
Technische Universität Dresden

Fakultät Informatik

Diplomarbeit
Masters Thesis

von / by

Andreas Maletti

zum Thema / on the topic

“Direct construction and efficiency analysis

for the accumulation technique for
2-modular tree transducers”

Verantwortlicher Hochschullehrer: Prof. Dr.-Ing. habil. Heiko Vogler
Betreuer: Dr.-Ing. Armin Kühnemann,

Dipl. Inf. Janis Voigtländer

Institut: Theoretische Informatik
Professur: Grundlagen der Programmierung

Begonnen am: 23.05.2002
Eingereicht am: 21.11.2002

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Diplomarbeit selbstständig und nur unter
Zuhilfenahme der angegebenen Literatur verfasst habe.

Bannewitz, den 21. November 2002
. .

Andreas Maletti

ii

CONTENTS iii

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Sets . 5
2.2 Relations and mappings . 6
2.3 Closure operators and closure systems . 6
2.4 Alphabets, signatures and algebras . 8
2.5 Term graphs . 10
2.6 Orderings . 12
2.7 Bibliographic remarks . 13

3 Modular tree transducers 14
3.1 Syntax . 14
3.2 Semantics . 17
3.3 Call-by-need derivation relation . 20

4 The construction 26
4.1 Accumulation technique . 26
4.2 Correctness proof . 31

5 A first efficiency analysis 44
5.1 Refinement of the construction . 49
5.2 Proof of efficiency non-deterioration . 63

6 The extended construction 74
6.1 Extended accumulation technique . 77

7 Efficiency analysis revisited 97

8 Comparing the construction 105
8.1 Comparison to the indirect construction of [KGK01] 105
8.2 Comparison to Wadler’s transformation 106

9 The implementation 111
9.1 Installation . 111
9.2 Running the system . 111

10 Conclusions 117
10.1 Future work . 117
10.2 Acknowledgements . 117

iv CONTENTS

1 INTRODUCTION 1

1 Introduction

A central topic in computer science is the development and implementation of algorithms
in order to solve a given problem. The classical approach includes the creation of a
procedure, which if executed step-wise on a designated architecture solves the problem.
Imperative programming languages provide the basis for the notation of such procedures.
However, this approach has several drawbacks, which eventually led to different program-
ming paradigms such as declarative programming, where the programmer provides a de-
scription of the solution, and its instance functional programming, which will be studied
in this thesis.

Functional programming languages describe the solution of a given problem by means
of mathematical functions. It was shown that this approach often yields very elegant and;
utmost important for the industry; short programs 1. Additionally, since the notation is
based on mathematics and thereby enforces rigor, provability of the correctness of pro-
grams is greatly enhanced. In spite of the fact that those programs are run on imperative
architectures and; thus, tend to run slower than their equivalent imperative counterparts;
programs generated by modern compilers for functional programming languages achieve
promising execution speed results 2.

Nevertheless, elegant and modular programs tend to engender inefficiency in terms
of execution speed, because modular solutions combine several solutions to subproblems.
Consequently, intermediate results may occur, which might possibly be avoided by a less
elegant program. Especially, if the intermediate results are (large) structured objects, i.e.
elements of an algebraic data type, their unnecessary creation could amount to a large
share of the total execution time. To counteract that the programmer is forced to fiddle
with his specification, several optimization techniques, which translate given (elegant)
functional programs into equivalent (possibly cryptic) ones; hopefully; with a positive
impact on efficiency, are studied in the literature.

Well-known examples of techniques which eliminate intermediate results include the
Fold-Unfold strategy [BD77], Deforestation [Wad90] and a strategy usually called Accu-
mulation (survey in [Boi91]), which was adapted from imperative programming [Str71]
to functional programming [Bir84]. In [Küh98] the use of tree transducers; language-
theoretic devices; in the field of functional program optimization was exposed, and in
[KGK01] an instance of the accumulation strategy is discussed in the setting of modular
tree transducers. Particularly, this construction provides the basis of this thesis.

The accumulation strategy was applied successfully, i.e. with an efficiency gain, to
many examples, of which the reverse function, which reverses the order of the elements
of a list, is certainly a rather prominent one. A novice in functional programming might
write the following (evident) specification for the reverse function in Haskell [Tho99].

naive_reverse :: [a] -> [a]
1“Description of the results of an experiment in which several conventional programming languages,

together with the functional language Haskell, were used to prototype a Naval Surface Warfare Center
requirement for Geometric Region Servers. The resulting programs and development metrics were reviewed
by a committee chosen by the US Navy. The results indicate that the Haskell prototype took significantly
less time to develop and was considerably more concise and easier to understand than the corresponding
prototypes written in several different imperative languages, including Ada and C++.” in Haskell vs. Ada
vs. C++ vs. Awk vs. ..., An Experiment in Software Prototyping Productivity by Paul Hudak and Mark
P. Jones

2at least when compared to modern object-oriented (imperative) programming languages

2

naive_reverse [] = []
naive_reverse (x:xs) = naive_reverse xs ++ [x]

However evident this solution is, the naive reverse function constitutes an algorithm, which
requires computation time quadratic in the length of the input list. Another script realizing
the reverse function is the following:

reverse :: [a] -> [a]
reverse xs = r xs []

where r :: [a] -> [a] -> [a]
r [] ys = ys
r (x:xs) ys = r xs (x:ys)

In the literature this version is called efficient reverse, since its time complexity is only
linear in the length of the input list. Further, the efficient version can be derived from the
inefficient version by means of the accumulation strategy.

The construction of [KGK01] provides an implementation of the accumulation strategy
in the setting of modular tree transducers [EV91], which exactly characterize the class of
primitive recursive tree translations. Additionally, modular tree transducers naturally
constitute functional programs, so the results gained for modular tree transducers are
readily applicable to restricted functional programs as well.

As already shown in [KGK01], the indirect construction of [KGK01] is able to derive
accumulating programs from particular non-accumulating functional programs, like inef-
ficient reverse. Thereby, the script of inefficient reverse can automatically be translated
into the script of efficient reverse (at least in principle, since polymorphism cannot be
handled). This thesis ought to supply a direct construction for three apparent purposes.

• The direct construction is expected to be faster and to require less memory, since
it avoids the creation of intermediate program scripts. Thus, it is better suited for
integration into an optimizing compiler.

• In order to relate the input and output program with respect to some property,
a direct construction might prove to be beneficial, because the relation may be
established directly without relating the intermediate programs.

• As already noted in [Küh01], the construction can be extended by lifting some of its
restrictions. There is a chance that an indirect construction enforces a certain prop-
erty on the input, which is only required to construct some intermediate program.
Thus, a direct construction might be able to avoid this restriction and, thereby,
broaden the applicability of the construction.

Moreover, two essential properties are usually required for any construction to be
considered for integration into an optimizing compiler. The first of which is the correctness,
i.e. the construction shall preserve the semantics of the input program, and the second
is the non-deterioration (or even gain) of efficiency. While the first property is usually
supplied with the construction, the second one is usually discarded by formal language
theorists. Nonetheless, its importance cannot be denied, since an optimizing compiler
should not replace a program by one with degraded efficiency.

It is common practice to place restrictions on the input programs, such that an effi-
ciency non-deterioration can formally be proven. Another technique is the adaptation of

1 INTRODUCTION 3

the construction in order to avoid the deteriorating effect. The latter approach is used in
this thesis to gain non-deterioration with respect to efficiency, where the number of call-
by-need derivation steps required to reach normal form is used as the measure of efficiency.
This measure is realistic, since many modern functional programming languages employ
call-by-need as derivation strategy.

Thus, roughly speaking the integration of the presented direct construction into an
optimizing compiler is prepared by providing a formal efficiency analysis together with
a sample implementation of the construction in Haskell. The implementation uses a
special markup language, namely Haskell+ as input language, but the implementation
should readily be adaptable to pure Haskell.

Naturally the question arises, whether the presented construction can be extended to
less restricted settings. [Küh01] already pointed out that the construction can be extended
to cope with a restricted form of context information usage. In this thesis the such
extended construction is formally presented and investigated with respect to efficiency.

For example, the construction can afterwards be applied to the following example
program, which sorts the colors in a list according to the stripes of the American flag with
Break denoting the end of a pair of stripes.

data Stripe = Red | White | Break

coll :: [Stripe] -> [Stripe]
coll x = coll’ x []

where coll’ :: [Stripe] -> [Stripe] -> [Stripe]
coll’ [] ys = ys
coll’ (Break : xs) ys = ys ++ coll’ xs []
coll’ (Red : xs) ys = Red : coll’ xs ys
coll’ (White : xs) ys = coll’ xs (White : ys)

However, the gained output program is rather inefficient. A particular cause of inefficiency
can be eliminated, but the general problem remains.

Finally, the thesis relates the gained constructions to similar implementations of the
accumulation strategy. There the main emphasis is laid on the indirect construction of
[KGK01] and the transformation presented in [Wad87].

This thesis is divided into 10 sections. The second section is subdivided into several
subsections; each establishing the basic notions and notations of a particular field of study.
Those notions and notations are used throughout the thesis without providing references to
their definition. Section 3 introduces modular tree transducers as the setting of the thesis
by first defining the syntax and afterwards assigning a formal semantics. Additionally, a
particular derivation relation, namely the call-by-need derivation relation, is defined for
modular tree transducers.

