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Abstract

In this paper we investigate the relationship between classes of tree-to-tree-series (for short:
t-ts) and o-tree-to-tree-series (for short: o-t-ts) transformations computed by restricted deter-
ministic bottom-up weighted tree transducers (for short: deterministic bu-w-tt). Essentially,
deterministic bu-w-tt are deterministic bottom-up tree series transducers [EFV02, FV03, ful,
FGV04], but the former are de�ned over monoids whereas the latter are de�ned over semir-
ings and only use the multiplicative monoid thereof. In particular, the common restrictions
of non-deletion, linearity, totality, and homomorphism [Eng75] can equivalently be de�ned for
deterministic bu-w-tt.

Using well-known results of classical tree transducer theory (cf., e.g., [Eng75, Fül91]) and
also new results on deterministic bu-w-tt, we order classes of t-ts and o-t-ts transformations
computed by restricted deterministic bu-w-tt by set inclusion. More precisely, for every com-
mutative monoid we completely specify the inclusion relation of the classes of t-ts and o-t-ts
transformations for all sensible combinations of restrictions by means of inclusion diagrams.

1 Introduction

Bottom-up tree series transducers [Kui99, EFV02, FV03, FGV04] were introduced as a generaliza-
tion of bottom-up tree transducers [Rou70, Tha70, Eng75] and bottom-up weighted tree automata
[Sei94, Kui97a, Boz99]. Bottom-up weighted tree automata have been applied to code selection in
compilers [FSW94] and tree pattern matching [Sei92]. Moreover, a rich theory of bottom-up tree
transducers was developed (cf. [Eng75, Bak79, Eng82, GS84, GS97, NP92, CDG+97] as seminal or
survey papers and monographs) during the seventies, whereas bottom-up weighted tree automata
just recently received more attention (e.g., [Sei92, Sei94, Kui97a, Bor03, BV03, DPV03, DV03,
ÉK03]).

In [EFV02, FV03, ful, FGV04] several generalizations of well-known theorems of the theory of
tree transducers have been proved for bottom-up tree series transducers, e.g.,

• the generalization of the decomposition of the class of bottom-up tree transformations (cf.
Theorem 5.7 of [EFV02] and Page 220 of [Eng75]); in its turn the result of [Eng75] generalizes
the decomposition of gsm-mappings as proved in [Niv68];

• the generalization of (some) composition hierarchy results for bottom-up tree transformation
classes (cf. Theorem 6.24 of [FGV04] and Corollary 8.13(iii) of [GS84]);

• the generalization of the equivalence of a rewrite semantics and the initial algebra semantics
for bottom-up tree transducers (cf. Theorem 5.10 of [ful] and Lemma 5.6 of [Eng75]).

Roughly speaking, a bottom-up tree series transducer is a bottom-up tree transducer in which
the transitions carry a weight; a weight is an element of some semiring. The rewrite semantics
works as follows. Along a successful computation on some input tree, the weights of the involved
transitions are combined by means of the semiring multiplication; if there is more than one suc-
cessful computation for some pair of input- and output-trees, the weights of these computations
are combined by means of the semiring addition.

∗Financially supported by the German Research Foundation (DFG, GK 334/3)



In this paper we deal with deterministic bottom-up tree series transducers. In this case, for
every input tree there is at most one successful computation (cf. Proposition 3.12 of [EFV02]) and
thus the semiring addition is irrelevant. Hence we base our investigations on so-called deterministic
bottom-up weighted tree transducers (for short: deterministic bu-w-tt) over some multiplicative
monoid. Essentially, these are deterministic bottom-up tree series transducers over some semiring
of which only the multiplicative part is used. More formally, a deterministic bu-w-tt is a tuple
M = (Q,Σ,∆,A, F, δ, µ), wherein Q is a �nite set of states, Σ and ∆ are ranked alphabets of
input and output symbols, respectively, A = (A,�,1,0) is a monoid with an absorbing element 0,
F ⊆ Q is a set of �nal states, δ = ( δkσ : Qk −→ Q )k∈N, σ∈Σ(k) is a Σ-indexed family of transition
mappings, and µ = (µkσ : Qk −→ A[T∆(Xk)] )k∈N, σ∈Σ(k) is a Σ-indexed family of output mappings.
Therein T∆(Xk) denotes the set of all ∆-trees indexed by variables of Xk = {x1, . . . , xk} and
A[T∆(Xk)] denotes the set of all monomials over A and T∆(Xk), i.e., the set of all mappings
ϕ : T∆(Xk) −→ A which map at most one output tree t ∈ T∆(Xk) to a monoid element di�erent
from 0. Using pure substitution ←− and o-substitution

o←− of tree series [EFV02, FV03] in order
to substitute monomials into a monomial, we can de�ne δ̂ : TΣ −→ Q as the unique homomorphism
from the initial Σ-algebra TΣ to the Σ-algebra (Q, ( δkσ )k∈N,σ∈Σ(k)). Moreover, for every modi�er
mod ∈ {ε, o} we can de�ne the mapping µ̂mod : TΣ −→ A[T∆] by

µ̂mod(σ(s1, . . . , sk)) = µkσ(δ̂(s1), . . . , δ̂(sk))
mod←− (µ̂mod(s1), . . . , µ̂mod(sk)).

The mod-t-ts transformation τmod
M : TΣ −→ A[T∆] computed by M is then de�ned to be

τmod
M (s) =

{
µ̂mod(s) , if δ̂(s) ∈ F
0̃ , otherwise

,

where 0̃ denotes the monomial which maps every output tree to 0. Thus a deterministic bu-w-tt
either produces no output (i.e., 0̃) or a single output tree t weighted with a monoid element a, i.e.,
the monomial a t. Deterministic bu-w-tt over the (multiplicative) monoid Z2 = ({0, 1}, ·, 1) with
the absorbing element 0 essentially are deterministic bottom-up tree transducers (cf. Section 4 of
[EFV02]).

In the same way as for deterministic bottom-up tree transducers or deterministic bottom-up tree
series transducers, we can also de�ne restrictions for deterministic bu-w-tt, e.g., the restrictions
of non-deletion, linearity, totality, and homomorphism (cf., e.g., [Eng75]). The class of mod-t-ts
transformations computed by deterministic bu-w-tt obeying the restrictions π (e.g., being a non-
deleting homomorphism) over the monoid A is denoted by π�BOTmod(A). Usually we abbreviate
the restrictions by their �rst letter, e.g., h abbreviates homomorphism, and use juxtaposition of
the letters to denote a combination of restrictions, e.g., hn for non-deleting homomorphism.

Our main results are in the inclusion diagrams contained in Section 4 (cf. Theorem 4.8, Theo-
rem 4.17, Theorem 4.20, Theorem 4.23, and Theorem 4.25). Speci�cally, we can conclude that

• the monoid Z2 is (up to isomorphism) the only monoid A such that for every combination π
of restrictions the equality π�BOTo(A) = π�BOT(A) holds (cf. Corollary 4.6), and

• idempotent monoids A are the only monoids where hn�BOTo(A) = hn�BOT(A) holds (cf.
Corollary 4.16).

In the following let us consider combinations π of restrictions which do not contain the homomor-
phism restriction. It turns out that

• for every monoid A we have π�BOT(A) = π�BOTo(A), if both the non-deletion and linearity
restriction are present in π (cf. Theorem 5.5 of [FV03] and Observation 4.4),

• for every periodic and commutative monoid A we have π�BOTo(A) ⊆ π�BOT(A), whenever
the non-deletion restriction is present in π (cf. Corollary 4.12),
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• for every periodic and commutative monoid A we have π�BOT(A) ⊆ π�BOTo(A), whenever
the linearity restriction is present in π (cf. Corollary 4.12),

• for every periodic, commutative, and regular monoid A we have π�BOT(A) ⊆ π�BOTo(A)
independently of non-deletion or linearity (cf. Corollary 4.18), and

• for every periodic and commutative group A we have π�BOTo(A) = π�BOT(A) indepen-
dently of non-deletion or linearity (cf. Corollary 4.24).

In the remaining cases for commutative monoids A and combinations π of restrictions we have
that π�BOTo(A) and π�BOT(A) are incomparable with respect to set inclusion. In particular, if
the monoid A is non-periodic, then for every combination π of restrictions not containing both the
non-deletion and linearity restriction we obtain the incomparability of π�BOTo(A) and π�BOT(A)
(cf. Lemma 4.7).

This paper is structured as follows. Section 2 reviews the relevant basic mathematical notions
and notations, in particular partial orders, trees and bottom-up tree transducers, monoids and
semirings, and substitutions of formal tree series. Section 3 recalls the de�nition of determinis-
tic bottom-up tree series transducers from [EFV02], introduces deterministic bu-w-tt along with
the outlined restrictions. Moreover we relate the notions of deterministic bottom-up tree series
transducer, deterministic bu-w-tt, and deterministic tree transducer. Finally, Section 4 details the
inclusion diagrams obtained for the various subclasses of t-ts and o-t-ts transformations computed
by restricted deterministic bu-w-tt. The inclusion diagrams will be complete in the sense that we
present an inclusion diagram for every commutative monoid with an absorbing element 0.

2 Preliminaries

In this section we present some basic notions and notations required in the sequel. The �rst
subsection recalls partial orders [DP02] and associated notions. Words, trees, and tree transducers
[MS97, GS84, GS97] are considered in the second subsection, whereas the third subsection is
dedicated to algebraic structures and, in particular, monoids [Jac85, Jac89] and semirings [Kui97b,
HW98, Gol99]. Finally, the section is concluded by the presentation of formal tree series [BR82,
Kui97b] and tree series substitution [EFV02, FV03].

2.1 Partial orders

The set {0, 1, 2, . . .} of all non-negative integers is denoted byN, and the set {1, 2, . . .} of all positive
integers is denoted by N+. For every two integers i, j ∈ N the subset { k ∈ N | i ≤ k ≤ j } is
abbreviated by the interval [i, j]. In particular, we use the shorthand [j] instead of [1, j]. Recall that
card(S) denotes the cardinality, i.e., the number of elements, of a �nite set S, hence card([j]) = j.
The power set of a set S is the set of all its subsets, i.e., P(S) = {S′ | S′ ⊆ S }, and the set of
all �nite subsets is Pf(S) = {S′ ⊆ S | S′ is �nite }. Finally we write f : S1 −→ S2 for a total
mapping from the non-empty set S1 into the non-empty set S2. The range of f is then de�ned to
be the set { f(s1) | s1 ∈ S1 }.

Given a non-empty set S, a binary relation ≤ ⊆ S × S is called partial order (on S), if ≤ is
(i) re�exive, i.e., for every element s ∈ S we have s ≤ s, (ii) anti-symmetric, i.e., for every two
elements s1, s2 ∈ S the facts s1 ≤ s2 and s2 ≤ s1 imply s1 = s2, and (iii) transitive, i.e., for every
three elements s1, s2, s3 ∈ S with s1 ≤ s2 and s2 ≤ s3 also s1 ≤ s3 holds.

A partial order ≤ ⊆ S × S, which ful�ls for every two elements s1, s2 ∈ S the condition that
s1 ≤ s2 or s2 ≤ s1, is said to be a total order. Contrary, the fact that neither s1 ≤ s2 nor s2 ≤ s1
(or equivalently: s1 and s2 are incomparable) is expressed as s1 on s2. As usual the strict order
< ⊆ S×S is derived from the partial order ≤ by setting s1 < s2, if and only if s1 ≤ s2 and s1 6= s2.
Moreover, we de�ne the covering relation l ⊆ S × S derived from the partial order ≤ by setting
s1 l s2, if s1 < s2 and for every s ∈ S the condition s1 ≤ s < s2 implies s = s1. Whenever s1 l s2
we say that s1 is covered by s2.
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Finite partial orders can be visualized by means of Hasse diagrams [DP02]. A Hasse diagram
is a (directed, acyclic, and unlabeled) graph G = (S,l) with the set S of vertices and the set l
of edges, i.e., there is a directed edge from vertex s1 ∈ S to vertex s2 ∈ S, if and only if s1 l s2.
In pictorial expressions the vertices are displayed by naming the element of S and the edges are
drawn as line segments connecting vertices, where we assume that all edges are directed upwards
and a line segment is only supposed to intersect with a vertex, if the vertex is either its starting
or ending point. An inclusion diagram [FV98] is a Hasse diagram for a set S which is partially
ordered by set inclusion ⊆; thus the elements of S are again sets.

Finally, a binary relation ∼ ⊆ S × S is said to be an equivalence relation, if ∼ is (i) re�exive,
(ii) transitive, and (iii) symmetric, i.e., for every two elements s1, s2 ∈ S the property s1 ∼ s2 im-
plies s2 ∼ s1. The equivalence class of s ∈ S (with respect to ∼) is the set [s]∼ = { s′ ∈ S | s ∼ s′ }.

2.2 Words, trees, and bottom-up tree transducers

By a word of length n ∈ N we mean an element of the n-fold Cartesian product Sn = S × · · · × S
of a set S. The set of all words over S is denoted by S∗, where the particular element () ∈ S0,
called the empty word, is displayed as ε, and the length of a word w ∈S∗ is denoted by |w|; thus
|ε| = 0.

Every non-empty and �nite set S is called alphabet, of which elements are termed symbols. A
ranked alphabet is de�ned to be a pair (Σ, rk), of which Σ is an alphabet and rk : Σ −→ N is a total
mapping associating to every symbol of Σ its rank. For every n ∈ N we use Σ(n) to denote the set
of symbols having rank n, i.e., Σ(n) = {σ ∈ Σ | rk(σ) = n }. In the following we will usually assume
the rk-mapping to be implicitly given, identify (Σ, rk) with Σ, and specify the ranked alphabet by
listing the elements of Σ with their ranks put in parentheses as superscripts as, for example, in
{σ(2), α(0)}. Moreover, we generally suppose that Σ(0) 6= ∅ for apparent reasons.

