ∗, bµq(w) 6=0
µ̂q(w) , (13)



which yields a−1
1 � gM (w1·w) = a−1

2 � gM (w2·w). Moreover, since δ̂q(w) is
independent of w1 and w2 also w1·w ∈ supp(SM ) ⇐⇒ w2·w ∈ supp(SM ).
Thus w1 ≡SM

w2 and we have proved the statement. ut

Proof (of Lemma 11). Let M = (Q, q0, F, Σ, δ,A, a0, µ) be a sequential
transducer recognizing S, i.e., SM = S. Clearly, if w ∈ supp(S), then
q = δ̂q0(w) ∈ F . Then for every u ∈ Σ∗ such that w·u ∈ supp(S) we
observe that

(S, w·u) = a0 � µ̂q0(w·u) (14)
= a0 � µ̂q0(w)� µ̂q(u) (15)
= (S, w)� µ̂q(u) , (16)

which shows (S, w)|(S, w·u) and hence directedness follows. ut

Proof (of Proposition 12). In order to derive a contradiction, assume that
≡S has finite index and there exists a word w ∈ Σ∗ such that g(w) is
flawed. Then immediately the corresponding gcd for all words w′ ∈ Σ∗

such that for some u ∈ Σ∗ we have w′ = w·u is also flawed. Thus we
obtain an infinite set W = {w·u ∈ supp(S) | u ∈ Σ∗ } of words for which
the gcd is flawed. Note that for all w ∈ W we have (S, w) 6= 1. Now we
consider a minimal subset W ′ ⊆ W which has the property that for every
w ∈ W there exists a w′ ∈ W ′ such that (S, w′)|(S, w). Hence for every
two distinct elements w1, w2 ∈ W ′ we have that (S, w1) is not a divisor of
(S, w2) and W ′ must apparently be infinite, else g(w) is not flawed.

Since ≡S has finite index, we have that for two distinct w1, w2 ∈ W ′

it holds that w1 ≡S w2 by the pigeon-hole principle. Consequently, by
Definition 6 there exist a1, a2 ∈ A such that for every w ∈ Σ∗

a−1
1 � g(w1·w) = a−1

2 � g(w2·w) . (17)

Since both gcd’s are flawed, we deduce a−1
1 � 1 = a−1

2 � 1, which yields
that a1 = 1 = a2. Moreover, also a−1

1 � (S, w1) = a−1
2 � (S, w2) due to

the directedness, which shows that (S, w1) = (S, w2). However, this is
contradictory, because w1, w2 ∈ W ′. Hence for no w ∈ Σ∗ the gcd g(w) is
flawed which proves the statement. ut

Proof (of Proposition 13, continued). Firstly, let us prove well-definedness.
Therefore, let w1, w2 ∈ Σ∗ such that w1 ≡S w2. Apparently, F is well-
defined by (3) and according to Lemma 8 also w1·σ ≡S w2·σ for every
σ ∈ Σ, hence δ is well-defined. Since S is directed and ≡S has finite



index, for no w ∈ Σ∗ the gcd g(w) is flawed (cf. Proposition 12), hence
g(w)|g(w·σ). Thus µ is well-formed and we continue by proving

g(w1)−1 � g(w1·σ) = g(w2)−1 � g(w2·σ) . (18)

By w1 ≡S w2 there exist a1, a2 ∈ A \ {0} such that for every w ∈ Σ∗ we
have that g(w1·w) = a1 � (a−1

2 � g(w2·w)). Consequently,

g(w1)−1 � g(w1·σ) =
(
a1 � a−1

2 � g(w2)
)−1 � a1 � a−1

2 � g(w2·σ) (19)
= g(w2)−1 � g(w2·σ) , (20)

thereby proving that µ is well-defined. Consequently, M is well-defined and
it remains to prove that SM = S. For every w ∈ Σ∗ with w /∈ supp(S) we
immediately obtain (SM , w) = 0, because [w] /∈ F . On the other hand,
let w ∈ supp(S), then

(SM , w) = g(ε)� µ̂[ε](w) = g(w) = (S, w) , (21)

where the last equality follows from directedness. Hence SM = S. ut