The fourth section contains the main construction of this thesis along with examples
of its application. A subsection is devoted to proving the correctness of the given con-
struction, independently of the indirect construction of [KGK01], which is the basis of our
presented construction. The next section concerns the efficiency effects that appear when
using the construction of the previous section. Therefore, a formal efficiency measure is es-
tablished and the construction is refined to avoid a certain deteriorating effect. Afterwards
correctness of the refined construction is proven as well as efficiency non-deterioration.

4

Section 6 broadens the applicability of the presented construction by allowing a re-
stricted use of context information. Another direct construction is derived by extending
the indirect approach of [KGK01] and composing the several steps to gain the direct con-
struction. We use the correctness results of the several stages in the indirect construction
to gain a correctness proof of the direct construction. In section 7 this extended con-
struction is studied with respect to efficiency. For some; severely restricted; modular tree
transducers we claim efficiency non-deterioration results.

The comparison of the presented constructions to the accumulation techniques found
in the literature is the main topic of section 8. Particularly, we will consider the original
indirect construction of [KGK01] and the accumulation technique of [Wad87]. The imple-
mentations of the constructions presented in this thesis are described and demonstrated
in section 9 and finally section 10 contains acknowledgements and pointers to future work.

2 PRELIMINARIES 5

2 Preliminaries

2.1 Sets

Without delving deeply into set theory as introduced by Cantor 3, we will establish
some basic notions and notations. A set is a collection of distinguishable objects, which
are called elements of that set. Whenever s is an element of a set S, we will write s ∈ S,
otherwise s /∈ S. Two sets S1 and S2 are equal, denoted S1 = S2, if they have exactly
the same elements, hence sets are uniquely identified by enumerating their elements. In
the following we will refer to the set of natural numbers N including 0 and to the set of
positive integers N+.

Given that a set S consists only of the distinguishable elements s1, s2, . . . , sn with
n ∈ N, we will write S = {s1, s2, . . . , sn}, call the set S finite and associate to S the
natural number n called the cardinality of S, denoted by card(S) = n. The set having no
elements is denoted ∅, i.e. card(∅) = 0. We will also use the so-called set building principle
due to Frege 4, which uniquely defines a set S by restricting a set U to all elements u
bearing a property p(u), abbreviated S = {u ∈ U | p(u) } (we will omit U , if and when it
is understood from the context) 5.

S′ is a subset of a set S, denoted S′ ⊆ S, if and only if s ∈ S′ implies s ∈ S. If S′ ⊆ S
and there exists an element s ∈ S with s /∈ S′, then S′ is a proper subset of S, designated
S′ ⊂ S. Since we will often deal with special subsets of the natural numbers N, we are
going to introduce several shorthands, namely [l, u] = {n ∈ N | l ≤ n ≤ u } and [u] = [1, u]
for every l, u ∈ N, thus [0] = ∅. The power set P(S) of a given set S is the set of all
subsets of S defined to be

P(S) = {S′ | S′ ⊆ S }.

For sets S1 and S2 set union (∪) and intersection (∩) shall be defined as usual. In addition
we call two sets S1 and S2 disjoint, whenever S1 ∩ S2 = ∅, and alongside we define the set
difference to be S1 \ S2 = { e ∈ S1 | e /∈ S2 }.

The cartesian product of two sets S1 and S2, designated S1 × S2, is defined to be the
set of all ordered pairs with the first component of S1 and the second of S2, i.e.

S1 × S2 = { (s1, s2) | s1 ∈ S1, s2 ∈ S2 }.

We extend this notion to finitely many sets S1, S2, . . . , Sn with n ∈ N by stating

S1 × S2 × · · · × Sn = { (s1, s2, . . . , sn) | si ∈ Si for every i ∈ [n] }.

In case the sets S1 = S2 = · · · = Sn coincide, we will also use powers, i.e. Sn1 to denote
the n-fold cartesian product of S1, where we set S0

1 = {()}.
Whenever we deal with “incredibly” 6 large collections of objects, we will rather call

them classes to avoid contradictions, and in particular, we use classes of sets, also called
3Georg Cantor. Beiträge zur Begründung der transfiniten Mengelehre [Contributions to the founding

of the theory of transfinite numbers]. Mathematische Annalen 46, 481-512, B. G. Teubner, Leipzig, 1895.
4Gottlob Frege. Grundgesetze der Arithmetik I - begriffsschriftlich abgeleitet [Basic Laws of Arithmetic

I]. H. Pohle, Jena, 1893.
5We are well aware of the fact that unrestricted (e.g. {u | p(u) }) use of this facility may cause contra-

dictions, e.g. Russell’s paradox, but we turn a blind eye to that to avoid cumbersome notions.
6Schoenfield: “sets are intended to be those safe, comfortable classes which are used by mathematicians

in their daily life and work, whereas proper classes are thought of as monstrously large collections which,
if permitted to be sets, would engender contradictions”.

6 2.2 Relations and mappings

families. Nevertheless we use the established notation also for classes with one notable
exception, namely that we will use parentheses for the building principle.

2.2 Relations and mappings

Every subset of D × C for sets D and C is called relation from D to C. If D and C
coincide, then every subset of D2 is also said to be a relation on D. A particular relation
is the identity relation on a set D denoted idD, which is defined by idD = { (d, d) |d ∈ D }.
We will often use pointer-like symbols to denote relations on a set D and write them
infix, i.e. d1 → d2 instead of (d1, d2) ∈→. If a relation → on D admits no infinite chains
d1 → d2 → . . . with di ∈ D for every i ∈ N, then it is called terminating.

Whenever (d, c1), (d, c2) ∈ R with R being a relation from D to C implies c1 = c2, we
will call R a partial mapping from D to C. In the following let f be a partial mapping
from D to C. The domain of f , denoted dom(f) ⊆ D, is the set of all elements d ∈ D
such that there exists an element c ∈ C with (d, c) ∈ f .

For partial mappings we use the established functional notation y = f(x) to denote
(x, y) ∈ f . Furthermore we define f(X) for every subset X ⊆ D to be f(X) = { f(x) |x ∈
X } and consequently the range of f is f(D). In particular, if D = dom(f), then f is said
to be a (total) mapping, designated f : D −→ C.

The mapping f : D −→ C is called:

• surjective, surjection or onto C, if and only if the range of f is C,

• injective or an injection, if and only if f(x) = z and f(y) = z imply x = y, and

• bijective or a bijection, if and only if f is both, a surjection and an injection.

Inversion (f−1(y) = x if and only if f(x) = y) is well-defined, only if f is injective.
Therefore, we define f−1 : C −→ P(D) with f−1(c) = { d ∈ D | f(d) = c }. Note that if
f is injective, then for every c ∈ C : f−1(c) is either empty or a singleton set (a set with
exactly one element).

Using the definition of bijections, we can generalize the notion of cardinality as follows:
The cardinality of two sets S1 and S2 is equal (alternatively S1 and S2 are called equipo-
tent), if and only if there exists a bijection from S1 to S2. A set is countably infinite, if
and only if it is equipotent to the natural numbers. In the following we will often identify
equipotent sets.

For convenience we assume three arbitrary countably infinite, but pairwise disjoint sets
of variables X = {xi | i ∈ N }, Y = { yi | i ∈ N } and Z = { zi | i ∈ N+ } and additionally the
finite subsets Xn = {xi | i ∈ [n] } ⊂ X, Yn = { yi | i ∈ [n] } ⊂ Y and Zn = { zi | i ∈ [n] } ⊂ Z
for every n ∈ N.

2.3 Closure operators and closure systems

A closure operator cl over a set U is a mapping cl : P(U) −→ P(U) with the following
properties:

• Extensionality, i.e. for every U ⊆ U : U ⊆ cl(U),

• Monotonicity, i.e. V ⊆ U ⊆ U implies cl(V) ⊆ cl(U) and

2 PRELIMINARIES 7

• Idempotency, i.e. for every U ⊆ U : cl(U) = cl(cl(U)).

Every set S of subsets of a given set U (S ⊆ P(U)) is called a system over U . For a system
S over U we define intersection and union as follows:⋂

S = {u ∈ U | u ∈ U for every U ∈ S }⋃
S = {u ∈ U | u ∈ U for some U ∈ S }

Consequently a closure system C over U is a system C over the universe U , where the
intersection of each subsystem of C is also in C. It is known, that a closure operator cl
over U uniquely defines a closure system C over U (and vice versa) by stating C = {U ⊆
U | cl(U) = U } 7. Elements of a closure system C are called closed sets, thus for each set
U we have U ∈ C, if and only if cl(U) = U . Given a closure system C over a set U , its
corresponding closure operator cl over U and C ∈ C, we call a subset G ⊆ U a generator
for C, if and only if cl(G) = C. In such a case, C is said to be generated by G.

In order to define some common closures, we first have to introduce two properties
of relations. A relation R on D is called reflexive, if and only if idD ⊆ R, and R is
transitive, if and only if (d1, d2), (d2, d3) ∈ R implies (d1, d3) ∈ R. Furthermore, we
define the composition of a relation R1 from D to C with a relation R2 from C to B as
R1 ◦R2 = { (d, b) ∈ (D ×B) | (d, c) ∈ R1, (c, b) ∈ R2 for some c ∈ C }. For every relation
→ on D we recursively define →0= idD and →n+1 = →n ◦ → for every n ∈ N. Let →
be a relation on a set D, then the reflexive and transitive closure of →, denoted →∗, is
defined →∗=

⋃
n∈N →n, whereas the transitive closure of →, denoted →+, is defined by

→+=
⋃
n∈N+

→n.
To illustrate closure operators, closure systems and the one-to-one correspondence

between them, we study the reflexive closure in some detail. Obviously for every universe
U2 the operator ref : P(U2) −→ P(U2) defined by ref(U) = U∪idU is extensive, monotone
and idempotent. Thus, ref is a closure operator over U2. The closure system corresponding
to ref is defined by

C = {U ⊆ U2 | ref(U) = U } = {U ⊆ U2 | idU ⊆ U }.