In the following let Σ be a ranked alphabet and X = {xi | i ∈ N+ } be a �xed countable set of
(formal) variables. The set of (�nite, labeled, and ordered) Σ-trees indexed by V ⊆ X, denoted by
TΣ(V ), is inductively de�ned to be the smallest set T such that (i) V ∪Σ(0) ⊆ T and (ii) for every
k ∈ N+, symbol σ ∈ Σ(k), and k elements s1, . . . , sk ∈ T also σ(s1, . . . , sk) ∈ T . The set TΣ of
ground trees is an abbreviation for TΣ(∅). Moreover, given a tree s ∈ TΣ(V ) and a unary symbol
γ ∈ Σ(1), we abbreviate the tree

γ(γ(· · · (γ(s)) · · · ))︸ ︷︷ ︸
n-times γ

simply by γn(s). Note that γ0(s) = s.
The number of occurrences of a given variable or symbol z ∈ V ∪ Σ in a Σ-tree s ∈ TΣ(V ) in-

dexed by V is denoted by |s|z. For every integer n ∈ N we denote the set {x1, . . . , xn} ⊂ X by the
shorthand Xn (note that X0 = ∅). Given an integer n ∈ N, a Σ-tree s ∈ TΣ(Xn) indexed by Xn,
and trees t1, . . . , tn ∈ TΣ(V ), the expression s[t1, . . . , tn] denotes the result of replacing (in parallel)
for every index i ∈ [n] every occurrence of xi in the tree s by the tree ti, i.e., xi[t1, . . . , tn] = ti
for every index i ∈ [n] and (σ(s1, . . . , sk))[t1, . . . , tn] = σ(s1[t1, . . . , tn], . . . , sk[t1, . . . , tn]) for ev-
ery k ∈ N, symbol σ ∈ Σ(k), and k trees s1, . . . , sk ∈ TΣ(Xn). Moreover, for tree languages
L,L1, . . . , Lk ⊆ TΣ we use L[L1, . . . , Lk] =

⋃
s∈L,t1∈L1,...,tk∈Lk

s[t1, . . . , tk].
Let Y ⊂ X be a �nite subset of X and let s ∈ TΣ(X) be a Σ-tree indexed by X. The tree s is

called non-deleting in Y (likewise linear in Y ), if every variable y ∈ Y occurs at least once, i.e.,
1 ≤ |s|y, (likewise at most once, i.e., |s|y ≤ 1) in the tree s. We recursively de�ne the standard
mappings size,height : TΣ(V ) −→ N+ by the following equalities:

• for every tree s ∈ V ∪ Σ(0) we have size(s) = 1 = height(s),

• for every integer k ∈ N+, symbol σ ∈ Σ(k), and k trees s1, . . . , sk ∈ TΣ(V ) we have

size(σ(s1, . . . , sk)) = 1 +
∑
i∈[k]

size(si) and height(σ(s1, . . . , sk)) = 1 + max
i∈[k]

height(si).
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Let Σ be a ranked alphabet in which just one symbol is non-nullary, i.e.,
⋃
n∈N+

Σ(n) = {σ}. The
set of fully balanced (and symmetric) trees (over Σ) is de�ned to be the smallest subset T ⊆ TΣ such
that Σ(0) ⊆ T , and given a fully balanced tree s ∈ T , the tree σ(s, . . . , s) ∈ T is fully balanced.
Note that if card(Σ(0)) = 1, then the height of a fully balanced tree already characterizes the
tree uniquely. This property certainly is not ful�lled for general Σ-trees over an arbitrary ranked
alphabet Σ, but for each given height n ∈ N+ there exist only �nitely many Σ-trees of TΣ having
height n. Likewise this property holds for the size which is stated in the next observation.

2.1 Observation (Finite equivalence classes)
Let Σ be a ranked alphabet. Moreover, let ≡size ⊆ TΣ × TΣ be the equivalence relation de�ned for
every two trees s1, s2 ∈ TΣ by s1 ≡size s2, if and only if size(s1) = size(s2). Then for every tree
s ∈ TΣ the equivalence class [s]≡size

is �nite. �

Finally, we shortly recall the concept of a deterministic bottom-up tree transducer [Rou70,
Tha70, Eng75, GS84] (splitting up a rule into its state behavior and the computed output in
an obvious way). A deterministic bottom-up tree transducer is a tuple M = (Q,Σ,∆, F, δ, µ),
where Q and F ⊆ Q are �nite sets of states and �nal states, respectively, Σ and ∆ are the
input and output ranked alphabets, respectively, δ = ( δkσ : Qk −→ Q )k∈N,σ∈Σ(k) is a family of
transition mappings, and (µkσ : Qk −→ Pf(T∆(Xk)) )k∈N,σ∈Σ(k) is a family of output mappings.
Additionally, for every integer k ∈ N, input symbol σ ∈ Σ(k), and k states q1, . . . , qk ∈ Q we require
card(µkσ(q1, . . . , qk)) ≤ 1. The semantics of deterministic bottom-up tree transducers is de�ned
inductively as follows. Let δ̂ : TΣ −→ Q be the mapping with δ̂(σ(s1, . . . , sk)) = δkσ(δ̂(s1), . . . , δ̂(sk))
for every integer k ∈ N, input symbol σ ∈ Σ(k), and k trees s1, . . . , sk ∈ TΣ. Further let

µ̂ : TΣ −→ Pf(T∆) with µ̂(σ(s1, . . . , sk)) = µkσ(δ̂(s1), . . . , δ̂(sk))[µ̂(s1), . . . , µ̂(sk)].

The tree transformation computed by M is the mapping τM : TΣ −→ Pf(T∆) de�ned by

τM (s) = { t ∈ µ̂(s) | δ̂(s) ∈ F }.

Note that card(τM (s)) ≤ 1 for every input tree s ∈ TΣ. The class of tree transformations com-
putable by deterministic bottom-up tree transducers will be denoted by d�BOTtt.

2.3 Monoids and semirings

A monoid is an algebraic structure A = (A,⊗,1) consisting of a carrier (set) A together with
a binary operation ⊗ : A2 −→ A and a constant element 1 ∈ A, such that the operation ⊗ is
associative, i.e., for every three elements a1, a2, a3 ∈ A the equality a1⊗(a2⊗a3) = (a1⊗a2)⊗a3 is
satis�ed, and the constant element 1 is the unit element with respect to operation ⊗, i.e., for every
element a ∈ A we demand 1 ⊗ a = a = a ⊗ 1. Further, the monoid A is said to be commutative,
if for every two elements a1, a2 ∈ A the equality a1 ⊗ a2 = a2 ⊗ a1 is ful�lled. The monoid A
possesses an absorbing element 0 ∈ A, if for every a ∈ A the equality a⊗ 0 = 0 = 0⊗ a holds. If
an absorbing element exists, then it is necessarily unique. Moreover, it can be adjoined to every
monoid not possessing an absorbing element. To show this, let (A,⊗,1) be a monoid and 0 /∈ A
be a new element. Then (A ∪ {0},�,1) with a1 � a2 = a1 ⊗ a2, if a1, a2 ∈ A and otherwise
a1 � a2 = 0, is a monoid with an absorbing element, namely 0. We denote a monoid (A,�,1)
possessing the absorbing element 0 by (A,�,1,0). For the sake of simplicity we assume that for
no monoid considered, the element 1 is an absorbing element, i.e., we ignore the trivial monoid
with the singleton carrier set.

Let A = (A,⊗,1) be a monoid. As usual, for every element a ∈ A and integer n ∈ N we denote
by an the n-fold product a⊗ · · · ⊗ a and set a0 = 1. Further, given an integer n ∈ N and a family
( ai )i∈[n] of elements ai ∈ A, we also use the product (notation)

∏
i∈[n] ai = a1 ⊗ · · · ⊗ an, where

the order is determined by the total order 1 < 2 < · · · on the index set. Note that
∏
i∈[0] ai = 1.

Next we de�ne some common properties of monoids. The monoid A is said to be
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• �nite, if A is �nite,

• idempotent, if for every element a ∈ A we have a⊗ a = a,

• periodic, if for every element a ∈ A there exist non-negative integers i, j ∈ N such that i 6= j
and ai = aj .

• regular, if for every element a ∈ A there exists an element a′ ∈ A, also called a weak inverse
of a, such that a⊗ a′ ⊗ a = a, and

• a group, if for every element a ∈ A there exists an element a′ ∈ A, also called the inverse
of a, such that a⊗ a′ = 1 = a′ ⊗ a.

We denote groups by (A,⊗, (·)−1,1), where (·)−1 : A −→ A maps each element to its (unique)
inverse. Furthermore, we say that a monoid A = (A,�,1,0) with an absorbing 0 is a group (with
an absorbing zero) and denote this by (A,�, (·)−1,1,0), if for every element a ∈ A \ {0} there
exists an inverse element. The following observation collects some trivial interrelations between
the aforementioned properties.

2.2 Observation (Interrelations of the properties)
Let A = (A,⊗,1) be a monoid. We observe the following implications between properties of A.

(i) Finiteness implies periodicity.

(ii) Idempotency implies periodicity and regularity.

(iii) If A is a group, then A is also regular and for every element a ∈ A the equality a = a2 implies
a = 1. �

Important monoids possessing an absorbing element include

• the multiplicative monoid of the non-negative integers N = (N, ·, 1, 0) with the common
operation of multiplication,

• the additive group of the integers Z∞ = ({Z ∪ {+∞},+, 0, (+∞)) with the usual addition
on integers Z extended to (+∞) such that (+∞) is an absorbing element,

• the multiplicative group Z2 = ({0, 1}, ·, 1, 0) with multiplication modulo 2,

• the multiplicative group Z3 = ({0, 1, 2}, ·, 1, 0) with multiplication modulo 3,

• the multiplicative monoid Z4 = ({0, 1, 2, 3}, ·, 1, 0) with multiplication modulo 4,

• the multiplicative monoid Z6 = ({0, 1, 2, 3, 4, 5}, ·, 1, 0) with multiplication modulo 6,

• the max-monoid over the reals Rmax = (R ∪ {+∞,−∞},max, (−∞), (+∞)) with the stan-
dard maximum operation on the reals R, and

• the language monoid LS = (P(S∗), ◦, {ε}, ∅) for some alphabet S with concatenation of
words lifted to sets of words as multiplication.

The properties of the introduced monoids are summarized in Table 1, where we assume that S
is a non-trivial alphabet, i.e., 1 < card(S), otherwise LS is commutative.

By a semiring (with one and absorbing zero) we mean an algebraic structure A = (A,⊕,�,0,1)
with the operations of addition ⊕ : A2 −→ A and multiplication � : A2 −→ A, of which
(A,⊕,0), also called the additive monoid, and (A,�,1,0), also called the multiplicative monoid,
are monoids. Additionally, the former monoid is required to be commutative, the latter possesses
0 as an absorbing element, and the monoids are connected via the distributivity laws, i.e., for
every three elements a1, a2, a3 ∈ A the equalities a1 � (a2 ⊕ a3) = (a1 � a2) ⊕ (a1 � a3) and
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monoid commutative �nite idempotent periodic regular group
N yes NO NO NO NO NO
Z∞ yes NO NO NO yes yes
Z2 yes yes yes yes yes yes
Z3 yes yes NO yes yes yes
Z4 yes yes NO yes NO NO
Z6 yes yes NO yes yes NO
Rmax yes NO yes yes yes NO
LS NO NO NO NO NO NO

Table 1: Various monoids and their properties.

(a1⊕ a2)� a3 = (a1� a3)⊕ (a2� a3) hold. A commutative semiring A = (A,⊕,�,0,1) is de�ned
to be a semiring, in which the monoid (A,�,1,0) is commutative.

In semirings we use the product notation of the multiplicative monoid and the sum (nota-
tion)

∑
i∈I ai for every index set I such that only �nitely many ai ∈ A with i ∈ I are di�erent

from 0. Note that the order is obviously irrelevant due to commutativity and note further that∑
i∈[0] ai = 0. By convention, we assume that multiplication has a higher (binding) priority than

addition, e.g., we read a1 ⊕ a2 � a3 as a1 ⊕ (a2 � a3). Examples of semirings can be found, for
example, in [HW98, Gol99].

2.3 Observation (Not every multiplicative monoid is suitable for a semiring)
There exists a monoid A = (A,�,1,0) with an absorbing 0 such that there does not exist a
semiring (A,⊕,�,0,1).

Proof. We �rstly provide the operation table of such a monoid A = ({0,1, a, b},�,1,0) which is
even commutative.

� 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a a b
b 0 b b a

Now suppose there exists a commutative monoid (A,⊕,0) such that ({0,1, a, b},⊕,�,0,1) is a
semiring. Consider the sum 1⊕ b.
Case 1: Let 1⊕b ∈ {1, a}. Then by distributivity a�(1⊕b) = a⊕b = a, but b�(1⊕b) = b⊕a = b.
Hence a⊕ b 6= b⊕ a which is contradictory.

Case 2: Let 1⊕b = b. Then again by distributivity a�(1⊕b) = a⊕b = b, but b�(1⊕b) = b⊕a = a.
Hence b⊕ a 6= a⊕ b which is contradictory.

Case 3: Let 1⊕ b = 0. Consider the sum

(1⊕ b)⊕ a = a 6= 1 = 1⊕ a� 0 = 1⊕ a� (1⊕ b) = 1⊕ a⊕ b = 1⊕ (b⊕ a),

which is a contradiction to associativity. �

However, we can always embed the multiplicative monoid A = (A,�,1,0) into a semiring as
follows. Let ⊥ /∈ A be a new element and let A′ = A ∪ {⊥}. Further, de�ne the operations
⊕,⊗ : A′ ×A′ −→ A′ for every a1, a2 ∈ A′ by

a1 ⊕ a2 =


0 , if a1, a2 ∈ A
a1 , if a2 = ⊥
a2 , otherwise

and a1 ⊗ a2 =

{
a1 � a2 , if a1, a2 ∈ A
⊥ , otherwise

.

Then (A′,⊕,⊗,⊥,1) is a semiring (with a new zero).
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2.4 Formal tree series

Let ∆ be a ranked alphabet and additionally V ⊆ X be a subset of variables. Every total mapping
ϕ : T∆(V ) −→ A from ∆-trees indexed by V into a non-empty set A is called formal tree series
(over ∆, V , and A). We use A〈〈T∆(V )〉〉 to denote the set of all formal tree series over ∆, V , and A.
Given a tree t ∈ T∆(V ), we usually write (ϕ, t), termed the coe�cient of t, instead of ϕ(t) and∑
t∈T∆(V )(ϕ, t) t instead of the tree series ϕ, in order to follow the established conventions. For

example, ∑
t∈T∆(V )

size(t) t

is the tree series, which associates to every tree its size.
Let (A,�,1,0) be a monoid with an absorbing 0 and ϕ ∈ A〈〈T∆(V )〉〉 be a tree series. The

support of ϕ is de�ned to be the set supp(ϕ) = { t ∈ T∆(V ) | (ϕ, t) 6= 0 }. Whenever the set
supp(ϕ) is �nite, we say that ϕ is a polynomial, and moreover, a polynomial ϕ is said to be a
monomial, if card(supp(ϕ)) ≤ 1. The set of all monomial (likewise polynomial) formal tree series
(over ∆, V , and A) is denoted by A[T∆(V )] (likewise A〈T∆(V )〉). A tree series ϕ ∈ A〈〈T∆(V )〉〉
is said to be boolean, if for every tree t ∈ T∆(V ) the coe�cient obeys (ϕ, t) ∈ {0,1}. Provided a
subset L ⊆ T∆(V ) we de�ne the characteristic tree series of L by

(char(L), t) =

{
1 , if t ∈ L
0 , otherwise

for every tree t ∈ T∆(V ). Note that char(L) is boolean and char(L) ∈ A〈T∆(V )〉 if and only if
L ∈ Pf(T∆(V )). Moreover, char(L) ∈ A[T∆(V )] if and only if L ∈ Pf(T∆(V )) and card(L) ≤ 1.

In addition, if there is an element a ∈ A such that for every tree t ∈ T∆(V ) the coe�cient
(ϕ, t) = a is constant, then the tree series ϕ is said to be constant and we use ã to abbreviate such
a tree series ϕ. Hence a monomial ϕ obeys either ϕ = 0̃ or card(supp(ϕ)) = 1, thus ϕ = a t for
some monoid element a ∈ A and tree t ∈ T∆(V ).

Provided that (A,⊕,�,0,1) is even a semiring, then we can de�ne the sum of two tree series
ψ1, ψ2 ∈ A〈〈T∆(V )〉〉 pointwise for every tree t ∈ T∆(V ) to be (ψ1 ⊕ ψ2, t) = (ψ1, t) ⊕ (ψ2, t).
Tree substitution can then be generalized to tree languages [ES77, ES78] as well as tree series
over semirings. Following the IO-substitution approach, the common de�nition of tree series sub-
stitution found, for example, in [EFV02] lets (A,⊕,�,0,1) be a semiring, n ∈ N be an integer,
ϕ ∈ A〈T∆(Xn)〉 be a tree series, and (ψ1, . . . , ψn) ∈ A〈T∆(V )〉n be an n-tuple of tree series. (Pure)
substitution of the tuple (ψ1, . . . , ψn) into the tree series ϕ, denoted by ϕ←− (ψ1, . . . , ψn), is then
de�ned by

ϕ←− (ψ1, . . . , ψn) =
∑

t∈supp(ϕ),
(∀i∈[n]): ti∈supp(ψi)

(
(ϕ, t)�

∏
i∈[n]

(ψi, ti)
)
t[t1, . . . , tn].

Irrespective of the number of occurrences of a formal variable xi for some i ∈ [n], the coe�cient
(ψi, ti) is taken into account exactly once, even if the variable does not appear at all in the tree t.
This particularity led to the introduction of a di�erent notion of substitution de�ned in [FV03] as
follows.

ϕ
o←− (ψ1, . . . , ψn) =

∑
t∈supp(ϕ),

(∀i∈[n]): ti∈supp(ψi)

(
(ϕ, t)�

∏
i∈[n]

(ψi, ti)|t|xi

)
t[t1, . . . , tn]

This notion of substitution, called o-substitution, takes the coe�cient (ψi, ti) into account as often
as the corresponding formal variable xi appears in the tree t. However, both notions are de�ned
only for formal tree series over semirings. Next we will restrict the substitutions to monomials and
thereby obtain notions of substitutions also de�ned for monoids.
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Let (A,�,1,0) be a monoid, ϕ ∈ A[T∆(Xn)] be a monomial, (ψ1, . . . , ψn) ∈ A[T∆(V )]n be
a n-tuple of monomials, and mod ∈ {ε, o} be a modi�er. The mod-substitution of the tuple

(ψ1, . . . , ψn) into the monomial ϕ, denoted by ϕ
mod←−? (ψ1, . . . , ψn), is de�ned for every n + 1

elements a, a1, . . . , an ∈ A \ {0}, tree t ∈ T∆(Xn), and n trees t1, . . . , tn ∈ T∆(V ) by the following
axioms.

(i) ϕ
mod←−? () = ϕ,

(ii) 0̃ mod←−? (ψ1, . . . , ψn) = 0̃ and ϕ
mod←−? (ψ1, . . . , ψi−1, 0̃, ψi+1, . . . , ψn) = 0̃ for every i ∈ [n],

(iii) a t←−? (a1 t1, . . . , an tn) = (a�
∏
i∈[n] ai) t[t1, . . . , tn], and

(iii') a t
o←−? (a1 t1, . . . , an tn) = (a�

∏
i∈[n] a

|t|xi
i ) t[t1, . . . , tn].

This way (i), (ii), and (iii) characterize pure substitution on monomials, whereas (i), (ii), and (iii')
characterize o-substitution on monomials. It is easily seen using Proposition 3.4 of [FV03], that
these are really the restrictions of the respective notions of substitution de�ned for semirings
(A,⊕,�,0,1) to their multiplicative monoid (A,�,1,0), i.e.,

ϕ
mod←− (ψ1, . . . , ψn) = ϕ

mod←−? (ψ1, . . . , ψn).

Henceforth we will drop the star from the substitution on monomials.
Finally, we mention that in [Kui99] a notion of substitution based on the OI-substitution ap-

proach [ES77, ES78] is introduced. There the number of occurrences of a certain formal variable
is taken into account as well. In this paper we only deal with the IO-substitution approach.

3 Deterministic bottom-up weighted tree transducers

In this section we will �rstly recall the notion of a deterministic bottom-up tree series transducer
[EFV02, FV03]. Then we will present another model called deterministic bottom-up weighted
tree transducer (abbreviated deterministic bu-w-tt), and show that deterministic bu-w-tt over the
multiplicative monoid (A,�,1,0) of a semiring A = (A,⊕,�,0,1) are equivalent to deterministic
bottom-up tree series transducers over A. The main advantage of deterministic bu-w-tt is the fact
that they are de�ned over a monoid (A,�,1,0) only and hence that we can deal with more general
algebraic structures (cf. Observation 2.3). We present the necessary de�nitions in a compact
style and refer the reader to [EFV02, FV03] for an elaborated introduction into general tree series
transducers and weighted tree transducers.

Before we proceed with the de�nition of deterministic bottom-up tree series transducers, we
recall some basic notions concerning matrices. Let I and J be countable index sets and let S be
a set of entries. An (I × J)-matrix over S is a mapping K : I × J −→ S. The set of all matrices
over S with indices of I × J is denoted by SI×J . The element K(i, j) is called the (i, j)-entry of
the matrix K and also written as Ki,j . If it is understood that the matrix K is a row-vector or
column-vector (i.e., I or J is a singleton set, respectively), then we generally omit the element of
the singleton set when indexing elements of the matrix K. Accordingly, we write, for example, KI

instead of KI×{1}, whenever we do not want to stress that the matrix K is a column-vector.
Given a �nite set Q of states, input and output ranked alphabet Σ and ∆, respectively, and a

semiring A = (A,⊕,�,0,1), a deterministic bottom-up tree representation (over Q, Σ, ∆, and A)
is a family (µk )k∈N of mappings, where for every k ∈ N the mapping µk has type

µk : Σ(k) −→ A[T∆(X)]Q×Q
k

.

Moreover, for every k ∈ N, input symbol σ ∈ Σ(k), and k-tuple of states w ∈ Qk there exists at
most one state q ∈ Q such that µk(σ)q,w 6= 0̃. A deterministic bottom-up tree series transducer
(over Σ and ∆) is de�ned as a six-tuple M = (Q,Σ,∆,A, F, µ), where
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• Q and F ⊆ Q are non-empty, �nite sets of states and �nal states, respectively,

• Σ and ∆ are the input and output ranked alphabet, respectively; both disjoint to Q;

• A = (A,⊕,�,0,1) is a semiring, and

• µ is a deterministic bottom-up tree representation over Q, Σ, ∆, and A.

For every modi�er mod ∈ {ε, o}, integer k ∈ N, and input symbol σ ∈ Σ(k) the deterministic

bottom-up tree representation µ induces a mapping µk(σ)
mod

: (A〈T∆〉Q)k −→ A〈T∆〉Q de�ned
componentwise for every state q ∈ Q and k vectors R1, . . . , Rk ∈ A〈T∆〉Q by

µk(σ)
mod

(R1, . . . , Rk)q =
∑

(q1,...,qk)∈Qk

µk(σ)q,(q1,...,qk)
mod←−

(
(R1)q1 , . . . , (Rk)qk

)
.

Note that (A〈T∆〉Q, (µk(σ)
mod

)k∈N,σ∈Σ(k)) de�nes a Σ-algebra, and TΣ is the initial Σ-algebra.
Thus there exists a unique homomorphism hmod

µ : TΣ −→ A〈T∆〉Q, which is de�ned for every
k ∈ N, input symbol σ ∈ Σ(k), and k trees s1, . . . , sk ∈ TΣ by

hmod
µ (σ(s1, . . . , sk)) = µk(σ)

mod
(hmod
µ (s1), . . . , hmod

µ (sk)).

In fact, it can easily be proved by structural induction that for every input tree s ∈ TΣ we have

hmod
µ (s) ∈ A[T∆]Q, hence we can replace the set A〈T∆〉Q by A[T∆]Q in the types of µk(σ)

mod
and

hmod
µ . Finally, the mod-tree-to-tree-series transformation, abbreviated mod-t-ts transformation,

computed by the deterministic bottom-up tree series transducer M is τmod
M : TΣ −→ A[T∆]

speci�ed for every input tree s ∈ TΣ by τmod
M (s) =

∑
q∈F h

mod
µ (s)q.

3.1 De�nition (Deterministic bottom-up weighted tree transducer)
A deterministic bottom-up weighted tree transducer (over A), abbreviated deterministic bu-w-tt in
the following, is de�ned as a tuple M = (Q,Σ,∆,A, F, δ, µ) where

• Q and F ⊆ Q are �nite and non-empty sets of states and �nal states, respectively,

• Σ and ∆ are the input and output ranked alphabet, respectively; both disjoint to Q;

• A = (A,�,1,0) is a monoid with an absorbing element 0,

• δ = ( δkσ : Qk −→ Q )k∈N,σ∈Σ(k) is a family of state transition mappings, and

• µ = (µkσ : Qk −→ A[T∆(Xk)] )k∈N,σ∈Σ(k) is a family of output mappings. �

The deterministic bu-w-tt M is boolean, if for every integer k ∈ N and input symbol σ ∈ Σ(k)

every monomial in the range of µkσ is boolean. We will also make use of the following syntactic
restrictions of deterministic bu-w-tt. Let M = (Q,Σ,∆,A, F, δ, µ) be a deterministic bu-w-tt; we
say that M is

• non-deleting (likewise linear), if for every k ∈ N, input symbol σ ∈ Σ(k), and k states
q1, . . . , qk ∈ Q the variable x ∈ Xk appears at least once (likewise at most once), i.e., 1 ≤ |t|x
(likewise |t|x ≤ 1), in any tree t ∈ supp(µkσ(q1, . . . , qk)),

• total, if F = Q and for every k ∈ N, input symbol σ ∈ Σ(k), and k states q1, . . . , qk ∈ Q we
have µkσ(q1, . . . , qk) 6= 0̃, and

• a homomorphism, if M is total and Q is a singleton.
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In caseM is a deterministic homomorphism bu-w-tt, we will just say thatM is a homomorphism
bu-w-tt. Finally, we should assign a formal semantics to deterministic bu-w-tt. In fact, we de�ne
two di�erent semantics, namely the tree-to-tree-series transformation, abbreviated t-ts transfor-
mation, and the o-tree-to-tree-series transformation, abbreviated o-t-ts transformation. Both are
de�ned in the very same manner except for the type of substitution being used.

3.2 De�nition (Semantics of deterministic bu-w-tt)
Let mod ∈ {ε, o} be a modi�er and M = (Q,Σ,∆,A, F, δ, µ) be a deterministic bu-w-tt over the

monoid A = (A,�,1,0). For every input tree s ∈ TΣ we de�ne the mappings δ̂ : TΣ −→ Q and
µ̂mod : TΣ −→ A[T∆] by structural recursion as follows. For every integer k ∈ N, input symbol
σ ∈ Σ(k), and k subtrees s1, . . . , sk ∈ TΣ we have δ̂(σ(s1, . . . , sk)) = δkσ(δ̂(s1), . . . , δ̂(sk)) and

µ̂mod(σ(s1, . . . , sk)) = µkσ(δ̂(s1), . . . , δ̂(sk))
mod←− (µ̂mod(s1), . . . , µ̂mod(sk)).

The mod-tree-to-tree-series transformation computed by M is the mapping τmod
M : TΣ −→ A[T∆]

speci�ed for every input tree s ∈ TΣ by

τmod
M (s) =

{
µ̂mod(s) , if δ̂(s) ∈ F
0̃ , otherwise

.
�

3.3 Example (A deterministic bu-w-tt computing the size)
The deterministic bu-w-ttMsize = ({?},Σ,Σ,Z∞, {?}, δ, µ) with input and output ranked alphabet
Σ = {σ(2), α(0)}, state transition mappings δ = (δ2σ, δ

0
α), and output mappings µ = (µ2

σ, µ
0
α) is

de�ned by
δ2σ(?, ?) = δ0α() = ? , µ2

σ(?, ?) = 1 σ(x1, x2) , and µ0
α() = 1 α.

We observe that for every input tree s ∈ TΣ we have τMsize(s) = τoMsize
(s) = size(s) s. Moreover,

Msize is a linear and non-deleting homomorphism bu-w-tt, which is not boolean. �

In the sequel we investigate the computational power of various subclasses of deterministic
bu-w-tt and compare their computational power by means of set inclusion. The next de�nition
establishes shorthands for such classes of mod-t-ts transformations also taking the two di�erent
notions of substitution into account.

3.4 De�nition (Classes of tree-to-tree-series transformations)
Let mod ∈ {ε, o} and A = (A,�,1,0) be a monoid. We de�ne several classes of mod-t-ts trans-
formations τ : TΣ −→ A[T∆] computable by restricted deterministic bu-w-tt over A as shown in
Table 2.

Formally speaking, let Pref = {n, l, t,h} be a set of abbreviations standing for non-deleting,
linear, total, and homomorphism, respectively. Moreover, let r ⊆ Pref. The class dr�BOTmod(A)
denotes the class of all mod-t-ts transformations τ : TΣ −→ A[T∆] such that there exists a
deterministic bu-w-tt M = (Q,Σ,∆,A, F, δ, µ) with τmod

M = τ and M obeys all the restrictions
abbreviated in r. Henceforth, we will omit the set braces and the separating comma and just list
the letters in r. We say that r is a pre�x.

Note that all sensible combinations of abbreviations are listed in Table 2 together with their
corresponding set of pre�xes, and we generally omit the d and the pre�x t (standing for deter-
ministic and total) in case the pre�x h (standing for homomorphism) is present, because ho-
momorphism tree transducers are deterministic and total by de�nition. Finally we de�ne the
set Π = {d,dn,dl,dt,h,dnl,dnt,hn,dlt,hl,dnlt,hnl} of sensible combinations and the restrictions
Πr = {π ∈ Π | r ∈ π } for every r ∈ Pref. �

We note that all the restrictions and classes have been de�ned for deterministic bottom-up
tree series transducers [EFV02, FV03] as well. Next we establish relations between determin-
istic bu-w-tt, deterministic bottom-up tree series transducers, and deterministic bottom-up tree
transducers.
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Notation set of pre�xes denotes the class of mod-t-ts transformations
computable by . . . deterministic bu-w-tt over A

d�BOTmod(A) ∅ unrestricted
dn�BOTmod(A) {n} non-deleting
dl�BOTmod(A) {l} linear
dt�BOTmod(A) {t} total
h�BOTmod(A) {t,h} homomorphism
dnl�BOTmod(A) {n, l} non-deleting and linear
dnt�BOTmod(A) {n, t} non-deleting and total
hn�BOTmod(A) {n, t,h} non-deleting homomorphism
dlt�BOTmod(A) {l, t} linear and total
hl�BOTmod(A) {l, t,h} linear homomorphism
dnlt�BOTmod(A) {n, l, t} non-deleting, linear, and total
hnl�BOTmod(A) {n, l, t,h} non-deleting and linear homomorphism

Table 2: Various classes of mod-tree-to-tree-series transformations.