Apparently the system C is a closure system, since the intersection of each subsystem is
again an element of C 8. Note C contains every reflexive relation on U . Given this closure
system, we derive the corresponding closure operator clC : P(U2) −→ P(U2) defined for
every U ⊆ U2 by

clC(U) =
⋂
{C ∈ C | U ⊆ C } = idU ∪ U = ref(U).

Evidently the mapping clC , which maps U to the least closed set containing U , is extensive,
monotone and idempotent, and thus a closure operator. Further, note that whenever C
is the closure system corresponding to a closure operator cl, then cl is also the closure
operator corresponding to C.

Again let → be a relation on D, → is called confluent, if and only if for every d, d1, d2 ∈
D with d→∗ d1 and d→∗ d2 there exists d′ ∈ D with d1 →∗ d′ and d2 →∗ d′. Terminating

7cf. Definition 3 of [Wec92]
8The intersection of each subsystem, also

T
∅ = U2, contains at least idU and is thereby an element of

C.

8 2.4 Alphabets, signatures and algebras

and confluent relations are called canonical and admit a normal form nf→(d) for every
element d ∈ D, i.e. there exists a unique element 9 nf→(d) ∈ D such that d →∗ nf→(d)
and there is no d′ ∈ D with nf→(d) → d′ (if some d′′ ∈ D bears the latter property it is
also said to be irreducible with respect to →).

2.4 Alphabets, signatures and algebras

Each non-empty finite set Σ is also called alphabet and its elements are called symbols. A
ranked alphabet or signature is a pair (Σ, ar) consisting of an alphabet Σ and a total map-
ping ar : Σ −→ N associating to every symbol its finite arity. If ar(σ) = n with σ ∈ Σ and
n ∈ N, then the symbol σ has arity n or short: σ is n-ary. We will often treat signatures
like sets and annotate the parenthesized arity of each symbol as a superscript, i.e. instead
of ({σ1, σ2, . . . , σn }, ar) with ar(σi) = ai for every i ∈ [n], where a1, a2, . . . , an ∈ N
with n ∈ N+, we will simply write {σ1

(a1), σ2
(a2), . . . , σn

(an) } and assume the ar-function
as being implicitly given. Furthermore, we define the restriction of a signature (Σ, ar) to
n-ary symbols as Σ(n) = {σ ∈ Σ | ar(σ) = n } for every n ∈ N.

To establish algebras, we define an operation on a set D to be a mapping from Dn

to D, where n ∈ N. In particular, if n = 0, we will call such operations constants and
identify them with elements of D. Additionally, we will refer to unary, if n = 1, binary,
if n = 2, and, generally speaking, to n-ary operations. An algebra is a pair (S, F), where
S is an arbitrary set and F is a family of finitary operations on S. If the operations are
understood from the context, we will simply use S instead of (S, F). Specifically we make
use of monoids, which are algebras (S, (·, 1) with an associative binary operation · on S,
i.e. for every s1, s2, s3 ∈ S the equality (s1 · s2) · s3 = s1 · (s2 · s3) holds, and a constant
1 ∈ S acting as unit element, i.e. for every s ∈ S the equation 1 · s = s · 1 = s holds
[BS81, Wec92].

Given an alphabet Σ the word monoid W (Σ) over Σ is the set of all n-tuples
⋃
i∈NΣi

with n ∈ N of elements of Σ together with the operation of concatenation ◦ usually written
infix, i.e. (u1, . . . , un) ◦ (v1, . . . , vm) = (u1, . . . , un, v1, . . . , vm) for all words (u1, . . . , un) ∈
W (Σ) and (v1, . . . , vm) ∈ W (Σ) with m,n ∈ N. The elements of the word monoid are
called words and the empty word (), which acts as unit element, is often denoted ε.
In addition, we will drop the tuple notation, when considering words and simply write
u1 . . . un instead of (u1, . . . , un) with n ∈ N. Obviously, the length of a word w is n ∈ N,
denoted |w| = n, if and only if w ∈ Σn. A word (u1, . . . , un) ∈W (Σ) with n ∈ N is said to
be a prefix of a word (v1, . . . , vm) ∈ W (Σ) with m ∈ N, if and only if n ≤ m and ui = vi
for every i ∈ [n].

To exactly characterize the arities of the operation symbols, we define Σ-algebras for
a signature Σ to be a pair (J,ΣJ) where J is an arbitrary set called the carrier and
ΣJ = (σJ |σ ∈ Σ) is a family of realizations σJ : Jn −→ J of operation symbols σ ∈ Σ(n)

with n ∈ N. We assume the standard proof principles, especially structural induction on
Σ-algebras, where the abbreviation I.H. shall refer to the local induction hypothesis.

A mapping ψ : S −→ S′ from an Σ-algebra S = (S, (σS |σ ∈ Σ)) to another Σ-algebra
S ′ = (S′, (σS

′ | σ ∈ Σ)) is called homomorphism, if and only if it respects the operations,
i.e. for every n ∈ N, σ ∈ Σ(n) and s1, s2, . . . , sn ∈ S:

ψ(σS(s1, s2, . . . , sn)) = σS
′
(ψ(s1), ψ(s2), . . . , ψ(sn)).

9compare Theorem 2.1.9 in [BN98] and the remarks

2 PRELIMINARIES 9

A homomorphism ϕ : S −→ S is also called endomorphism. Bijective homomorphisms
are called isomorphisms and the corresponding algebras S and S ′ are called isomorphic to
each other, designated S ∼= S ′. We will often identify isomorphic algebras. Additionally
we define the notion of a subalgebra of an algebra (S, F), which is an algebra (S′, F ′) with
S′ ⊆ S and F ′ contains exactly the operations of F but restricted to S′ 10.

The set TΣ(V) of Σ-terms over V with Σ being a signature and V being a set of
variables is the smallest set T ⊆W (Σ ∪ V ∪ { (,) }) such that

• V ⊆ T and

• if σ ∈ Σ(n) with n ∈ N and ξ1, ξ2, . . . , ξn ∈ T , then also (σ ξ1 ξ2 . . . ξn) ∈ T .

We abbreviate the set of ground Σ-terms (or just Σ-terms) TΣ(∅) by TΣ. For the sake
of simplicity we drop outermost parentheses and drop parentheses completely for nullary
symbols, i.e. we will write c instead of (c), whenever c ∈ Σ(0).

Let Σ be a signature and, furthermore, let V be a set of variables. The Σ-term algebra
over V or short just term algebra with carrier J = TΣ(V) is (J, (σJ | σ ∈ Σ)), where
σJ(t1, t2, . . . , tn) = (σ t1 t2 . . . tn) for every σ ∈ Σ(n). Having introduced terms, we define
the following mappings on terms. Note that we will delimit numbers in a sequence by
dots, e.g. 1.2.4 to mean 124 as a word or (1, 2, 4) in the original tuple notation. Let Σ
be a signature and V a set of variables then for every t ∈ TΣ(V) we define the following
mappings.

occ : TΣ(V) −→ P(W (N+)) labelt : occ(t) −→ Σ ∪ V var : TΣ(V) −→ P(V)

For every v ∈ V let:

occ(v) = {ε} labelv(ε) = v var(v) = {v}.

For every t = (σ t1 t2 . . . tn) with σ ∈ Σ(n) with n ∈ N and t1, t2, . . . , tn ∈ TΣ(V) let:

occ(t) = {ε} ∪ { i.π | i ∈ [n], π ∈ occ(ti) }

labelt(π) =

{
labelti(π

′) , if π = i.π′ with i ∈ [n], π′ ∈ occ(ti)
σ , otherwise

var(t) =
n⋃
i=1

var(ti).

Additionally we define t|. : occ(t) −→ TΣ(V) and t[.]. : TΣ(V) × occ(t) −→ TΣ(V) for
every t′ ∈ TΣV to be:

t|ε = t t[t′]ε = t′

and for every n ∈ N, σ ∈ Σ(n), t1, t2, . . . , tn ∈ TΣ(V) and π ∈ occ(σ t1 t2 . . . tn) with
π = i.π′ and i ∈ [n], π′ ∈ occ(ti)

(σ t1 t2 . . . tn)|i.π′ = ti|π′ (σ t1 t2 . . . tn)[t′]i.π′ = (σ t1 . . . ti−1 ti[t′]π′ ti+1 . . . tn).

Finally, for every a ∈ Σ ∪ V we define #a(t) = card({ p ∈ occ(t) | labelt(p) = a }), and
we generalize the previous notation also to #A(t) = card({ p ∈ occ(t) | labelt(p) ∈ A }) for
each A ⊆ Σ ∪ V .