Firstly, let us show that deterministic bu-w-tt over multiplicative monoids of some semiring com-
pute the same class of mod-t-ts transformations as deterministic bottom-up tree series transducers.
Let A = (A,⊕,�,0,1) be a semiring, M1 = (Q1,Σ,∆,A, F1, µ1) be a deterministic bottom-up
tree series transducer, and M2 = (Q2,Σ,∆, (A,�,1,0), F2, δ2, µ2) be a deterministic bu-w-tt over
the multiplicative monoid of A. The devices M1 and M2 are called related, if Q1 = Q2, F1 = F2,
and for every integer k ∈ N, input symbol σ ∈ Σ(k), and k + 1 states q, q1, . . . , qk ∈ Q we have

(µ1)k(σ)q,(q1,...,qk) 6= 0̃ implies (δ2)kσ(q1, . . . , qk) = q and (µ2)kσ(q1, . . . , qk) = (µ1)k(σ)q,(q1,...,qk),

as well as (µ1)k(σ)(δ2)k
σ(q1,...,qk),(q1,...,qk) = (µ2)kσ(q1, . . . , qk). A straightforward induction on the

structure of the input tree s ∈ TΣ then shows for every modi�er mod ∈ {ε, o} that

(µ̂2)mod(s) = hmod
µ1

(s) bδ2(s)
and thus τmod

M1
(s) = τmod

M2
(s) for related M1 and M2. Note that M1 obeys the restrictions of π ∈ Π,

if and only if M2 obeys the restrictions of π.

3.5 Observation (Deterministic bu-w-tt and bottom-up tree series transducers)
Let A = (A,⊕,�,0,1) be a semiring. Then for every π ∈ Π and modi�er mod ∈ {ε, o} we have

π�BOTmod(A) = π�BOTmod((A,�,1,0)),

where π�BOTmod(A) denotes the class of all mod-t-ts transformations computable by bottom-up
tree series transducers obeying all the restrictions of π (cf. [EFV02, FV03]). �

Secondly, we transfer the obvious relationship between deterministic bottom-up tree transducers
on the one hand and deterministic bottom-up tree series transducers over the Boolean semiring
B = ({0, 1},∨,∧, 0, 1) on the other hand (cf. Corollary 4.7 of [EFV02] and Corollary 5.9 of
[FV03]) to the corresponding relationship between deterministic bottom-up tree transducers and
deterministic bu-w-tt over Z2. Let S = {L ∈ Pf(T∆) | card(L) ≤ 1 } and ∼ ⊆ Z2[T∆] × S be
the relation de�ned by ϕ ∼ L, if and only if L = supp(ϕ). Indeed the relation ∼ is a bijection.
Consequently, for every τ1 : TΣ −→ Z2[T∆] and τ2 : TΣ −→ S let τ1 ∼ τ2, if and only if for every
input tree s ∈ TΣ we have τ1(s) ∼ τ2(s). Moreover, let ∼ also be de�ned on classes of mappings in
the obvious way.

3.6 Observation (Deterministic bu-w-tt and bottom-up tree transducers)
For every π ∈ Π and modi�er mod ∈ {ε, o} we have π�BOTmod(Z2) ∼ π�BOTtt, where π�BOTtt

denotes the class of all tree transformations computable by bottom-up tree transducers obeying
all the restrictions of π (cf. [Eng75]).
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Proof. In the same spirit as ∼ a relation between deterministic bottom-up tree transducers and
deterministic bu-w-tt over the group Z2 can be established (cf. Corollary 4.7 of [EFV02]). More
precisely, a deterministic bottom-up tree transducer M1 = (Q1,Σ,∆, F1, δ1, µ1) is related to a
deterministic bu-w-tt M2 = (Q2,Σ,∆,Z2, F2, δ2, µ2), if Q1 = Q2, F1 = F2, δ1 = δ2, and for every
integer k ∈ N, input symbol σ ∈ Σ(k), and k states q1, . . . , qk ∈ Q the following condition holds.

(µ1)kσ(q1, . . . , qk) = supp((µ2)kσ(q1, . . . , qk)).

Note that for every combination π ∈ Π we have that M1 obeys the restrictions of π, if and only
if M2 obeys them. Moreover, if M1 and M2 are related, then τM1 ∼ τmod

M2
(cf. Corollary 4.7 of

[EFV02] and Corollary 5.9 of [FV03]). The proof of the last statement is straightforward and left
to the reader. �

Thus deterministic bottom-up tree transducers and deterministic bu-w-tt over the group Z2 are
equally powerful, which allows us to treat deterministic bottom-up tree transducers as if they were
deterministic bu-w-tt over the group Z2 in order to have a unique presentation.

3.7 Corollary (Corollary of Observation 3.6)
For every combination π ∈ Π we have π�BOTo(Z2) = π�BOT(Z2). �

4 Inclusion diagrams

In this section we investigate the relation between classes of t-ts and o-t-ts transformations com-
puted by deterministic bu-w-tt with respect to set inclusion. We derive several inclusion diagrams
displaying the relationships given certain properties of the underlying monoid. Firstly, let us state
the well-known inclusion diagram for deterministic bu-w-tt over the group Z2, i.e., for deterministic
bottom-up tree transducers. Figure 1 displays the inclusion diagram for all classes of t-ts and o-t-ts
transformations de�ned in De�nition 3.4 (for A = Z2). In order to present a concise diagram, we
shorten the denotation of the classes from π�BOTmod(A) to just πmod for every combination π ∈ Π
and mod ∈ {ε, o}. Moreover, we use π= to express that π�BOTo(A) = π�BOT(A).

Secondly, let A = (A,�,1,0) be a commutative monoid with at least three elements. In
Subsection 4.1 we derive some statements which hold for every such monoid A. Thirdly, we will
consider the case that A is non-periodic (cf. Subsection 4.2). Subsection 4.3 is dedicated to
periodic, but non-regular monoids A. Automatically such a monoid A is non-idempotent and no
group with an absorbing element by Observation 2.2. The next case handled in Subsection 4.4
additionally assumes that A is regular, but still not idempotent and no group with an absorbing
element. Thereafter, we consider the case in which A is idempotent. This again excludes the case
that A is a group with an absorbing element, which is �nally taken care of in Subsection 4.6.

4.1 Theorem (The inclusion diagram for the group Z2)
Figure 1 is the inclusion diagram of the displayed classes of t-ts and o-t-ts transformations over Z2

ordered by set inclusion.

Proof. The equalities are concluded from Corollary 3.7 and all the inclusions hold by de�nition.
Finally, the following four statements are su�cient to prove strictness and incomparability.

(i) dnlt�BOT(Z2) 6⊆ h�BOT(Z2), (ii) dnl�BOT(Z2) 6⊆ dt�BOT(Z2),
(iii) hn�BOT(Z2) 6⊆ dl�BOT(Z2), (iv) hl�BOT(Z2) 6⊆ dn�BOT(Z2).

The non-inclusions (i) and (ii) are trivial and the non-inclusions (iii) and (iv) are due to Theorem 3.3
of [Fül91]. �
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d=

dn= dl= dt=

dnl= dnt= dlt= h=

dnlt= hn= hl=

hnl=

Figure 1: Inclusion diagram for the group Z2.

4.1 Results for arbitrary monoids

In this subsection we derive some statements which hold irrespective of the underlying monoid
A = (A,�,1,0). Firstly, we show how to use the results of the inclusion diagram in Figure 1 in
order to obtain incomparability results for classes of t-ts and o-t-ts transformations over monoids A
di�erent from Z2. Roughly speaking, we show that all non-inclusions present in Figure 1 are
preserved in the transition from Z2 to A. This is mainly due to the fact that Z2 is a submonoid
(with absorbing 0) of A. Hence we take a counterexample in Z2, i.e., a mod1-t-ts transformation
τ which is in the class π1�BOT

mod1(Z2), but not in class π2�BOT
mod2(Z2) for some modi�ers

mod1,mod2 ∈ {ε, o} and π1, π2 ∈ Π, and then prove that τ is also a counterexample for the
inclusion π1�BOT

mod1(A) ⊆ π2�BOT
mod2(A), i.e., τ is trivially in π1�BOT

mod1(A) because Z2 is
a submonoid of A, but still not in π2�BOT

mod2(A).

4.2 Lemma (Lifting lemma)
Let A = (A,�,1,0) be a monoid and mod1,mod2 ∈ {ε, o} be two modi�ers. Furthermore let
π1 ∈ Πt and π2 ∈ Π be two pre�xes.

If π1�BOT
mod1(Z2) 6⊆ π2�BOT

mod2(Z2), then also π1�BOT
mod1(A) 6⊆ π2�BOT

mod2(A).

Proof. Let τ ∈ π1�BOT
mod1(Z2) \ π2�BOT

mod2(Z2) be a mod1-t-ts transformation, hence there
exists a deterministic bu-w-tt M ′ obeying the restrictions π1 such that τ = τmod1

M ′ . Apparently,
π1�BOT

mod1(Z2) ⊆ π1�BOT
mod1(A), because Z2 is a submonoid with an absorbing 0 of A. Thus

there exists a total deterministic bu-w-tt M1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the restrictions
of π1 such that τmod1

M1
= τ . Note that µ̂1mod1

(s) 6= 0̃ for every input tree s ∈ TΣ.

Now we prove by contradiction that τ /∈ π2�BOT
mod2(A). Assume that τ ∈ π2�BOT

mod2(A),
i.e., there exists a deterministic bu-w-tt M2 = (Q2,Σ,∆,A, F2, δ2, µ2) obeying the restrictions
of π2 such that τmod2

M2
= τ . The remaining proof �rst shows that there also exists a boolean

deterministic bu-w-tt M ′′ obeying the restrictions of π2 such that τmod2
M ′′ = τ . The �nal step then

shows that the existence of M ′′ would yield that τ ∈ π2�BOT
mod2(Z2) contrary to the fact that

τ /∈ π2�BOT
mod2(Z2). Hence τ /∈ π2�BOT

mod2(A).
We construct a boolean deterministic bu-w-tt M ′′ = (Q2,Σ,∆,A, F2, δ2, µ

′′) obeying the re-
strictions π2 and τmod2

M ′′ = τmod2
M2

= τ as follows. Let µ′′ = ( (µ′′)kσ )k∈N,σ∈Σ(k) and for every integer
k ∈ N, input symbol σ ∈ Σ(k), and k states q1, . . . , qk ∈ Q2 let

(µ′′)kσ(q1, . . . , qk) = char(supp((µ2)kσ(q1, . . . , qk))).

Obviously, M ′′ is boolean and obeys the restrictions of π2. For our subgoal it remains to show
that τmod2

M ′′ = τmod2
M2

. Therefore we obviously have to prove that µ̂′′mod2
(s) = µ̂2mod2

(s) for every
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input tree s ∈ TΣ. We perform induction over the structure of the input tree s.

Induction base: The induction base is included in the induction step using k = 0.

Induction step: Let s = σ(s1, . . . , sk) for some integer k ∈ N, input symbol σ ∈ Σ(k), and input
subtrees s1, . . . , sk ∈ TΣ. We distinguish two separate cases.

(i) Let i ∈ [k] be an index such that µ̂2mod2
(si) = 0̃ or (µ2)kσ(δ̂2(s1), . . . , δ̂2(sk)) = 0̃. Then

τmod2
M2

(s) = 0̃, but contrary τmod2
M2

(s) = τmod1
M1

(s) 6= 0̃ because M1 is total.

(ii) Assume that for every index i ∈ [k] we have µ̂2mod2
(si) 6= 0̃ and (µ2)kσ(δ̂2(s1), . . . , δ̂2(sk)) = at

for some monoid element a ∈ A \ {0} and output tree t ∈ T∆(Xk). By induction hypothesis
also µ̂2mod2

(si) = µ̂′′mod2
(si) holds, and consequently, µ̂2mod2

(si) = 1 ti for some output tree
ti ∈ T∆ because M ′′ is boolean. Then

µ̂2mod2
(σ(s1, . . . , sk))

= (µ2)kσ(δ̂2(s1), . . . , δ̂2(sk))
mod2←− (µ̂2mod2

(s1), . . . , µ̂2mod2
(sk))

= a t
mod2←− (1 t1, . . . ,1 tk)

= a t[t1, . . . , tk].

Since τmod1
M1

(s) 6= 0̃ we conclude that τmod2
M2

(s) = µ̂2mod2
(s). Further, M1 is boolean, so also

µ̂2mod2
(s) is boolean and we continue with

µ̂2mod2
(σ(s1, . . . , sk))

= a t[t1, . . . , tk]
= 1 t[t1, . . . , tk]

= 1 t mod2←− (1 t1, . . . ,1 tk)

= (µ′′)kσ(δ̂′′(s1), . . . , δ̂′′(sk))
mod2←− (µ̂′′mod2

(s1), . . . , µ̂′′mod2
(sk))

= µ̂′′mod2
(σ(s1, . . . , sk)).

Hence there also exists a boolean deterministic bu-w-tt M ′′ obeying the restrictions of π2 such
that τmod2

M ′′ = τ . Immediately, we obtain that M = (Q2,Σ,∆,Z2, F2, δ2, µ
′′) is a deterministic

bu-w-tt obeying all the restrictions of π2 over Z2 such that τmod2
M = τ . However, this is contra-

dictory to the assumption, because τ was chosen such that τ /∈ π2�BOT
mod2(Z2), which �nally

proves the lemma. �

Thus we can derive non-inclusion for classes of t-ts and o-t-ts transformations over the monoid
A = (A,�,1,0) simply by observing non-inclusion for the respective classes of t-ts and o-t-ts
transformations over the group Z2. Roughly speaking, these latter non-inclusions are based solely
on a de�ciency in the tree output component of one class. For example, for any mod ∈ {ε, o}
the mod-t-ts transformation which maps each input tree s to a fully balanced binary tree of the
same height with whatever non-zero cost cannot be computed by a linear deterministic bu-w-tt.
In order to generate the fully balanced binary trees one de�nitely needs the copying of output
trees. Another example is totality. The mod-t-ts transformation which maps every input tree to 0̃
obviously cannot be computed by a total deterministic bu-w-tt.

The following corollary presents the conclusions of Figure 1 and Lemma 4.2. Moreover, it adds
the missing case of totality, which is straightforward using the remark of the previous paragraph.