10i.e. for every n-ary operation f of F , we compute the restriction as f ′ = f ∩ (S′)n+1

10 2.5 Term graphs

A (first order term) substitution is a mapping θ : V −→ TΣ(V), where V is a set of
variables and Σ is a signature. As a shorthand we denote a substitution θ by

θ = {v1 7→ t1, v2 7→ t2, . . . , vn → tn},

if and only if θ(vi) = ti with ti ∈ TΣ(V) for every i ∈ [n] with n ∈ N with {v1, v2, . . . , vn} ⊆
V and for every v ∈ V \ {v1, v2, . . . , vn} : θ(v) = v. Occasionally we need to refer to the
set {v1, v2, . . . , vn} according to the above specification as Vθ. Note that a substitution
can uniquely be extended to an endomorphism over the term algebra induced by TΣ(V),
so we can apply substitutions to arbitrary terms of TΣ(V), usually denoted by writing the
substitution as a postfix operator.

2.5 Term graphs

Let Σ be a signature and V be a set of variables. A non-rooted term graph in TΣ(V) 11 is
a triple (N,E, l) with a finite node set N , a partial labelling mapping l from N to Σ and
a partial mapping E from N × N+ to N ordering the successor nodes of a node, where
E(n, i) is defined, if l(n) ∈ Σ(k) with k ∈ N+ and i ∈ [k], and undefined otherwise. A term
graph in TΣ(V) is a quadruple (N,E, l, r), where (N,E, l) is a non-rooted term graph and
r ∈ N is the root node. All notions and notations for non-rooted term graphs extend
naturally to term graphs.

A path p ∈W (N+) connects two nodes n1, n2 ∈ N of a non-rooted term graph (N,E, l),
if and only if either p = ε and n1 = n2, or p = i.p′ with i ∈ N+, p′ ∈ W (N+) and
E(n1, i) = n′ as well as p′ connects n′ and n2. We will denote that p connects n1 and
n2 by n1n2

p. Furthermore, we demand that every non-rooted term graph is acyclic, thus
for every n ∈ N : nnp implies p = ε. To simplify the use of (non-rooted) term graphs,
we refer to the individual components in the specification of a (non-rooted) term graph
G = (N,E, l, r) (non-rooted (N,E, l)) by NG, EG, lG and rG

12. The class of all non-
rooted term graphs in T is designated T Gnr(T) and the class of term graphs in T is denoted
T G(T).

Let G ∈ T G(TΣ(V)). G is said to be connected, if and only if for every node n ∈ NG

there exists p ∈ W (N+) such that rGnp 13. This property allows us to conveniently omit
the root node (in graphical representations) from the specification of a term graph 14. The
set of occurrences occ(G) is defined as occ(G) = { p ∈ W (N+) | rGnp for some n ∈ NG }.
Note that p1, p2 ∈ occ(G) with p1 6= p2 might actually refer to the same node.

Given a non-rooted term graph G ∈ T Gnr(TΣ(V)), a term subgraph of G is a term
graph G′ = (N ′, E′, l′, r′), which fulfills the connectedness property, i.e. N ′ = {n ∈
NG | r′np for some p ∈ W (N+) }, as well as E′ and l′ being restrictions of EG and lG,
respectively. The term subgraph of G with root node n is denoted G|n and, alongside, if
G is a term graph, then we also use G|p for every p ∈ occ(G) to denote (NG, EG, lG)|n
with rGnp 15.

11The term universe TΣ(V) is casually omitted.
12E.g. lG′ refers to the partial labelling mapping of a term graph G′.
13Obviously, we do not define this property for non-rooted term graphs.
14The root can be identified, because there is only one rG ∈ NG with rG /∈ EG(NG ×N+).
15This overloading of G|· should not engender confusion, since it will always be clear the argument is a

node or a path.

2 PRELIMINARIES 11

Let G ∈ T G(TΣ(V)), we define the redirection G[· ; ·] : N2
G −→ T G(TΣ(V)), such

that for every node n1, n2 ∈ NG : G[n1 ; n2] = (NG, E
′, lG, r

′) 16, where

r′ =

{
n2 , if rG = n1

rG , otherwise
and E′(n, i) =

{
n2 , if (n, i) ∈ E−1

G (n1)
EG(n, i) , otherwise

Finally for every a ∈ Σ ∪ V and A ⊆ Σ ∪ V , #a(G) = card({ p ∈ occ(G) | rnp, l(n) = a })
and #A(G) = card({ p ∈ occ(G) | rnp, l(n) ∈ A }) are defined as they are for terms.

The term which corresponds to a given non-rooted term graph G ∈ T Gnr(TΣ(V)) below
n ∈ NG is termG(n), where termG : NG −→ TΣ(NG) 17 is defined recursively by

termG(n) =

{
(lG(n) termG(EG(n, 1)) . . . termG(EG(n, k))) , if lG(n) ∈ Σ(k), k ∈ N
n , otherwise

.

For term graphs G we abbreviate termG(rG) by term(G). Obviously, for a given term
t ∈ TΣ(V) there may exist different term graphs G, such that term(G) = t. We highlight
two representations, namely the tree representation of t, where for every n ∈ NG, p1, p2 ∈
W (N+) with rGnp1 and rGnp2 implies p1 = p2, and the variable-shared term graph, denoted
Gt, where the previous condition holds only for every n ∈ NG with lG(n) defined.

If for two term graphsG1 andG2: term(G1) = term(G2), thenG1 andG2 are bisimular.
Since there is a one-to-one correspondence between terms and tree representations, we also
call G1 and term(G1) bisimular.

In graphical representations we will adopt the following conventions:

1. Nodes are depicted by displaying their label, if we display all ingoing as well as
outgoing edges of that node. Alternatively, we use a small circle to depict a node
and annotate the node and occasionally its label in parentheses next to the circle.

2. Edges are directed from top to bottom unless otherwise specified by arrows.

3. Successors of a node are ordered left to right with ascending order unless numbers
at the edges suggest otherwise.

Given two term graphs G,G′ ∈ T G(TΣ(V)) a term graph homomorphism from G to
G′ is a mapping ψ : NG −→ NG′ with

• for every n ∈ NG : if lG(n) is defined, then lG′(ψ(n)) = lG(n),

• for every n ∈ NG and i ∈ N+ : if EG(n, i) is defined, then EG′(ψ(n), i) = ψ(EG(n, i))
and

• rG′ = ψ(rG).

16Usually we enforce the connectedness property after executing the redirection. Therefore, we remove
every node, for which there is no path from the root to this node. This process is called garbage collection
and abbreviated G.C. Two term graphs G1 and G2 are called equivalent under garbage collection, denoted

G1
G.C.
= G2, if and only if G1|rG1

= G2|rG2
.

17To get a term of TΣ(V), we require another mapping ϕ : NG −→ V , which translates nodes to variables.
If in the second case n is replaced by ϕ(n), then termG,ϕ : NG −→ TΣ(V). However, this mapping is
required only for non-variable shared term graphs.

12 2.6 Orderings

f

x1 g

x1 y1 A

y1

N

n1(f)

n2(g) n3(N)

x1 n4(A)

y1

1 2
3

1
2
3

1

f

g N

x1 A

y1

1
2

3

1
2

3

1

f

g N

x1 A

y1

Figure 1: Tree representation and variable-shared term graphs with various detail levels
for (f x1 (g x1 y1 (A y1))N) ∈ T{f (3),g(3),A(1),N(0)}({x1, y1})

Thus, a term graph homomorphism preserves the root, labels, successors and their order.
Particularly, the term graph homomorphism ψ is non-collapsing, if for every n1, n2 ∈ NG

with lG(n1) and lG(n2) defined: if n1 6= n2, then ψ(n1) 6= ψ(n2).
For two non-rooted term graphsG1 = (N1, E1, l1) andG2 = (N2, E2, l2) with E1(n, i) =

E2(n, i) and l1(n) = l2(n) for every n ∈ N1 ∩ N2 and i ∈ N+, we define the non-rooted
term graph union G1 ∪G2 = (N1 ∪N2, E1 ∪ E2, l1 ∪ l2).

2.6 Orderings

A relation � on D is antisymmetric, if and only if d1 � d2 � d1 implies d1 = d2 for every
d1, d2 ∈ D. A pair (S,�) with S being an arbitrary non-empty set, also called carrier, and
� ⊆ S2 being a reflexive, antisymmetric and transitive relation on S is called a partially
ordered set and � is said to be a partial order. If the partial order is understood from the
context, we will identify the partially ordered set with the carrier set S. Furthermore, in
case all elements s1, s2 ∈ S are comparable, i.e. either s1 � s2 or s2 � s1, then (S,�) is a
totally ordered set (also called chain). Incomparable elements s1, s2 ∈ S are denoted s1‖s2
and the strict ordering corresponding to � is ≺=� \idS .

An element m ∈ S of a partially ordered set (S,�) is defined to be minimal, if and only
if s ∈ S with s � m implies s = m, and, supplementary, we define the least element to be
m, if and only if m � s for every s ∈ S. Maximal elements and the greatest element shall
be defined dually. Further, we note that on totally ordered sets the notions of minimal
and least elements obviously coincide.

Assuming the well-known total order ≤ on the natural numbers, we define minN
for every finite set N ⊂ N to be the minimal element of N with respect to ≤, i.e. for
every n ∈ N , minN ≤ n with minN ∈ N . The maximum maxN shall be defined dually.
Given partially ordered sets (S1,�1) and (S2,�2), we construct the following partial order
called lexicographic ordering on the cartesian product of S1 and S2, i.e. (S1 × S2,�) with
(s1, s2) � (s′1, s

′
2), if and only if s1 ≺1 s

′
1 or both s1 = s′1 and s2 �2 s

′
2. This principle

extends naturally to cartesian products of finitely many sets. Further, we also extend
the lexicographic ordering to words of W (S) for every partial order (S,�) by requiring
that w � w′ with w,w′ ∈ W (S), if and only if either w = ε, or there exist s, s′ ∈ S,
w̄, w̄′ ∈ W (S) such that w = s ◦ w̄, w′ = s′ ◦ w̄′ and either s ≺ s′ or s = s′ and w̄ � w̄′.
We note that the construction of the lexicographic ordering preserves totality, i.e. if the

2 PRELIMINARIES 13

partially ordered sets used as input are totally ordered sets, then the lexicographic ordering
is also totally ordered.

2.7 Bibliographic remarks

Most of the notions and notations of this section are well accepted and usually mathemat-
ical folklore. They can be found similarly in many graduate textbooks of mathematics.
The notations concerning universal algebra were mostly taken out of [Wec92, BS81]. The
subsection on relations introduces notations of [Ave95, BN98, Bün98, Jou93], while the
subsection on term graphs was greatly inspired by notions and notations of [Blo01, Cla96,
BKdV+02]. Many abbreviations are adapted out of [Küh97]. An axiomatic approach to
set theory can be found in [Pot90].

14

3 Modular tree transducers

Aiming towards the optimization of functional programs, we first need to establish a formal
computational model to capture the computation process. Most commonly term rewrit-
ing systems [Ave95, BN98, Bün98], especially the lambda calculus [Bar84] as the most
prominent instance, were proposed as formal models in the literature. However, in this
thesis we will consider restricted term rewrite systems, called modular tree transducers
[EV91]. Originally introduced as a language theoretic device to formally capture the class
of primitive recursive tree functions, Kühnemann in [Küh98] proposed tree transducers
to optimize restricted functional programs by exploiting famous composition and decom-
position results (e.g. [EV91, Küh97]). The particular construction, which is the basis of
our direct construction, on modular tree transducers is studied in [KGK01].

In this section we establish this setting by specifying the syntax of the rewrite rules, also
called equations. Proceeding along, we introduce modular tree transducers and, lastly, we
associate a formal semantics to those devices, thereby defining the computed translation.
Additionally we refine the non-deterministic derivation relation towards a deterministic
one using the call-by-name strategy with variable sharing (together commonly named call-
by-need) to more appropriately model the computation process of lazy modern functional
programming languages (e.g. Haskell [Tho99])

3.1 Syntax

Modular tree transducers are special term rewriting systems and as such they possess
rewrite rules (equations) to control rewriting. The left hand sides of those equations are
linear 18 and non-overlapping 19; those properties will trivially be met in Definition 3.3.
However, the restrictions on the right hand sides will be captured separately in the next
definition. In contrast to macro tree transducers [EV85] 20, a modular tree transducer
partitions its states (function symbols) into modules, where a module contains all rewrite
rules for the function symbols of that particular module.

Definition 3.1 (Modular tree transducer right hand sides). The set of right hand sides
RHS(k, F,m,∆, Vx, Vy) of the module k ∈ N+ is the following set of terms RHS made
of function symbols in the signature F , mapped to modules via m : F −→ N+, and
constructors of the signature ∆ over input subtree variables Vx ⊆ X and output subtree
variables Vy ⊆ Y ∪ Z, such that

• Vy ⊆ RHS,

• for every n ∈ N, δ ∈ ∆(n) and t1, . . . , tn ∈ RHS also (δ t1 . . . tn) ∈ RHS,

• for every n ∈ N, f ∈ F (n+1) with m(f) > k and t, t1, . . . , tn ∈ RHS we have
(f t t1 . . . tn) ∈ RHS,

• for every n ∈ N, f ∈ F (n+1) with m(f) = k and x ∈ Vx, t1, . . . , tn ∈ RHS also
(f x t1 . . . tn) ∈ RHS and

18A certain variable occurs at most once.
19Overlapping would give rise to critical pairs, thus excluding overlaps and enforcing linearity of the left

hand sides immediately enforces confluence [BN98].
20All function symbols of a macro tree transducer occur in the same partition.

3 MODULAR TREE TRANSDUCERS 15

• all elements of RHS can be obtained using a finite number of applications of the
above rules.

Thus RHS(k, F,m,∆, Vx, Vy) ⊆ TF∪∆(Vx∪Vy). Furthermore we define for disjoint function
symbol signatures F1 and F2

RHSF1,F2,∆(Vx, Vy) = RHS(1, F1 ∪ F2,m
′,∆, Vx, Vy),

where m′ is defined by m′(F1) = {1} and m′(F2) = {2}. 2

Compared to [EV91], we defined the admissible right hand sides inductively and, fur-
thermore, defined permissible right hand sides for particular modular tree transducers as
a notational convenience; to be used when dealing with 2-modular tree transducers. The
first parameter of a function symbol is usually called recursion argument, while all other
parameters are called context parameters. Roughly speaking, a right hand side must be a
valid term over the function symbols, constructors and variables with three notable limita-
tions. Namely input subtree variables can only occur as recursion parameters of function
symbols defined in the same module, secondly a module must not call function symbols
(i.e. such function symbols are prohibited to occur) of a module with a lower module
number, and, finally, if a module calls a function symbol defined in the same module, then
the recursion argument is restricted to some input subtree variable.

Example 3.2 (Right hand sides). Figure 2 presents the right hand sides, which are both
right hand sides out of Example 3.4, as trees.

• Let ∆ = {S(1), Z(0)}, F = {fact(1),mult(2), id(1), add(2)} and the module mapping
m shall be defined as follows: m(add) = 3, m(mult) = 2 and m(fact) = m(id) = 1.
Then (

mult (fact x1) (S (id x1))
)
∈ RHS(1, F,m,∆, {x1}, ∅).

• Let ∆ = {S(1), Z(0)}, F1 = {mult(2)} and F2 = {add(2)}. Then(
add y1 (mult x1 y1)

)
∈ RHSF1,F2,∆({x1}, {y1}).

2

Having defined the shape of the right hand sides, we are ready to introduce modular
tree transducers and some syntactic restrictions thereof. Specifically, we will establish the
property of a modular tree transducer being k-modular (i.e. having k ∈ N+ modules), and
in case k = 1 we basically 21 specify a macro tree transducer [EV85]. If, furthermore, all
function symbols of the macro tree transducer have rank 1, we gain the classical top-down
tree transducer [Rou70, Eng75, Tha70].

Since our main interest is functional program optimization, we will immediately re-
strict ourselves to total and deterministic modular tree transducers. Additionally, we
define 1-ary 22 modular tree transducers according to [EV91]. Lastly, there is another
slight difference to the original definition of [EV91], namely we require that input subtree
variables occur only in recursion arguments. This deviation can also be found in [KGK01],
where the implications are mentioned as well 23.

21Macro tree transducers usually endorse a stricter typing by separating input and output signatures.
22We can model k-ary modular tree transducers using the construction in Lemma 5.4 of [EV91].
23Basically we replace a free occurrence of x according to the original definition of [EV91] by (id x),

where id is a function symbol of rank 1 defined in the current module and computes the identity function.

16 3.1 Syntax

Definition 3.3 (Modular tree transducer). A modular tree transducer M is a quintuple
(F,m,∆, e, R), where:

• F is the signature of function symbols with F (0) = ∅,

• m : F −→ N+ is the module mapping associating every function symbol its module
number,

• ∆ is the working symbol signature disjoint to F ,

• e = (f x t1 . . . tn) is the initial expression with the free variable x and ti ∈ T∆ for
each i ∈ [n] with n ∈ N and some f ∈ m−1(1)(n+1) and

• R contains for every k, r ∈ N with f ∈ F (r+1) and δ ∈ ∆(k) exactly one equation:

f(δ x1 x2 . . . xk) y1 y2 . . . yr = rhsM (f, δ),

where rhsM (f, δ) ∈ RHS(m(f), F,m,∆, Xk, Yr).

A modular tree transducer is k-modular, if and only if k = card(m(F)). 1-modular tree
transducers are also called macro tree transducers [EV85] and we will omit the irrelevant
module mapping in this case, gaining (F,∆, e, R). Additionally we define the shorthand
RHSMAC(F,∆, Vx, Vy) = RHS(1, F, { (f, 1) | f ∈ F },∆, Vx, Vy), which is especially useful
with macro tree transducers. 2

Example 3.4 (Modular tree transducer). We define the 3-modular tree transducerMfact =
(F,m,∆, (fact x), R) with

• ∆ = {S(1), Z(0)},

• F = {fact(1),mult(2), id(1), add(2)},

• m(fact) = m(id) = 1, m(mult) = 2 and m(add) = 3 and

• R contains the equations:

fact Z = (S Z) id Z = Z

fact (S x1) = mult (fact x1) (S (id x1)) id (S x1) = S (id x1)

mult Z y1 = Z add Z y1 = y1

mult (S x1) y1 = add y1 (mult x1 y1) add (S x1) y1 = S (add x1 y1).