4.3 Corollary (Corollary of the Lifting lemma)
Let A = (A,�,1,0) be a monoid and mod1,mod2 ∈ {ε, o} be two modi�ers. For every two
combinations π1, π2 ∈ Π such that there exists a pre�x r ∈ Pref which occurs in π2 but not in π1,
i.e., r ∈ π2 \ π1, we have

π1�BOT
mod1(A) 6⊆ π2�BOT

mod2(A).
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Proof. We distinguish two cases.

(i) Let r 6= t. Apparently, r /∈ π1 ∪ {t}, so let π′1 = π1 ∪ {t}. From Figure 1, we can
check that π′1�BOT(Z2) 6⊆ π2�BOT(Z2) and with the help of Lemma 4.2 we conclude
π′1�BOT

mod1(A) 6⊆ π2�BOT
mod2(A). Trivially, π′1�BOT

mod1(A) ⊆ π1�BOT
mod1(A), hence

π1�BOT
mod1(A) 6⊆ π2�BOT

mod2(A).

(ii) Let r = t. Moreover, let Σ = {α(0)} be a ranked alphabet. We construct the linear and
non-deleting deterministic bu-w-tt M = ({?},Σ,Σ,A, {?}, δ, µ) with transition mappings
δ = (δ0α) and output mappings µ = (µ0

α) speci�ed by δ0α() = ? and µ0
α() = 0̃. Apparently,

τmod1
M ∈ π1�BOT

mod1(A) and τmod1
M /∈ π2�BOT

mod2(A), because t ∈ π2. Hence

π1�BOT
mod1(A) 6⊆ π2�BOT

mod2(A). �

Due to the previous corollary we can restrict our attention to the comparison of classes of t-ts
transformations and of the corresponding classes of o-t-ts transformations. As a �rst comparison
we restate the equality of the classes of t-ts and o-t-ts transformations for all restrictions which
contain both the non-deletion as well as the linearity restriction. This equality was shown for tree
series transducers in [FV03] and the proof required for deterministic bu-w-tt is analogous.

4.4 Observation (cf. Theorem 5.5 of [FV03])
Let A = (A,�,1,0) be a monoid. Then π�BOTo(A) = π�BOT(A) for every π ∈ {dnl,dnlt,hnl}.

Proof. We leave the actual proof to the reader, but note that

ϕ←− (ψ1, . . . , ψk) = ϕ
o←− (ψ1, . . . , ψk)

for every integer k ∈ N, ranked alphabet ∆, monomial ϕ ∈ A[T∆(Xk)], and k monomials
ψ1, . . . , ψk ∈ A[T∆] such that every tree t ∈ supp(ϕ) is non-deleting and linear in Xk (cf. Proposi-
tion 3.10(a) of [FV03]). �

The �nal result of this subsection shows two non-inclusion results. Essentially, we prove that
the classes of t-ts transformations and o-t-ts transformations computed by linear homomorphism
bu-w-tt are incomparable. Due to the inclusion diagram presented in Figure 1, we cannot prove
this result for every monoid with absorbing element, but rather we require that the monoid
A = (A,�,1,0) has at least three elements, i.e., 0 6= 1 and A is not isomorphic to Z2.

4.5 Lemma (Linear homomorphisms)
Let A = (A,�,1,0) be a monoid and A \ {0,1} 6= ∅. Then

hl�BOT(A) 6⊆ h�BOTo(A) and hl�BOTo(A) 6⊆ h�BOT(A).

Proof. Firstly, we prove the former statement. We choose an arbitrary element a ∈ A \ {0,1}.
Let Σ = {γ(1), α(0), β(0)} be a ranked alphabet and M1 = ({?},Σ,Σ,A, {?}, δ1, µ1) be the linear
homomorphism bu-w-tt with δ1 = ((δ1)1γ , (δ1)

0
α, (δ1)

0
β) and µ1 = ((µ1)1γ , (µ1)0α, (µ1)0β) speci�ed by

(δ1)1γ(?) = (δ1)0α() = (δ1)0β() = ? , (µ1)1γ(?) = 1 α , (µ1)0α() = a α , (µ1)0β() = 1 β.

Let τ = τM1 . Clearly, τ ∈ hl�BOT(A), and moreover, τ(γ(α)) = a α and τ(γ(β)) = 1 α.
Now let us prove that τ /∈ h�BOTo(A). We prove this statement by contradiction, so assume

that there exists a homomorphism bu-w-tt M2 = ({?},Σ,Σ,A, {?}, δ2, µ2) such that τoM2
= τ .

Trivially, δ2 = δ1 and µ2 = ((µ2)1γ , (µ2)0α, (µ2)0β) with

(µ2)1γ(?) = c t , (µ2)0α() = a α , (µ2)0β() = 1 β
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for some monoid element c ∈ A and output tree t ∈ TΣ(X1). Moreover, we readily observe t = α,
otherwise supp(τoM2

(γ(β))) 6= {α}. Consequently, τoM2
(γ(α)) = τoM2

(γ(β)) = c α. Thus we obtain
the contradiction a = 1 and conclude that τ /∈ h�BOTo(A).

To show the latter statement, i.e., hl�BOTo(A) 6⊆ h�BOT(A), let τo = τoM1
. Obviously,

τo ∈ hl�BOTo(A), and moreover, τo(γ(α)) = τo(γ(β)) = 1 α. Let us prove that τo /∈ h�BOT(A).
We prove this statement by contradiction, so suppose that there exists a homomorphism bu-w-tt
M3 = ({?},Σ,Σ,A, {?}, δ3, µ3) such that τM3 = τo. Trivially, we observe that δ3 = δ1 and
µ3 = ((µ3)1γ , (µ3)0α, (µ3)0β) with

(µ3)1γ(?) = c t , (µ3)0α() = a α , (µ3)0β() = 1 β

for some monoid element c ∈ A and output tree t ∈ TΣ(X1). Moreover, we again readily observe
t = α, else supp(τM3(γ(β))) 6= {α}. Consequently,

τM3(γ(α)) = (c� a) α = 1 α = c α = τM3(γ(β)),

which yields c = 1 and hence also a = 1. This is contrary to the assumption that a ∈ A \ {0,1}.
Thus we conclude that τo /∈ h�BOT(A). �

In particular, the former lemma also proves that the classes of t-ts and o-t-ts transformations
computed by homomorphism bu-w-tt are incomparable for all monoids di�erent from Z2.

4.6 Corollary (Corollary of Lemma 4.5)
If and only if for every π ∈ Π the equality π�BOT(A) = π�BOTo(A) holds, then A = Z2.

Proof. The equality in Z2 is shown in Theorem 4.1 and Lemma 4.5 proves the incomparability of
hl�BOTo(A) and hl�BOT(A) in all other monoids. �

However, without additional information about the monoid we are unable to prove further
comparability or incomparability results. Hence we will consider monoids with certain properties
in subsequent subsections. The properties will be chosen such that we obtain an inclusion diagram
for every commutative monoid.

4.2 Non-periodic monoids

In this subsection we show that for non-periodic monoids almost all classes of t-ts and o-t-ts trans-
formations (except the ones containing both the non-deletion and linearity restriction) computed
by restricted deterministic bu-w-tt are incomparable with respect to set inclusion. An example of
a non-periodic monoid is the multiplicative monoid of the non-negative integers N. To be precise
we even show that

π�BOT(A) 6⊆ d�BOTo(A) and π�BOTo(A) 6⊆ d�BOT(A)

for every π ∈ {hn,hl} and non-periodic monoid A = (A,�,1,0).
The general idea of the proof is the following. Let a ∈ A be an element such that ai 6= aj ,

whenever i 6= j where i, j ∈ N. We construct a homomorphism bu-w-tt M1, which computes a t-ts
transformation τ in which arbitrarily large powers of the element a ∈ A occur as weights in the
range. Since every deterministic bu-w-ttM2, which also computes τ but as a o-t-ts transformation,
has only �nitely many states, it must permit at least one �nal state q which accepts in�nitely many
input trees. We then show that it is impossible to encode enough information into this state in
order to predict the cost of an input tree constructed from two subtrees accepted by q. The second
statement is shown using a similar approach.

4.7 Lemma (Incomparability in non-periodic monoids)
Let A = (A,�,1,0) be a non-periodic monoid. For every restriction π ∈ {hn,hl} and two modi�ers
mod1,mod2 ∈ {ε, o} with mod1 6= mod2 we have

π�BOTmod1(A) 6⊆ d�BOTmod2(A).
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Proof. Let us prove the statement by case analysis on π. Case 1 considers the case where π = hl
and Case 2 supposes π = hn.

Case 1: Since A is non-periodic, there exists a monoid element a ∈ A such that for every two
integers i, j ∈ N we have ai = aj , if and only if i = j. Further let ∆ = {γ(1), α(0)} and
Γ = {γ1

(1), γ2
(1), α(0)} be ranked alphabets. We construct the linear homomorphism bu-w-tt

M1 = ({?},Γ,∆,A, {?}, δ1, µ1) with transition mappings δ1 = ((δ1)1γ1 , (δ1)
1
γ2 , (δ1)

0
α) and output

mappings µ1 = ((µ1)1γ1 , (µ1)1γ2 , (µ1)0α) speci�ed by

(δ1)1γ1(?) = (δ1)1γ2(?) = (δ1)0α() = ? , (µ1)1γ1(?) = a γ(x1) , (µ1)1γ2(?) = (µ1)0α() = 1 α.

Moreover, we de�ne the mapping l1 : TΓ −→ N recursively for every t ∈ TΓ as follows.

l1(γ1(t)) = l1(t) + 1 and l1(γ2(t)) = l1(α) = 0.

Note that M1 computes the t-ts transformation τM1 : TΓ −→ A[T∆] mapping every input tree
s ∈ TΓ to the monomial a|s|γ1 γl1(s)(α), and the o-t-ts transformation τoM1

: TΓ −→ A[T∆] mapping
s to the monomial al1(s) γl1(s)(α).

Next, we prove that τmod1
M1

/∈ d�BOTmod2(A), which yields hl�BOTmod1(A) 6⊆ d�BOTmod2(A).
For a contradiction we assume that there exists a deterministic bu-w-tt M = (Q,Γ,∆,A, F, δ, µ)
such that τmod2

M = τmod1
M1

.

We observe that for every input tree s ∈ TΓ we have that 0̃ 6= τmod1
M1

(s), and consequently,

τmod2
M (s) = µ̂mod2(s) as well as δ̂(s) ∈ F . (Note that if an = 0 for some n ∈ N, then an = an+1

which contradicts to our assumption) Next we prove that there are a state q ∈ F and two trees
s1, s2 ∈ TΓ such that δ̂(s1) = q = δ̂(s2) and |s1|γ1 6= |s2|γ1 and l1(s1) 6= l1(s2). Therefore we let
Γ′ = {γ1

(1), α(0)} ⊂ Γ, hence TΓ′ ⊆ TΓ. We show that s1 and s2 can actually be chosen from TΓ′ .
Clearly, there exist a state q ∈ F and an in�nite set S ⊆ TΓ′ such that q = δ̂(s) for every s ∈ S,
because Q is �nite whereas TΓ′ is in�nite. For every tree s ∈ S we have size(s) = |s|γ1+1 = l1(s)+1,
because S ⊆ TΓ′ . In Observation 2.1 we have observed that [s]≡size is �nite for every s ∈ S, hence by
the pigeon-hole principle there must exist s1, s2 ∈ S such that size(s1) 6= size(s2), i.e., |s1|γ1 6= |s2|γ1
and l1(s1) 6= l1(s2).

Hence we can safely assume that there exist a state q ∈ F and trees s1, s2 ∈ TΓ such that
δ̂(s1) = q = δ̂(s2) and |s1|γ1 6= |s2|γ1 and l1(s1) 6= l1(s2). Since

supp(τmod1
M1

(γ2(s1))) = supp(τmod1
M1

(γ2(s2))) = {α},

and
τmod2
M (γ2(si)) = µ̂mod2(γ2(si)) = µ1

γ2(q)
mod2←− (µ̂mod2(si))

for every i ∈ [2], we have µ1
γ2(q) 6= 0̃, and thereby, µ1

γ2(q) = a′ t for some non-zero semiring element

a′ ∈ A \ {0} and output tree t ∈ T∆(X1). Next we prove that t = α. Since τmod2
M = τmod1

M1
we have

that supp(τmod1
M1

(si)) = supp(µ̂mod2(si)) = supp(τmod2
M (si)) = {γl1(si)(α)}. Then

α = supp(τmod1
M1

(γ2(si))) = supp(τmod2
M (γ2(si)))

= supp(µ1
γ2(q)

mod2←− (µ̂mod2(si))) = t[supp(µ̂mod2(si))]

= t[γl1(si)(α)].

Now using l1(s1) 6= l1(s2) we conclude |t|x1 = 0, thus �nally, t = α.
We obtain for every integer i ∈ [2]

τmod2
M (γ2(si)) = a′ α

mod2←− (τmod1
M1

(si)) =

{
(a′ � al1(si)) α , if mod2 = ε

a′ α , if mod2 = o
.
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Recall now that mod1 6= mod2 and τM1(γ2(si)) = a|si|γ1 α and τoM1
(γ2(si)) = al1(γ2(si)) α = 1 α.

Hence for every i ∈ [2] we derive the equation

a′ � al1(si) = 1 = (τoM1
(γ2(si)), α) , if mod2 = ε

a′ = a|si|γ1 = (τM1(γ2(si)), α) , if mod2 = o
.

In case mod2 = o this yields a contradiction outright, because a′ = a|s1|γ1 = a|s2|γ1 , which
apparently is contradictory due to a|s1|γ1 6= a|s2|γ1 by |s1|γ1 6= |s2|γ1 . Finally, in the other case,
i.e., mod2 = ε, we e�ectively have 1 = a′ � al1(s1) = a′ � al1(s2). Now let y1 = min(l1(s1), l1(s2)),
y2 = max(l1(s1), l1(s2)), and d = y2− y1. Obviously, y1 6= y2 and thereby d 6= 0 by l1(s1) 6= l1(s2).
We consider

1 = a′ � ay2 = a′ � ay1+d = a′ � ay1 � ad = 1� ad = ad,

however 1 = a0 = ad, if and only if 0 = d, which is a contradiction. Irrespective of mod2 we have
thus proved that there is no deterministic bu-w-tt M having the property that τmod1

M1
= τmod2

M .

Thus τmod1
M1

/∈ d�BOTmod2(A).

Case 2: Since A is non-periodic, there exists a monoid element a ∈ A such that for every two
integers i, j ∈ N we have ai = aj , if and only if i = j. Further let Σ = {σ(2), α(0)} and
∆ = {γ(1), α(0)} be ranked alphabets. We construct the non-deleting homomorphism bu-w-tt
M2 = ({?},∆,Σ,A, {?}, δ2, µ2) with transition mappings δ2 = ((δ2)1γ , (δ2)

0
α) and output mappings

µ2 = ((µ2)1γ , (µ2)0α) de�ned by

(δ2)1γ(?) = (δ2)0α() = ? , (µ2)1γ(?) = a σ(x1, x1) , (µ2)0α() = a α.