Intuitively, this modular tree transducer shall compute the factorial of a natural number
given as a term of a successor algebra [Pot90], however, we will not be able to formally
justify this claim till the next subsection. 2

The contribution of this thesis is concerned with 2-modular tree transducers with
restrained modules, hence we introduce the notion of a macro tree transducer module.
Roughly speaking, a macro tree transducer module is just the set of function symbols
of that particular module together with all the equations for those function symbols.
Consequently, a modular tree transducer can be specified by listing all its modules (in
proper sequence) together with an initial expression.

3 MODULAR TREE TRANSDUCERS 17

Additionally, we introduce the notion of a top-down tree transducer module, which is
a module, of which the function symbols have rank 1 solely. Consequently, a top-down
tree transducer module can be seen as a top-down tree transducer [Rou70, Eng75, Tha70]
with external function calls.

Definition 3.5 (Macro tree transducer module). Let M = (F,m,∆, e, R) be a modular
tree transducer, then the n-th macro tree transducer module (or just n-th module) of M
is (F ′, E′,∆, R′), where for some n ∈ m(F) :

• F ′ = m−1(n),

• E′ = { f ∈ F |m(f) > n } and

• R′ = { ρ ∈ R | ρ = (f . . . = . . .), f ∈ m−1(n) }.

E′ is called the set of external function symbols. Specifically, we call a macro tree trans-
ducer module a top-down tree transducer module, if and only if F ′ = F ′(1). 2

Example 3.6 (Macro tree transducer module). The second module of the modular tree
transducer Mfact of Example 3.4 is M = ({mult(2)}, {add(2)},∆, R) with

• ∆ = {S(1), Z(0)} and

• R contains the equations:
mult Z y1 = Z
mult (S x1) y1 = add y1 (mult x1 y1).

Note that the first module of Mfact is indeed a top-down tree transducer module with
external function symbols mult and add, though only the external function symbol mult
is referenced in the right hand sides of its equations. 2

3.2 Semantics

Having settled the syntax of a modular tree transducer, we
mult

fact

x1

S

id

x1

add

y1 mult

x1 y1

Figure 2: Tree represen-
tation for the right hand
sides of Example 3.2

assign a formal semantics to the newly defined construct. Intu-
itively, a modular tree transducer computes by applying rewrite
rules stepwise starting with the instantiated initial expression,
where the free occurrence of the variable x is replaced by a con-
crete input tree. The meaning of this particular input tree is
then defined to be the output tree which is the normal form of
that derivation process. A translation, in the sense of a map-
ping, is only achieved, if for each input tree, the output tree
and thus the normal form exists. In [EV91] exactly this prop-
erty was shown for the non-deterministic derivation relation.

We start by defining the set of sentential forms, of which the elements are the terms
which may be encountered during a derivation. Compared to the definition found in
[EV91], we generalize the notion of a sentential form to include input as well as output
subtree variables at certain positions. In the derivation relation we will instantiate a left
hand side of an equation and replace this instantiated left hand side by the corresponding
instantiated right hand side. To model this process in a uniform framework (where right
hand sides and sentential forms can be treated), we introduce this generalization.

18 3.2 Semantics

Definition 3.7 (Sentential forms). The set of sentential forms SFVx,Vy(M) of a modular
tree transducer M = (F,m,∆, e, R) with input subtree variables of Vx and output subtree
variables of Vy is the set SF, where

• for every k ∈ N, s1, . . . , sk ∈ T∆ ∪ Vx and ξ ∈ RHS(1, F,m,∆, Xk, VY)

ξ{x1 7→ s1, . . . , xk 7→ sk } ∈ SF

• and every element of SF can be derived using the above mentioned rule.

If Vx = Vy = ∅, we will simply write SF(M) instead of SF∅,∅(M). Since for every k ∈ N,
n ∈ N+ with n > 1, grounding substitution θ = {x1 7→ t1, . . . , xk 7→ tk } with t1, . . . , tk ∈
T∆ and rhs ∈ RHS(n, F,m,∆, Xk, VY) : rhsθ ∈ RHS(1, F,m,∆, Xk, VY), the instantiation
of RHS(1, F,m,∆, Xk, VY) is actually sufficient 24. 2

This definition will be illustrated in a more elaborate example following the next def-
inition, whereas each right hand side of Example 3.2 qualifies as an example for the
generalized notion using variables 25. The next step is to fix, how rewriting is applied.
This will be done by defining a derivation relation which is induced by a given modular
tree transducer [EV91]. Finally, we define the semantics of a modular tree transducer as a
mapping (called translation) on terms by relating an input tree and the output tree gained
by rewriting the initial expression with the input tree substituted in to normal form (using
the derivation relation).

Definition 3.8 (Derivation relation and translation). Let M = (F,m,∆, e, R) be a mod-
ular tree transducer. The derivation relation induced by M is the relation ⇒M⊆ SF(M)2

with ξ1, ξ2 ∈ SF(M) and ξ1 ⇒M ξ2, if and only if

1. Locate redex: there exists p ∈ occ(ξ1) with ξ1|p = f (δ s1 . . . sk) t1 . . . tr, where
k, r ∈ N, f ∈ F (r+1), δ ∈ ∆(k), s1, . . . , sk, t1, . . . , tr ∈ SF(M),

2. Build: t = rhsM (f, δ){x1 7→ s1, . . . , xk 7→ sk, y1 7→ t1, . . . , yr 7→ tr }, if R contains
a rule f (δ x1 . . . xk) y1 . . . yr = rhsM (f, δ), and

3. Replace: ξ2 = ξ1[t]p.

The induced translation is the mapping τM : T∆ −→ T∆, defined by

τM (t) = nf⇒M (e{x 7→ t })

for every t ∈ T∆. 2

The next theorem justifies that the translation is a valid mapping.

Theorem 3.9 (Existence and uniqueness of the normal form). For every modular tree
transducer M = (F,m,∆, e, R) the induced derivation relation ⇒M is terminating and
confluent (hence canonical), and admits a unique normal form nf⇒M (ξ) ∈ T∆ for every
ξ ∈ SF(M).

24Obviously, when proving statements over a sentential form, then we will often refer to the cases of
Definition 3.1 of right hand sides. Moreover, we note that input subtree variables can only occur as
recursion arguments of function symbols f with m(f) = 1.

25Both examples are right hand sides of a function symbol f with m(f) = 1, we instantiate using the
identity substitution and, thus gain e.g. (mult (fact x1) (S (id x1))) ∈ SF{x1},∅(Mfact).

3 MODULAR TREE TRANSDUCERS 19

Proof. Immediate from [EV91] and e.g. [BN98].

Example 3.10 (Derivation using Mfact). We assume the modular tree transducer Mfact

of Example 3.4. In Figure 3 we illustrate the connection between the rewrite rules and
their application in a derivation step and, additionally, we provide a complete derivation.
Each term which occurs in the derivation is a sentential form (cf. Definition 3.7), i.e. is
an element of SF(Mfact). In each sentential form (except the normal form) we underlined
the redex, which we found in step 1 of Definition 3.8.

Rewrite rule (equation):

mult

S

x1

y1 =

add

y1 mult

x1 y1

Application of the rewrite rule:

Ω

mult

S

Ψ

Φ

⇒Mfact

Ω

add

Φ
mult

Ψ Φ

Figure 3: Rewrite rule and derivation step compared

fact (S (S Z)) ⇒Mfact
mult (fact (S Z)) (S (id (S Z)))

⇒Mfact
mult (fact (S Z)) (S (S (id Z))) ⇒Mfact

mult (fact (S Z)) (S (S Z))
⇒Mfact

mult (mult (fact Z) (S (id Z))) (S (S Z))
⇒Mfact

mult (mult (S Z) (S (id Z))) (S (S Z))
⇒Mfact

mult (mult (S Z) (S Z)) (S (S Z))
⇒Mfact

mult (add (S Z) (mult Z (S Z))) (S (S Z))
⇒Mfact

mult (S (add Z (mult Z (S Z)))) (S (S Z))
⇒Mfact

mult (S (add Z Z)) (S (S Z)) ⇒Mfact
mult (S Z) (S (S Z))

⇒Mfact
add (S (S Z)) (mult Z (S (S Z))) ⇒Mfact

add (S (S Z)) Z
⇒Mfact

S (add (S Z) Z) ⇒Mfact
S (S (add Z Z))

⇒Mfact
S (S Z)

20 3.3 Call-by-need derivation relation

Indeed the induced translation τMfact
is the following mapping

τMfact
(Sn Z) = (Sn! Z) where for every n ∈ N : (Sn Z) = (S (S (. . . (S︸ ︷︷ ︸

n-times S

Z) . . .))).

Although the induced non-deterministic derivation relation incorporates a so-called
“don’t-care” non-determinism 26 with respect to the gained normal form, the choice of
the redexes (the only non-deterministic part of the process) does affect the number of
derivation steps necessary to reach the normal form. To formally capture the options, we
first introduce the set of redexes of a given sentential form and afterwards highlight the
influence of the choice of redexes on the number of derivation steps on an example.

Definition 3.11 (Set of redexes). Let M = (F,m,∆, e, R) be a modular tree transducer.
We define the set of redexes RM (ξ) ⊆ occ(ξ) for every ξ ∈ SF(M) to be

RM (ξ) = { p ∈ occ(ξ) | labelξ(p) ∈ F, labelξ(p.1) ∈ ∆ }.