For every tree s ∈ T∆ let ts ∈ TΣ be the fully balanced output tree such that height(ts) = height(s).
The t-ts transformation τM2 : T∆ −→ A[TΣ] computed by M2 maps the input tree s to the
monomial asize(s) ts, whereas the o-t-ts transformation τoM2

: T∆ −→ A[TΣ] computed by M2 maps
the input tree s to the monomial asize(ts) ts. Note that size(ts) = 2size(s) − 1.

Let us prove τmod1
M2

/∈ d�BOTmod2(A), thereby showing hn�BOTmod1(A) 6⊆ d�BOTmod2(A). To
derive a contradiction assume that there exists a deterministic bu-w-tt M = (Q,∆,Σ,A, F, δ, µ)
such that τmod2

M = τmod1
M2

.

We again observe that for every input tree s ∈ T∆ we have 0̃ 6= τmod1
M2

(s), and consequently,

τmod2
M (s) = µ̂mod2(s) as well as δ̂(s) ∈ F . Moreover, T∆ is in�nite. In contrast M has only a �nite
set of �nal states F ; hence there must exist a �nal state q ∈ F and input trees s1, s2 ∈ T∆ with
q = δ̂(si) and s1 6= s2 such that tsi ∈ supp(µ̂mod2(si)) for i ∈ [2]. Since s1 6= s2 we also have
size(s1) 6= size(s2) and ts1 6= ts2 .

Apparently, µ̂mod2(γ(si)) = µ1
γ(q)

mod2←− (τmod1
M2

(si)), and furthermore, also τmod1
M2

(γ(si)) 6= 0̃,
hence δ̂(γ(si)) ∈ F and µ1

γ(q) 6= 0̃. Let µ1
γ(q) = a′ t for some non-zero monoid element a′ ∈ A\{0}

and output tree t ∈ TΣ(X1).
Next we observe that t = σ(x1, x1), which can easily be proved by contradiction as follows.

Assume that t 6= σ(x1, x1). Then for some index j ∈ [2] the tree t[tsj ] is not fully balanced or its
height is not 1 + height(tsj ), because ts1 6= ts2 . Hence we obtain for every integer i ∈ [2]

τmod2
M (γ(si)) = a′ σ(x1, x1)

mod2←− (τmod1
M2

(si)) =

{
(a′ � asize(tsi

)) σ(tsi
, tsi

) , if mod2 = ε

(a′ � a2·size(si)) σ(tsi , tsi) , if mod2 = o
.

However, recall that τM2(γ(si)) = asize(si)+1 σ(tsi
, tsi

) and τoM2
(γ(si)) = a2·size(tsi

)+1 σ(tsi
, tsi

).
Hence for every i ∈ [2] we derive the equation

a′ � asize(tsi
) = a2·size(tsi

)+1 = (τoM2
(γ(si)), σ(tsi , tsi)) , if mod2 = ε

a′ � a2·size(si) = asize(si)+1 = (τM2(γ(si)), σ(tsi , tsi)) , if mod2 = o
.
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For every i ∈ [2] we let yi = size(tsi
), if mod2 = ε, whereas we let yi = size(si) in case mod2 = o.

Note that in both cases y1 6= y2. We continue with the equations

ay1+2·y2+1 = a′ � ay2 � ay1 = a′ � ay1 � ay2 = a2·y1+y2+1 , if mod2 = ε

ay1+2·y2+1 = a′ � a2·y1 � a2·y2 = a′ � a2·y2 � a2·y1 = a2·y1+y2+1 , if mod2 = o
.

Thus in any case ay1+2·y2+1 = a2·y1+y2+1. Since ai 6= aj whenever i 6= j for all i, j ∈ N, we conclude
y1 + 2 · y2 + 1 = 2 · y1 + y2 + 1 and thereby y1 = y2 which contradicts to y1 6= y2. Consequently,
irrespective of mod2 we have proved that there is no deterministic bu-w-tt M having the property
that τmod1

M2
= τmod2

M . Thus τmod1
M2

/∈ d�BOTmod2(A). �

d do

dt dl dn dno dlo dto

h dlt dnt dnl= dnto dlto ho

hl hn dnlt= hno hlo

hnl=

Figure 2: Inclusion diagram for non-periodic monoids.

Together with the results of Subsection 4.1 we can already derive the inclusion diagram (cf. Fig-
ure 2) for non-periodic monoids. We observe that the classes of t-ts and o-t-ts transformations are
incomparable, whenever inclusion is not trivial by de�nition or given as a result of Observation 4.4.

4.8 Theorem (Non-periodic monoids)
Let A = (A,�,1,0) be a non-periodic monoid with an absorbing element 0. Figure 2 is the
inclusion diagram of the displayed classes of t-ts and o-t-ts transformations ordered by set inclusion.

Proof. All the inclusions are trivial and the equalities are due to Observation 4.4. Then the
following six statements are su�cient to prove strictness and incomparability. For every two
distinct modi�ers mod1,mod2 ∈ {ε, o}, i.e., mod1 6= mod2,

(i) dnlt�BOT(A) 6⊆ h�BOTmod1(A), (ii) dnl�BOT(A) 6⊆ dt�BOTmod1(A),

(iii) hn�BOTmod1(A) 6⊆ dl�BOTmod1(A), (iv) hl�BOTmod1(A) 6⊆ dn�BOTmod1(A),

(v) hl�BOTmod1(A) 6⊆ d�BOTmod2(A), (vi) hn�BOTmod1(A) 6⊆ d�BOTmod2(A).

The non-inclusions (i) � (iv) are proved in Corollary 4.3, whereas non-inclusions (v) and (vi) follow
from Lemma 4.7. �

4.3 Periodic and commutative monoids

In this subsection we consider monoids which are periodic and commutative. For example, the
monoid Z4 is periodic and commutative (without being regular). It is easily seen that in commu-
tative and periodic monoids A = (A,�,1,0) the carrier set 〈A′〉� of the least submonoid with the
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absorbing element 0 generated from a �nite set A′ ⊆ A is again �nite. This property is essential
in the core construction of this subsection, because it allows to keep track of the current weight in
the states.

4.9 Observation (Periodicity and �nitely generated submonoids)
Let A = (A,�,1,0) be a commutative and periodic monoid. For every �nite subset A′ ⊆ A we
have that 〈A′〉� is �nite.

Proof. We �rst observe that 〈∅〉� = {0,1}. Consequently, let A′ = {a1, . . . , ak} ⊆ A for some
k ∈ N+. Then

〈A′〉� = { ai11 � · · · � a
ik
k | i1, . . . , ik ∈ N } = { ai11 � · · · � a

ik
k | i1 ∈ [0, n1], . . . , ik ∈ [0, nk] },

where for every j ∈ [k] the integer nj ∈ N is such that there exists another integer mj ∈ N with
nj < mj and a

nj

j = a
mj

j . Hence 〈A′〉� is a �nite set. �

Given a deterministic bu-w-tt computing a t-ts transformation τ , we construct another deter-
ministic bu-w-tt computing τ as o-t-ts transformation. Moreover, most of the restrictions de�ned
for deterministic bu-w-tt (namely non-deleting, linear, and total) are preserved by this construc-
tion. However, a homomorphism bu-w-tt might yield a non-homomorphism bu-w-tt, because the
construction increases the state-space compared to the given bu-w-tt.

The next de�nition abstracts the central feature required to model one type of substitution with
the help of the other. We encapsulate this feature in a family of mappings in order to be able to
invoke the construction later under di�erent premises. More precisely, in subsequent corollaries
of the lemma we will prove that such a family of mappings exists provided that the monoid has
certain properties, e.g., is a group.

4.10 De�nition (Family of translation mappings)
Let A = (A,�,1,0) be a monoid, M = (Q,Σ,∆,A, F, δ, µ) be a deterministic bu-w-tt, and
mod ∈ {ε, o} be a modi�er. In addition let fM,mod = ( fkM,mod )k∈N be a family of mappings
where for every integer k ∈ N we have

fkM,mod :
( ⋃
σ∈Σ(k),q1,...,qk∈Q

supp(µkσ(q1, . . . , qk))
)
× [k]×A −→ A.

If f satis�es for every element t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q supp(µkσ(q1, . . . , qk)), index i ∈ [k], and monoid

element a ∈ A the statements

(i) fkM,mod(t, i, a) = 0, if a = 0,

(ii) fkM,mod(t, i, a)� a|t|xi = a, if mod = ε, and

(iii) fkM,mod(t, i, a)� a = a|t|xi , if mod = o,

then f is called a family of mod-translation mappings for M . �

Let mod1,mod2 ∈ {ε, o} be two modi�ers. For every deterministic bu-w-tt M1, for which there
exists a family of mod1-translation mappings, we can construct another deterministic bu-w-tt M2

computing the mod2-t-ts transformation τmod2
M2

= τmod1
M1

. Due to the periodicity and commutativity
of the monoid A and the determinism ofM1 we can encode the current weight in the current state.
This way we can de�ne the weight of the transitions using the weight of the subcomputations.

4.11 Lemma (Periodic and commutative monoids)
Let A = (A,�,1,0) be a periodic and commutative monoid and mod1,mod2 ∈ {ε, o} be two
modi�ers. Moreover, let M1 = (Q1,Σ,∆,A, F1, δ1, µ1) be a deterministic bu-w-tt obeying all
the restrictions of π ∈ Π \ Πh. Whenever there exists a family of mod1-translation mappings
fM1,mod1 = ( fkM1,mod1

)k∈N, there also exists a deterministic bu-w-ttM2 = (Q2,Σ,∆,A, F2, δ2, µ2)
obeying the restrictions of π such that τmod1

M1
= τmod2

M2
.
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Proof. If mod1 = mod2, then the statement becomes trivial. So it remains to prove the property
for distinct mod1 and mod2. Let

C = { ((µ1)kσ(q1, . . . , qk), t) | k ∈ N, σ ∈ Σ(k), q1, . . . , qk ∈ Q, t ∈ supp((µ1)kσ(q1, . . . , qk)) } ∪ {0}

be the �nite set of monoid elements occuring in the monomials in the range of µ1. Since A is
periodic and commutative, we conclude that 〈C〉� is �nite. We construct the bu-w-tt M2 by
setting the set Q2 of states to Q2 = Q1 × 〈C〉� and the set F2 of �nal states to F2 = F1 × 〈C〉�.
Moreover, let k ∈ N be an integer, σ ∈ Σ(k) be an input symbol, q1, . . . , qk ∈ Q1 be k states, and
a1, . . . , ak ∈ 〈C〉� be k submonoid elements. Now we de�ne the submonoid element a and the
monomial m as follows. If (µ1)kσ(q1, . . . , qk) = 0̃ or for some index i ∈ [k] we have ai = 0, then let
a = 0 and m = 0̃. Otherwise suppose that (µ1)kσ(q1, . . . , qk) = a0 t for some non-zero submonoid
element a0 ∈ C \ {0} and output tree t ∈ T∆(Xk) and let

a =

{
a0 � a1 � · · · � ak , if mod1 = ε

a0 � a
|t|x1
1 � · · · � a|t|xk

k , if mod1 = o

and m =
(
fkM1,mod1

(t, 1, a1)� · · · � fkM1,mod1
(t, k, ak)� a0

)
t. Clearly, a ∈ 〈C〉�, so we let

(δ2)kσ((q1, a1), . . . , (qk, ak)) = ((δ1)kσ(q1, . . . , qk), a),
(µ2)kσ((q1, a1), . . . , (qk, ak)) = m.

Obviously, M2 is non-deleting (likewise linear and total, respectively), if M1 is non-deleting
(likewise linear and total, respectively). Let s ∈ TΣ be an input tree. Finally, suppose that
µ̂1mod1

(s) = a t for some submonoid element a ∈ 〈C〉� and output tree t ∈ T∆. We show that the
following equalities hold.

µ̂2mod2
(s) = µ̂1mod1

(s) and δ̂2(s) = (δ̂1(s), a).

Induction base: Let the input tree be s = α with α ∈ Σ(0). Then

µ̂2mod2
(s) = (µ2)0α() = (µ1)0α() = µ̂1mod1

(s).

Moreover, δ̂2(s) = (δ2)0α() = ((δ1)0α(), a′) = (δ̂1(s), a′) where

a′ =

{
0 , if supp((µ1)0α()) = ∅
((µ1)0α, t

′) , if supp((µ1)0α()) = {t′}

=

{
0 , if supp(µ̂1mod1

) = ∅
(µ̂1mod1

, t′) , if supp(µ̂1mod1
) = {t′}

= a.

Induction step: Let the input tree be s = σ(s1, . . . , sk) for some k ∈ N+, input symbol σ ∈ Σ(k),
and input subtrees s1, . . . , sk ∈ TΣ. Then we have

µ̂2mod2
(s) = (µ2)kσ(δ̂2(s1), . . . , δ̂2(sk))

mod2←− (µ̂2mod2
(s1), . . . , µ̂2mod2

(sk))

= (µ2)kσ(δ̂2(s1), . . . , δ̂2(sk))
mod2←− (µ̂1mod1

(s1), . . . , µ̂1mod1
(sk)).

Let µ̂1mod1
(si) = ai ti for some output tree ti ∈ T∆ and every index i ∈ [k] . By induction

hypothesis we have further that δ̂2(si) = (δ̂1(si), ai).

Case 1: In the �rst case let (µ1)kσ(δ̂1(s1), . . . , δ̂1(sk)) = 0̃ or for some index i ∈ [k] let ai = 0. Then
by construction we obtain (µ2)kσ(δ̂2(s1), . . . , δ̂2(sk)) = 0̃. Hence µ̂1mod1

(s) = 0̃ = µ̂2mod2
(s).
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Case 2: Let a0 ∈ C \ {0} be a non-zero submonoid element and t′ ∈ T∆(Xk) be an output tree
such that (µ1)kσ(δ̂1(s1), . . . , δ̂1(sk)) = a0 t

′. We deduce

µ̂2mod2
(s) = (µ2)kσ(δ̂2(s1), . . . , δ̂2(sk))

mod2←− (µ̂1mod1
(s1), . . . , µ̂1mod1

(sk))

= (µ2)kσ((δ̂1(s1), a1), . . . , (δ̂1(sk), ak))
mod2←− (µ̂1mod1

(s1), . . . , µ̂1mod1
(sk))

=
( ∏
i∈[k]

fkM1,mod1
(t′, i, ai)� a0

)
t′

mod2←− (µ̂1mod1
(s1), . . . , µ̂1mod1

(sk))

=
( ∏
i∈[k]

fkM1,mod1
(t′, i, ai)� a0 � am1

1 � · · · � amk

k

)
t′[t1, . . . , tk]

=
( ∏
i∈[k]

(fkM1,mod1
(t′, i, ai)� ami

i )� a0

)
t′[t1, . . . , tk]

where for every index i ∈ [k] we let

mi =

{
1 , if mod2 = ε

|t′|xi , if mod2 = o
.