2

Example 3.12 (The choice of the redexes matters). Let Mfact be the modular tree trans-
ducer of Example 3.4. Let

ξ1 = mult(mult(SZ)(S(idZ)))(S(SZ)) and ξ2 = mult(add(SZ)(multZ(SZ)))(S(SZ)),

in Example 3.10 we showed that ξ1 ⇒2
M ξ2, but RM (ξ1) = {1, 1.2.1} contains two redexes

and selecting the other redex at position 1 (the redex at position 1.2.1 was chosen in
Example 3.10) yields the partial derivation (chosen redexes underlined):

mult (mult (S Z) (S (id Z))) (S (S Z))
⇒M mult (add (S (id Z)) (mult Z (S (id Z)))) (S (S Z))
⇒M mult (add (S Z) (mult Z (S (id Z)))) (S (S Z))
⇒M mult (add (S Z) (mult Z (S Z))) (S (S Z)).

Obviously this alternative requires 3 derivation steps to gain the same result, hence also
ξ1 ⇒3

M ξ2 and thereby fact (S (S Z)) ⇒15
M S (S Z) and fact (S (S Z)) ⇒16

M S (S Z), if we
draw all other choices as we did in Example 3.10. 2

3.3 Call-by-need derivation relation

In this thesis we want to analyze the efficiency impact of a certain construction, thus we
need an efficiency measure to compare the efficiency of the original modular tree transducer
to the one of the result. An appealing and simple measure of the computation time 27 is
the number of derivation steps needed to compute the normal form. As we have seen in
Example 3.12 the non-deterministic derivation relation seems unfit for this purpose, which

26A “don’t-care” non-determinism offers some choice which does not influence the final result; here:
the normal form. Therefore, the choice does not matter and we “don’t-care”; opposite is a “don’t-know”
non-determinism where the choice might influence the result, so we “don’t-know” which option to choose
to gain the desired result (in the worst case we have to try all options).

27We are not trying to establish a true measure of the computation time consumed on a particular
architecture, rather we search a measure such that the computation time scales according to it.

3 MODULAR TREE TRANSDUCERS 21

is supported by the fact that most implementations use a deterministic derivation relation
by fixing a strategy to locate the redex required in step 1 of Definition 3.8 (e.g. normal
order reduction strategy or applicative order reduction strategy).

Thus, we fix a deterministic derivation relation by selecting the normal order reduction
strategy supplemented by an implementation detail; namely the use of pointers to reference
subterms. The use of pointers avoids an arising cause of inefficiency when applying normal
order reduction strategy: Values which were already computed are recomputed due to a
copied sentential form containing redexes. In Example 3.12 this copying happens in the
first step, where the redex (id Z) is duplicated and evaluated twice independently in the
following steps. Obviously, the duplication was triggered by the non-linearity of the right
hand side of mult at S (cf. Example 3.4), where the context parameter y1 occurs twice.

Implementors opted to reference the subterms matched against the variables in the
derivation step via pointers, instead of copying the matched subterms. This is called
variable sharing and together with the normal order reduction strategy, the such defined
derivation relation is called call-by-need derivation relation [AFM+95, BKdV+02, BW88].
It is implemented in the functional programming language Haskell [Tho99], for example.

The rest of this section is devoted to establishing the call-by-need derivation relation
by introducing sentential form graphs, the set of redexes of a sentential form graph and
finally stating the call-by-need derivation relation.

Definition 3.13 (Sentential form graphs). We define the set SFGVX ,VY (M) for sets VX ⊆
X, VY ⊆ Y ∪ Z and for every modular tree transducer M = (F,m,∆, e, R) by stating

SFGVX ,VY (M) = {Ξ ∈ T G(TF∪∆(VX ∪ VY)) | term(Ξ) ∈ SFVX ,VY (M) }.

As a shorthand we also define SFG(M) = SFG∅,∅(M). 2

We immediately notice that any sentential form of a modular tree transducer M corre-
sponds to a sentential form graph of M by using the tree representation of that sentential
form and exploiting the one-to-one correspondence between terms and tree representa-
tions. We proceed with the definition of the redexes in a given term graph, where also
term graph rewrite rules are introduced. Thereafter, we define the call-by-need derivation
relation.

Definition 3.14 (Set of redexes in a term graph). Let M = (F,m,∆, e, R) be a modular
tree transducer. For each ρ ∈ R with ρ = (lhs = rhs) we denote the variable-shared
term graph rewrite rule corresponding to ρ by the variable-shared term graph Gρ in
TF∪∆∪{=(2)}(var(lhs)) with term(Gρ) = (= lhs rhs). Additionally, as a notational con-
venience we define Gρ,lhs = Gρ|1 and Gρ,rhs = Gρ|2. The set RM (Ξ) ⊆ occ(Ξ) of redexes
in a sentential form graph Ξ ∈ SFG(M) is defined as:

RM (Ξ) = { p ∈ occ(Ξ) | ρ ∈ R, there is a term graph homomorphism ψ from Gρ|1 to Ξ|p }

2

Example 3.15 (Set of redexes in a term graph). Consider the sentential form graph
Ξ ∈ SFG(M) of Figure 4 with a modular tree transducer

M = ({f (3), g(3)},m, {A(1), N (0)}, e, R)

22 3.3 Call-by-need derivation relation

with the equations ρ1 = (f N y1 y2 = N) and ρ2 = (g N y1 y2 = N) in R and m(f) = 1,
m(g) = 2 28. We assume the nodes of Figure 4. Then

RM (Ξ) = {ε, 2}

and the necessary term graph homomorphisms are ψ1 from Gρ1,lhs to Ξ|ε and ψ2 from
Gρ2,lhs to Ξ|2, defined by

ψ1(m1) = n1 ψ1(m2) = n2 ψ1(y1) = n3 ψ1(y2) = n6

and
ψ2(k1) = n3 ψ2(k2) = n2 ψ2(y1) = n5 ψ2(y2) = n4.

One easily verifies that the specified mappings are term graph homomorphisms. 2

n1(f)

n3(g) n6(N)

n2(N) n4(A)

n5(N)

m1(f)

y1 y2

m2(N)

k1(g)

k2(N) y2

y1

Figure 4: A sample sentential form graph Ξ and two term graphs Gρ1,lhs, Gρ2,lhs represent-
ing left hand sides

Definition 3.16 (Call-by-need derivation relation). Let M = (F,m,∆, e, R) be a modular
tree transducer. The call-by-need derivation relation ”| => ”M on sentential form graphs
induced by M relates Ξ1”| => ”MΞ2 for every Ξ1,Ξ2 ∈ SFG(M), if and only if

1. Locate redex: there exists a least element p ∈ RM (Ξ1) with respect to the lex-
icographic ordering on paths, which requires a term graph homomorphism ψ from
Gρ,lhs to Ξ1|p for some ρ ∈ R,

2. Build: letGρ,lhs = (Nlhs, Elhs, llhs, rlhs) andGρ,rhs = (Nrhs, Erhs, lrhs, rrhs) withNrhs∩
NΞ1 = ∅, then G′ = (N ′, E′, l′, rΞ1) is defined as

N ′ = NΞ1 ∪ (Nrhs \Nlhs)

E′(n, i) =


EΞ1(n, i) , if n ∈ NΞ1

Erhs(n, i) , if n,Erhs(n, i) ∈ Nrhs \Nlhs

ψ(Erhs(n, i)) , otherwise

l′(n) =

{
lΞ1(n) , if n ∈ NΞ1

lrhs(n) , otherwise

28The rest of R and e are irrelevant and, therefore, omitted.

3 MODULAR TREE TRANSDUCERS 23

for every n ∈ N ′ and i ∈ N+
29 and

3. Redirect: Ξ2 = G′[ψ(rlhs) ; rrhs], where we ensure the connectedness property,
i.e. trigger garbage collection, if necessary.

Alternatively, Ξ1”| => ”MΞ2, if and only if there exists a least element p ∈ RM (Ξ1)
with respect to the lexicographic ordering on paths, there exists for some ρ ∈ R a non-
collapsing term graph homomorphism ψlhs from Gρ,lhs to Ξ1|p and a non-collapsing term
graph homomorphism ψrhs fromGρ,rhs to Ξ2|p with ψlhs(n) = ψrhs(n) for every n ∈ NGρ,lhs

∩
NGρ,rhs

, and, additionally, there exists a term graph isomorphism$ from Ξ1[ψlhs(rGρ,lhs
) ;

z] to Ξ2[ψrhs(rGρ,rhs
) ; z] 30 for some z /∈ NΞ1 ∪NΞ2 ∪NGρ

31. 2

Example 3.17 (Call-by-need derivation relation). Throughout this example we will use
the modular tree transducer Mfact of Example 3.4.

Term graph rewrite rule:

=

mult add

S mult

x1 y1

Application of the term graph rewrite rule in a derivation step:

n1(mult)

n2(S)

n3 n4

Z⇒Mfact

m1(add)

m2(mult)

n3 n4

mult (S x1) y1 = add y1 (mult x1 y1)

Figure 5: Term graph rewrite rule and call-by-need derivation step

In Figure 5 we try to illuminate the connection between a term graph rewrite rule and
its application in a call-by-need derivation step. The fact that the shown redex is leftmost-
outermost is not displayed and furthermore all edges pointing to n1 are redirected to point
to m1. Figure 6 illustrates the actual four-phase process (locate-redex, build, redirect and
garbage collect) on an example, where the root of the term graphs is framed. Finally
Figure 7 shows part of the call-by-need derivation of fact (S (S Z)). 2

29We assume that the functions are undefined for the given parameters, if none of the above displayed
cases yields a definite result.