Recall that our general assumption was mod1 6= mod2, so we now distinguish two cases, in each of
which we take a closer look at the product fkM1,mod1

(t′, i, ai)� ami
i for every index i ∈ [k]. Firstly,

let mod1 = ε. Then fkM1,ε
(t′, i, ai) � a

|t′|xi
i = ai by De�nition 4.10(ii). On the other hand, let

mod1 = o. Immediately we obtain fkM1,o
(t′, i, ai) � ai = a

|t′|xi
i by De�nition 4.10(iii). Hence we

continue with

µ̂2mod2
(s) =

( ∏
i∈[k]

(fkM1,mod1
(t′, i, ai)� ami

i )� a0

)
t′[t1, . . . , tk]

= a0 t
′ mod1←− (a1 t1, . . . , ak tk)

= (µ1)kσ(δ̂1(s1), . . . , δ̂1(sk))
mod1←− (µ̂1mod1

(s1), . . . , µ̂1mod1
(sk))

= µ̂1mod1
(s).

This concludes the proof of the �rst property.
Let µ̂1mod1

(s) = a t for some submonoid element a ∈ 〈C〉� and output tree t ∈ T∆. Thus it

remains to show that δ̂2(s) = (δ̂1(s), a). In a straightforward manner we derive

δ̂2(s) = (δ2)kσ(δ̂2(s1), . . . , δ̂2(sk)) = (δ2)kσ((δ̂1(s1), a1), . . . , (δ̂1(sk), ak))
= ((δ1)kσ(δ̂1(s1), . . . , δ̂1(sk)), a

′) = (δ̂1(s), a′),

where a′ = 0, if (µ1)kσ(δ̂1(s1), . . . , δ̂1(sk)) = 0̃ or for some index i ∈ [k] we have ai = 0. Hence
a′ = a. Otherwise let (µ1)kσ(δ̂1(s1), . . . , δ̂1(sk)) = a0 t

′ for some non-zero submonoid element
a0 ∈ C \ {0} and output tree t′ ∈ T∆(Xk). Consequently,

a′ =

{
a0 � a1 � · · · � ak , if mod1 = ε

a0 � a
|t′|x1
1 � · · · � a|t

′|xk

k , if mod1 = o
.

Hence µ̂2mod2
(s) = µ̂1mod1

(s) = a′ t′[t1, . . . , tk] and a = a′, which concludes the proof of the
statement. �

The next corollary shows that in case we have a non-deleting (likewise linear) determinis-
tic bu-w-tt, then we can specify a family of mod-translation mappings with mod = o (likewise
mod = ε) and then apply the previous lemma to obtain an inclusion result.
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4.12 Corollary (Non-deletion and linearity in periodic and commutative monoids)
Let A = (A,�,1,0) be a periodic and commutative monoid and mod1,mod2 ∈ {ε, o} be two
modi�ers. We have π�BOTmod1(A) ⊆ π�BOTmod2(A) for every π ∈ P where

P =

{
Πn \Πh , if mod1 = o

Πl \Πh , if mod1 = ε
.

Proof. Trivially the statement holds, if mod1 = mod2. Thus assume that mod1 and mod2 are
distinct.

Case 1: Let mod1 = o and τo ∈ π�BOTo(A) for some π ∈ Πn \ Πh. Consequently, there exists a
non-deleting deterministic bu-w-ttM1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the restrictions of π such
that τoM1

= τo. Moreover, let fM1,o = ( fkM1,o
)k∈N be the family of mappings

fkM1,o :
( ⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)kσ(q1, . . . , qk))
)
× [k]×A −→ A

de�ned for every integer k ∈ N, output tree t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)kσ(q1, . . . , qk)), i ∈ [k],
and a ∈ A by

fkM1,o(t, i, a) =

{
0 , if a = 0
a|t|xi

−1 , otherwise
.

Each mapping fkM1,o
(t, i, a) is well-de�ned, because by the non-deletion restriction we have 1 ≤ |t|xi

for every output tree t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)kσ(q1, . . . , qk)) and index i ∈ [k]. Conse-
quently, the exponent is non-negative in the de�nition of fkM1,o

(t, i, a). Moreover, fM1,o is trivially
a family of o-translation mappings. Thus, due to Lemma 4.11, there exists a non-deleting determin-
istic bu-w-ttM2 obeying the restrictions of π such that τM2 = τo. Hence π�BOTo(A) ⊆ π�BOT(A)
for every π ∈ Πn \Πh.

Case 2: Secondly, let mod1 = ε and τ ∈ π�BOT(A) for some π ∈ Πn \ Πh. Consequently, there
exists a linear deterministic bu-w-tt M1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the restrictions of π
such that τM1 = τ . Moreover, let fM1,ε = ( fkM1,ε

)k∈N be the family of mappings

fkM1,ε :
( ⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)kσ(q1, . . . , qk))
)
× [k]×A −→ A

de�ned for every integer k ∈ N, output tree t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)kσ(q1, . . . , qk)), i ∈ [k],
and a ∈ A by

fkM1,ε(t, i, a) =

{
0 , if a = 0
a1−|t|xi , otherwise

.

Each mapping fkM1,ε
(t, i, a) is well-de�ned, because by the linearity restriction we have |t|xi ≤ 1 for

every output tree t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)kσ(q1, . . . , qk)) and index i ∈ [k]. Consequently,
the exponent is non-negative in the de�nition of fkM1,ε

(t, i, a). Moreover, fM1,ε is obviously a
family of translation mappings. Thus there exists a linear deterministic bu-w-tt M2 obeying the
restrictions of π such that τoM2

= τ due to Lemma 4.11. Hence π�BOT(A) ⊆ π�BOTo(A) for every
π ∈ Πn \Πh. �

These are all the non-trivial inclusion results we are able to prove without requiring further prop-
erties of the monoid. So it remains to show incomparability results similar to Lemma 4.7. We start
by showing that as long as the monoid is not regular, there exists a non-deleting homomorphism
bu-w-tt computing a t-ts transformation, which cannot be computed by a deterministic bu-w-tt as
o-t-ts transformation. We �nally note that periodicity is not even required for the proof, which is
similar to the proof of the corresponding statement in non-periodic semirings (cf. Lemma 4.7).
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4.13 Lemma (Non-deleting homomorphism bu-w-tt in non-regular monoids)
Let A = (A,�,1,0) be a commutative monoid which is not regular.

hn�BOT(A) 6⊆ d�BOTo(A)

Proof. Since the monoid A is not regular, there exists an element a ∈ A such that there is no
b ∈ A with b�a2 = a. Let M1 = ({?},Γ,Σ,A, {?}, δ1, µ1) be the homomorphism bu-w-tt speci�ed
by the input ranked alphabet Γ = {γ(1), α(0)}, output ranked alphabet Σ = {σ(2), α(0)}, transition
mappings δ1 = ((δ1)1γ , (δ1)

0
α), and output mappings µ1 = ((µ1)1γ , (µ1)0α).

(δ1)1γ(?) = (δ1)0α() = ? , (µ1)1γ(?) = 1 σ(x1, x1) , (µ1)0α() = a α.

Clearly, M1 is a non-deleting homomorphism bu-w-tt, so τ = τM1 ∈ hn�BOT(A). For every input
tree s ∈ TΓ let ts ∈ TΣ be the fully balanced output tree such that the heights of the trees s and ts
are equal. An easy calculation yields that for every input tree s ∈ TΓ the equality τ(s) = a ts
holds.

Next we prove that τ /∈ d�BOTo(A). In order to derive a contradiction assume that there is
a deterministic bu-w-tt M2 = (Q2,Γ,Σ,A, F2, δ2, µ2) such that τoM2

= τ . Since for every s ∈ TΓ

it holds that τ(s) 6= 0̃ and M2 has only a �nite set Q2 of states, there must exist a �nal state
q ∈ F2 such that for two distinct input trees s1, s2 ∈ TΓ, i.e., s1 6= s2, we have δ̂2(s1) = q = δ̂2(s2).
Consequently, τoM2

(si) = µ̂2o(si) for every index i ∈ [2]. Moreover, also δ̂2(γ(si)) ∈ F , hence

τoM2
(γ(si)) = µ̂2o(γ(si)) = (µ2)1γ(δ̂2(si))

o←− (µ̂2o(si)) = (µ2)1γ(q)
o←− (τ(si)).

Trivially, (µ2)1γ(q) 6= 0̃, otherwise τoM2
(γ(si)) = 0̃. Let (µ2)1γ(q) = b t for some monoid element

b ∈ A and output tree t ∈ TΣ(X1). Moreover, recall that τ(si) = a tsi
. We can readily conclude

that t = σ(x1, x1), else either t[ts1 ] or t[ts2 ] is not fully balanced or height(t[tsi ]) 6= height(si) + 1
for some index i ∈ [2]. We continue with

τoM2
(γ(si)) = (µ2)1γ(q)

o←− (τ(si)) = b σ(x1, x1)
o←− (a tsi) = (b� a2) σ(tsi , tsi).

According to τoM2
= τ , we also derive

τoM2
(γ(si)) = (b� a2) σ(tsi , tsi) = a σ(tsi , tsi) = τ(γ(si)).

Consequently, we should have b�a2 = a, but the element a was chosen such that this is impossible.
Thus we arrived at a contradiction which yields τ /∈ d�BOTo(A). �

Secondly, we show that there exists an o-t-ts transformation τ computed by a linear homomor-
phism bu-w-tt such that there exists no deterministic bu-w-tt computing τ as t-ts transformation
unless A = (A,�,1,0) is actually a group with an absorbing element 0.

4.14 Lemma (Linear homomorphism bu-w-tt in non-group monoids)
Let A = (A,�,1,0) be a commutative monoid which is no group.

hl�BOTo(A) 6⊆ d�BOT(A)

Proof. The monoid A is no group, hence there exists a monoid element a ∈ A\{0}, which cannot
be inverted, i.e., there is no element b ∈ A such that b�a = 1. LetM1 = ({?},Γ,Γ,A, {?}, δ1, µ1) be
the homomorphism bu-w-tt speci�ed by the ranked alphabet Γ = {γ(1), α(0)}, transition mappings
δ1 = ((δ1)1γ , (δ1)

0
α), and output mappings µ1 = ((µ1)1γ , (µ1)0α).

(δ1)1γ(?) = (δ1)0α() = ? , (µ1)1γ(?) = 1 α , (µ1)0α() = a α.

Clearly, M1 is a linear homomorphism bu-w-tt, thus τo = τoM1
∈ hl�BOTo(A). A straightforward

calculation yields τo(α) = a α and for every other input tree s ∈ TΓ \ {α} the equality τo(s) = 1α
holds.
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Next we prove that τo /∈ d�BOT(A). For a contradiction assume that there exists a deterministic
bu-w-tt M = (Q2,Γ,Γ,A, F2, δ2, µ2) such that τM2 = τo. Obviously,

a α = τo(α) = τM2(α) = µ̂2(α) = (µ2)0α().

Since we also have τo(γ(α)) = 1 α we immediately obtain

τM2(γ(α)) = µ̂2(γ(α)) = (µ2)1γ(δ̂2(α))←− (µ̂2(α)) = (µ2)1γ((δ2)
0
α())←− (a α)

= b t←− (a α) = (b� a) t[α]

for some element b ∈ A and output tree t ∈ TΓ(X1). Moreover, we have that (b � a) t[α] = 1 α,
hence b� a = 1. Contrary, the element a was chosen such that such an element b does not exist.
Thus we derived the desired contradiction and conclude τo /∈ d�BOT(A). �

We have already seen in Lemma 4.13 that the class of all t-ts transformations computed by non-
deleting homomorphism bu-w-tt is not contained in the class of all o-t-ts transformations computed
by deterministic bu-w-tt as long as the monoid A is not regular, i.e., hn�BOT(A) 6⊆ d�BOTo(A).
It is furthermore clear that the class of all o-t-ts transformations computed by non-deleting
homomorphism bu-w-tt is properly contained in the class of all t-ts transformations computed
by deterministic bu-w-tt due to Corollary 4.12 (on periodic and commutative monoids), i.e.,
hn�BOTo(A) ⊆ d�BOT(A). However, the relation between the class of o-t-ts transformations
computed by non-deleting homomorphism bu-w-tt and the class of t-ts transformations computed
by non-deleting homomorphism bu-w-tt is yet unsettled. The next lemma will solve this question
for all non-idempotent monoids.

4.15 Lemma (Non-deleting homomorphism in non-idempotent monoids)
Let A = (A,�,1,0) be a non-idempotent monoid.

hn�BOTo(A) 6⊆ h�BOT(A)

Proof. Let a ∈ A \ {0,1} be a monoid element such that a � a 6= a. Such an element ex-
ists due to the assumption that A is non-idempotent. Moreover, let Γ = {γ(1), α(0), β(0)} and
Σ = {σ(2), α(0)} be ranked alphabets and M1 = ({?},Γ,Σ,A, {?}, δ1, µ1) be the non-deleting
homomorphism bu-w-tt with δ1 = ((δ1)1γ , (δ1)

0
α, (δ1)

0
β) and µ1 = ((µ1)1γ , (µ1)0α, (µ1)0β) speci�ed by

(δ1)1γ(?) = (δ1)0α() = (δ1)0β() = ? , (µ1)1γ(?) = 1 σ(x1, x1) , (µ1)0α() = a α , (µ1)0β() = 1 α.

Let τo = τoM1
. Clearly, τo ∈ hn�BOTo(A), and moreover, τo(γ(α)) = a2 σ(α, α) as well as

τo(γ(β)) = 1 σ(α, α).
Now let us prove that τo /∈ h�BOT(A). We prove this statement by contradiction, so assume

that there exists a homomorphism bu-w-tt M2 = ({?},Γ,Σ,A, {?}, δ2, µ2) such that τM2 = τo.
Trivially, δ2 = δ1 and µ2 = ((µ2)1γ , (µ2)0α, (µ2)0β) with

(µ2)1γ(?) = c t , (µ2)0α() = a α , (µ2)0β() = 1 α

for some monoid element c ∈ A and output tree t ∈ TΣ(X1). Moreover, we readily observe
t = σ(x1, x1). Consequently, τM2(γ(α)) = (c � a) σ(α, α) and τM2(γ(β)) = c σ(α, α). Thus we
obtain the equalities c = 1 and c� a = a2, which yield a = a2. Contrary, a ∈ A was chosen such
that a 6= a2. Thus we derived the desired contradiction and conclude that τo /∈ h�BOT(A). �

4.16 Corollary (Corollary of Lemma 4.15)
If and only if hn�BOTo(A) = hn�BOT(A) then A is idempotent.

Proof. The equality in idempotent monoids is proved in Corollary 4.22 and Lemma 4.15 proves
the inequality in all non-idempotent monoids. �
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d do

dn dlo

dno dl

dt dnl= dto

dnt dlto

dnto dlt

h dnlt= ho

hn hno hl hlo

hnl=

Figure 3: Inclusion diagram for periodic, commutative, and non-regular monoids.

Finally, we are able to present the inclusion diagram for periodic and commutative monoids A,
which are not regular. The latter restriction assures that A is also neither idempotent nor a group.
Those cases will be handled in subsequent subsections.

4.17 Theorem (Periodic, commutative, and non-regular monoids)
Let A = (A,�,1,0) be a periodic, commutative, and non-regular monoid with an absorbing ele-
ment 0. Figure 3 is the inclusion diagram of the displayed classes of t-ts and o-t-ts transformations
ordered by set inclusion.

Proof. All the inclusions are either trivial or follow from Corollary 4.12, whereas the equalities
are due to Observation 4.4. Then the following eight statements are su�cient to prove strictness
and incomparability. For every modi�er mod ∈ {ε, o}

(i) dnlt�BOT(A) 6⊆ h�BOTmod(A), (ii) dnl�BOT(A) 6⊆ dt�BOTmod(A),
(iii) hn�BOTo(A) 6⊆ dl�BOTo(A), (iv) hl�BOT(A) 6⊆ dn�BOT(A),
(v) hn�BOT(A) 6⊆ d�BOTo(A), (vi) hl�BOTo(A) 6⊆ d�BOT(A),
(vii) hn�BOTo(A) 6⊆ h�BOT(A), (viii) hl�BOT(A) 6⊆ h�BOTo(A).

The non-inclusions (i) � (iv) are proved in Corollary 4.3, whereas we obtain non-inclusion (v)
from Lemma 4.13, non-inclusion (vi) from Lemma 4.14, non-inclusion (vii) from Lemma 4.15, and
non-inclusion (viii) from Lemma 4.5. �

4.4 Periodic, commutative, and regular monoids

In this subsection we consider monoids A = (A,�,1,0) which are periodic, commutative, and
regular. An example of a periodic, commutative, and regular monoid which is not idempotent and
neither a group is Z6. Speci�cally the regularity allows us to derive more inclusion results. The
next corollary states this formally. Roughly speaking the classes of t-ts transformations become
subsets of the corresponding classes of o-t-ts transformations, except for the classes bearing the
homomorphism restriction.
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4.18 Corollary (Periodic, commutative, and regular monoids)
Let A = (A,�,1,0) be a periodic, commutative, and regular monoid. Then for every π ∈ Π \ Πh

we have π�BOT(A) ⊆ π�BOTo(A).

Proof. Let τ ∈ π�BOT(A) for some π ∈ Π \ Πh. Consequently, there exists a deterministic
bu-w-tt M1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the restrictions of π such that τM1 = τ . Moreover,
let fM1,ε = ( fkM1,ε

)k∈N be the family of mappings

fkM1,ε :
( ⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)kσ(q1, . . . , qk))
)
× [k]×A −→ A

de�ned for every integer k ∈ N, output tree t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)kσ(q1, . . . , qk)), i ∈ [k],
and a ∈ A by

fkM1,ε(t, i, a) =


0 , if a = 0
a , if a 6= 0, |t|xi = 0
b|t|xi

−1 , otherwise

,

where b ∈ A is such that a2�b = a. Such an element b ∈ A exists for every a ∈ A due to regularity.
Each mapping fkM1,ε

(t, i, a) is well-de�ned, because in the case distinction every exponent is
non-negative in the de�nition of fkM1,ε

(t, i, a). Moreover, it is straightforward to prove that fM1,ε

is a family of translation mappings for M1. Thus, due to Lemma 4.11, there exists a deterministic
bu-w-tt M2 obeying the restrictions π such that τoM2

= τ . Hence π�BOT(A) ⊆ π�BOTo(A) for
every π ∈ Π \Πh. �

Since we cannot apply Lemma 4.13 to show that the classes of t-ts and o-t-ts transformations
computed by non-deleting homomorphism bu-w-tt are incomparable, but Lemma 4.15 already
delivers one half, we establish the remaining half in the next lemma.

4.19 Lemma (Non-deleting homomorphisms in regular and non-idempotent monoids)
Let A = (A,�,1,0) be a commutative and regular, but non-idempotent monoid.

hn�BOT(A) 6⊆ h�BOTo(A)

Proof. Since A is not idempotent, but regular, there exist monoid elements a, b ∈ A \ {0,1} such
that a 6= a2 and a2 � b = a. Let Γ = {γ(1), α(0)} and Σ = {σ(2), α(0)} be ranked alphabets and
M1 = ({?},Γ,Σ,A, {?}, δ1, µ1) be the non-deleting homomorphism bu-w-tt speci�ed by

(δ1)1γ(?) = (δ1)0α() = ? , (µ1)1γ(?) = a σ(x1, x1) , (µ1)0α() = b α.

Let τ = τM1 . Clearly, τ ∈ hn�BOT(A), and moreover, τ(γ(α)) = (a� b) σ(α, α),

τ(γ2(α)) = a σ(σ(α, α), σ(α, α)) , τ(γ3(α)) = a2 σ(σ(σ(α, α), σ(α, α)), σ(σ(α, α), σ(α, α))).

Now let us prove that τ /∈ h�BOTo(A). We prove this statement by contradiction, so assume
that there exists a homomorphism bu-w-tt M2 = ({?},Γ,Σ,A, {?}, δ2, µ2) such that τoM2

= τ .
Trivially, δ2 = δ1, (µ2)1γ(?) = ct, and (µ2)0α() = bα for some monoid element c ∈ A and output tree
t ∈ TΣ(X1). Moreover, we readily observe t = σ(x1, x1), otherwise supp(τoM2

(γ(α))) 6= {σ(α, α)}
or supp(τoM2

(γ2(α))) 6= {σ(σ(α, α), σ(α, α))}. Hence τoM2
(γ(α)) = (b2 � c) σ(α, α),

τoM2
(γ2(α)) = (b4 � c3) σ(σ(α, α), σ(α, α))

τoM2
(γ3(α)) = (b8 � c7) σ(σ(σ(α, α), σ(α, α)), σ(σ(α, α), σ(α, α))).

Thus we obtain the equalities

b2 � c = a� b , b4 � c3 = a , b8 � c7 = a2.
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Now we compute as follows

a = b4 � c3 = (b2 � c)� (b2 � c)� c = (a� b)� (a� b)� c = (a2 � b)� b� c = a� b� c

and a2 = b8�c7 = (b4�c3)�(b4�c3)�c = a2�c. Next we multiply the former equation with a which
gives a2 = a2�b�c = a�c and the latter equation with b which yields a = a2�b = a2�b�c = a�c.
Hence a = a2, which is a contradiction, because a was chosen such that a 6= a2. Thus we conclude
that τ /∈ h�BOTo(A). �

do

d dlo

dn= dl

dnl= dto

dt dlto

dnt= dlt

dnlt=

h ho

hn hno hl hlo

hnl=

Figure 4: Inclusion diagram for periodic, commutative, and regular monoids, which are non-
idempotent and no group.

At this point we have all the results necessary to derive the inclusion diagram for periodic,
commutative, and regular monoids, which are neither idempotent nor groups.

4.20 Theorem (Periodic, commutative, and regular monoids)
Let A = (A,�,1,0) be a periodic, commutative, and regular monoid, which is non-idempotent
and no group with an absorbing element 0. Figure 4 is the inclusion diagram of the displayed
classes of t-ts and o-t-ts transformations ordered by set inclusion.

Proof. All the inclusions are either trivial or follow from Corollary 4.12 and Corollary 4.18. The
equalities are due to Observation 4.4, Corollary 4.12 and Corollary 4.18. Then the following seven
statements are su�cient to prove strictness and incomparability. For every two distinct modi�ers
mod1,mod2 ∈ {ε, o}, i.e., mod1 6= mod2,

(i) dnlt�BOT(A) 6⊆ h�BOTmod1(A), (ii) dnl�BOT(A) 6⊆ dt�BOTo(A),

(iii) hn�BOTmod1(A) 6⊆ dl�BOTo(A), (iv) hl�BOT(A) 6⊆ dn�BOT(A),
(v) hl�BOT(A) 6⊆ h�BOTo(A), (vi) hl�BOTo(A) 6⊆ d�BOT(A),

(vii) hl�BOTmod1(A) 6⊆ d�BOTmod2(A).

The non-inclusions (i) � (iv) are proved in Corollary 4.3, whereas non-inclusion (v) follows from
Lemma 4.5, non-inclusion (vi) follows from Lemma 4.14, and non-inclusion (vii) follows from
Lemma 4.15 and Lemma 4.19. �
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4.5 Commutative and idempotent monoids

This subsection is devoted to the study of commutative and idempotent monoids. The monoid
Rmax is an example of such a monoid. Clearly, an = a for every integer n ∈ N+ and element a ∈ A
of such a monoid. Hence we easily derive the following observation.

4.21 Observation (Substitution in idempotent monoids)
Let A = (A,�,1,0) be an idempotent monoid, k ∈ N, and ∆ be a ranked alphabet. For
every non-deleting (in Xk) output tree t ∈ T∆(Xk), monoid element a ∈ A, and monomials
m1, . . . ,mk ∈ A[T∆] we have that

a t←− (m1, . . . ,mk) = a t
o←− (m1, . . . ,mk). �

4.22 Corollary (Corollary of Observation 4.21)
LetA = (A,�,1,0) be an idempotent monoid. Then π�BOTo(A) = π�BOT(A) for every π ∈ Πn.�

These are indeed all the new results necessary to prove the inclusion diagram. Note that
idempotent monoids are trivially regular and periodic, so we apply some of the results derived in
Subsection 4.4.

do

d dlo

dn= dl

dnl= dto

dt dlto

dnt= dlt

dnlt=

h ho

hn= hl hlo

hnl=

Figure 5: Inclusion diagram for commutative and idempotent monoids with at least three elements.

4.23 Theorem (Commutative and idempotent monoids)
Let A = (A,�,1,0) be a commutative and idempotent monoid such that A \ {0,1} 6= ∅. Figure 5
is the inclusion diagram of the displayed classes of t-ts and o-t-ts transformations ordered by set
inclusion.

Proof. All the inclusions are either trivial or follow from Corollary 4.18. The equalities are due
to Observation 4.4 and Corollary 4.22. Then the following six statements are su�cient to prove
strictness and incomparability. For every modi�er mod ∈ {ε, o}

(i) dnlt�BOT(A) 6⊆ h�BOTmod(A), (ii) dnl�BOT(A) 6⊆ dt�BOTo(A),
(iii) hn�BOT(A) 6⊆ dl�BOTo(A), (iv) hl�BOT(A) 6⊆ dn�BOT(A),
(v) hl�BOT(A) 6⊆ h�BOTo(A), (vi) hl�BOTo(A) 6⊆ d�BOT(A).
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The non-inclusions (i) � (iv) are proved in Corollary 4.3, whereas non-inclusion (v) follows from
Lemma 4.5 and non-inclusion (vi) follows from Lemma 4.14. �

4.6 Periodic and commutative groups

Finally, in this last subsection we consider periodic and commutative groups with an absorbing
element 0. For example, the monoid Z3 ful�ls all those restrictions. Note that all such monoids
(except Z2) are non-idempotent. Due to the existence of inverses we can now easily derive a �nal
corollary from Lemma 4.11.

4.24 Corollary (Periodic and commutative groups)
Let A = (A,�,1,0) be a periodic and commutative group and mod1,mod2 ∈ {ε, o} be two
modi�ers. Then π�BOTmod1(A) ⊆ π�BOTmod2(A) for every π ∈ Π \Πh.

Proof. The statement is trivial, if mod1 = mod2. Henceforth let mod1 and mod2 be distinct.
Moreover, let τ ∈ π�BOTmod1(A) for some π ∈ Π \Πh. Consequently, there exists a deterministic
bu-w-ttM1 = (Q1,Σ,∆,A, F1, δ1, µ1) obeying the restrictions of π such that τmod1

M1
= τ . Moreover,

let fM1,mod1 = ( fkM1,mod1
)k∈N be the family of mappings

fkM1,mod1
:

( ⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)kσ(q1, . . . , qk))
)
× [k]×A −→ A

de�ned for every integer k ∈ N, output tree t ∈
⋃
σ∈Σ(k),q1,...,qk∈Q1

supp((µ1)kσ(q1, . . . , qk)), i ∈ [k],
and a ∈ A by

fkM1,mod1
(t, i, a) =


0 , if a = 0
a1−|t|xi , if a 6= 0,mod1 = ε

a|t|xi
−1 , if a 6= 0,mod1 = o

.

Each mapping fkM1,mod1
(t, i, a) is trivially well-de�ned due to the existence of inverses. Moreover,

it is straightforward to prove that fM1,mod1 is a family of mod1-translation mappings. Thus
there exists a deterministic bu-w-tt M2 obeying the restrictions π such that τmod2

M2
= τ due to

Lemma 4.11. Hence π�BOTmod1(A) ⊆ π�BOTmod2(A) for every π ∈ Π \Πh. �

Since we demand that we have at least three elements, our group is non-idempotent which
allows us to reuse some the results of earlier subsections. Finally, we present the last inclusion
diagram.

4.25 Theorem (Periodic and commutative groups with at least three elements)
Let A = (A,�,1,0) be a periodic and commutative group with an absorbing element 0 such
that A \ {0,1} 6= ∅. Figure 6 is the inclusion diagram of the displayed classes of t-ts and o-t-ts
transformations ordered by set inclusion.

Proof. All the inclusions are either trivial or follow from Corollary 4.24. The equalities are
due to Observation 4.4 and Corollary 4.24. Then the following six statements are su�cient to
prove strictness and incomparability. For every two distinct modi�ers mod1,mod2 ∈ {ε, o}, i.e.,
mod1 6= mod2,

(i) dnlt�BOT(A) 6⊆ h�BOTmod1(A), (ii) dnl�BOT(A) 6⊆ dt�BOT(A),

(iii) hn�BOTmod1(A) 6⊆ dl�BOT(A), (iv) hl�BOTmod1(A) 6⊆ dn�BOT(A),

(v) hn�BOTmod1(A) 6⊆ h�BOTmod2(A), (vi) hl�BOTmod1(A) 6⊆ h�BOTmod2(A).

The non-inclusions (i) � (iv) are proved in Corollary 4.3, whereas non-inclusion (v) follows from
Lemma 4.15 and Lemma 4.19 and non-inclusion (vi) follows from Lemma 4.5. �
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d=

dn= dl= dt=

dnl= dnt= dlt= h ho

dnlt= hn hno hl hlo

hnl=

Figure 6: Inclusion diagram for periodic and commutative groups with an absorbing element 0
and at least three elements.
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