30We implicitly perform garbage collection.
31This approach is less constructive and uses the notion of a context, since both Ξ1[ψlhs(rGρ,lhs) ; z] and

Ξ2[ψrhs(rGρ,rhs) ; z] can be interpreted as contexts which do not change (due to the isomorphism). The
matching of the left hand side is performed by the homomorphism ψlhs, while the right hand side matches
with the subgraph Ξ2|p via homomorphism ψrhs. The additional restriction on ψlhs and ψrhs ensures that
variable nodes are instantiated equally.

24 3.3 Call-by-need derivation relation

S

add

mult

S

id

Z

S

S

add add

mult

S

id

Z

S

S

add add

mult

S

id

Z

S

S

add

mult

S

id

Z

Figure 6: Illustrating the stages (locate redex, build, redirect, garbage collect) of the
rewriting process.

We could have introduced another translation, which would be defined by taking the
tree representation of e{x 7→ t } (with e being the initial expression of some modular
tree transducer M = (F,m,∆, e, R) and t ∈ T∆) and computing the normal form of that
tree with respect to the call-by-need derivation relation. The translation would then map
t to the term representation of the normal form. However, we conclude this section by
stating some important properties of the call-by-need derivation relation mainly taken out
of the literature, which specifically ensure that the call-by-need translation coincides with
the non-deterministic translation. Additionally, we compare the call-by-need derivation
relation to the non-deterministic derivation relation in terms of the number of derivation
steps necessary to compute the normal form.

Theorem 3.18 (Soundness and completeness of the call-by-need derivation relation).
Given a modular tree transducer M = (F,m,∆, e, R) we relate ⇒M and ”| => ”M as
follows.

1. ”| => ”M is deterministic, while ⇒M is nondeterministic.

2. ”| => ”M is canonical as well as ⇒M .

3. Soundness: If Ξ1”| => ”MΞ2 for Ξ1,Ξ2 ∈ SFG(M), then term(Ξ1) ⇒+

M term(Ξ2).

4. Completeness: For every ξ ∈ SF(M) and Ξ1 ∈ SFG(M) with term(Ξ1) = ξ, there
exists Ξ2 ∈ SFG(M) such that Ξ1”| => ”∗MΞ2 and term(Ξ2) = nf⇒M (ξ) 32.

5. For every n ∈ N, ξ ∈ SF(M) with ξ ⇒n
M nf⇒M (ξ) and Ξ1 ∈ SFG(M) with

term(Ξ1) = ξ, there exists a unique Ξ2 ∈ SFG(M) such that Ξ1”| => ”mMΞ2 with
m ∈ N with term(Ξ2) = nf⇒M (ξ) and additionally m ≤ n.

Proof. The enumeration refers to the enumeration of the statements above.
32Note, however, that the following property does not hold: for every ξ1, ξ2 ∈ SF(M) with ξ1 ⇒M ξ2 and

Ξ1 ∈ SFG(M) with term(Ξ1) = ξ1, there exists Ξ2 ∈ SFG(M) such that Ξ1”| => ”∗MΞ2 and term(Ξ2) = ξ2.

3 MODULAR TREE TRANSDUCERS 25

fact

S

S

Z

Z⇒Mfact

mult

S

fact id

S

Z

Z⇒Mfact

mult

mult S

S id

fact id S

Z

Z⇒Mfact

mult

mult S

S id

S id S

Z

Z⇒Mfact

mult

add S

mult

S id

id S

Z

Z⇒Mfact

mult

S S

add

mult

S id

id S

Z

Figure 7: Part of the call-by-need derivation of fact (S (S Z))

(1.) The existence of the least element of RM (Ξ) for every Ξ ∈ SFG(M) is guaranteed,
because the lexicographic ordering on paths is total. Thus, only if RM (Ξ) = ∅
we encounter a problem, but then term(Ξ) ∈ T∆, i.e. Ξ is the normal form. The
remaining steps (build, redirect, garbage collect) are obviously deterministic and
uniquely determine a resulting sentential form graph.

(2.–4.) Immediate from [BvEG+87] and Theorem 3.9, since ”| => ”M is the rewrite relation
of a regular term graph rewriting system (using the vocabulary of [BvEG+87]).

(5.) Immediate from (1.), (3.) and (4.).

26

4 The construction

Given a program written in a functional programming language, we want to alter the
program such that the computed function remains the same, but the efficiency of the
program is affected positively (or not affected at all). This section is concerned with the
process of creating another program, which computes the same function as the original
program. In our established setting, programs are modelled by modular tree transducers,
which already constitutes a restriction on the input programs.

In the literature [Boi91, Wad87] a strategy called accumulation is studied. Roughly
speaking, calls to a function symbol of a substitution module can possibly be delayed
or even eliminated by computing in a context parameter. This is possible due to the
associativity of the function associated with the function symbol, which is applied to
replace expressions like f (f x y) z by f x (f y z), thereby moving the nested function
call from the recursion argument to a context parameter, thus the name accumulation
technique.

This section is concerned with an implementation of this optimization strategy in our
setting using restricted modular tree transducers. A construction is presented and the
correctness of the construction is proven by showing the equivalence of the induced trans-
lations using the non-deterministic derivation relations. By Theorem 3.18 this is sufficient
to ensure equivalence of the computed normal forms using the call-by-need derivation
relations. The efficiency impact of the construction is not studied until the next section.

4.1 Accumulation technique

In [KGK01] an indirect construction, which transforms restricted 2-modular tree trans-
ducers into macro tree transducers 33, was studied. The aim of this section is to establish
a direct construction equivalent to the one presented in [KGK01]. In order to state the
construction formally, we first need to clarify the restrictions; the first module is supposed
to be a top-down tree transducer module and the second module should be a substitution
module. Thus we should formally define substitution modules.

Definition 4.1 (Substitution module). A module (F, ∅,∆, R) of a modular tree transducer
is called substitution module, if and only if there are mx ∈ N and substitution variables
Π = {Π1, . . . ,Πmx} ⊆ ∆(0) such that card(F (mx+1)) = 1, card(F (i)) ≤ 1 for every i ∈ [mx]
and, furthermore, the equations in R are of the following format:

• for every r ∈ N, subr ∈ F (r+1) and j ∈ [r] :

subr Πj y1 . . . yr = yj

• and for every k, r ∈ N with δ ∈ ∆(k) \ {Π1, . . . ,Πr} and subr ∈ F (r+1) :

subr (δ x1 . . . xk) y1 . . . yr = δ (subr x1 y1 . . . yr) . . . (subr xk y1 . . . yr).

2

33Preserving semantics, and thus the induced translation, of course.

4 THE CONSTRUCTION 27

Example 4.2 (Reversing a list). The 2-modular tree transducer Mrev is defined as

Mrev = ({rev(1), app(2)},m, {A(1), B(1), N (0)}, (rev x), R)

with m(rev) = 1, m(app) = 2 and rule-set R :

rev N = N app N y1 = y1

rev (A x1) = app (rev x1) (AN) app (A x1) y1 = A (app x1 y1)
rev (B x1) = app (rev x1) (B N) app (B x1) y1 = B (app x1 y1).

One easily justifies that the induced translation is τMrev(t) = tR for every t ∈ T∆, where tR

is the reversed list 34. This version of the list reversal function is also known as inefficient
reverse, the reason why will be made apparent in the next section. 2

Example 4.3 (Substitution module). The third module of Example 3.4 is in fact a sub-
stitution module with substitution variables Π = {Z} as well as the second module of
Example 4.2 with substitution variables Π = {N}. 2

In the next lemma we justify the name substitution module by providing an alternative
semantics of a call to a subr-function symbol of a substitution module.

Lemma 4.4 (Substitution modules provide substitutions). Let M be a modular tree trans-
ducer of which the n-th module (F ′, ∅,∆, R′) is a substitution module with substitution
variables Π = {Π1, . . . ,Πmx} with mx ∈ N. Moreover, assume subr ∈ F (r+1) with r ∈ N,
then for every (subr ξ ξ1 . . . ξr) ∈ SF(M)

nf⇒M (subr ξ ξ1 . . . ξr) = nf⇒M (ξ){Π1 7→ nf⇒M (ξ1), . . . ,Πr 7→ nf⇒M (ξr) }.

Ω

sub2

t

Π2 Π1 Π2

ξ1 ξ2

⇒∗

Ω

t

ξ2 ξ1 ξ2

We assume that t is redex-free.

Figure 8: Illustrating the effect of a call to a function symbol of a substitution module,
where t = nf⇒M (ξ)

Proof. We set θ = {Π1 7→ nf⇒M (ξ1), . . . ,Πr 7→ nf⇒M (ξr) }. Since ⇒M is the non-
deterministic derivation relation, we use the equality

nf⇒M (subr ξ ξ1 . . . ξr) = nf⇒M (subr (nf⇒M (ξ)) ξ1 . . . ξr)
34e.g. (A (B (B N)))R = B (B (AN))

28 4.1 Accumulation technique

and prove the statement

nf⇒M (subr (nf⇒M (ξ)) ξ1 . . . ξr) = nf⇒M (ξ)θ

via structural induction over nf⇒M (ξ) ∈ T∆.

• Induction base: Let nf⇒M (ξ) ∈ ∆(0) in

nf⇒M (subr (nf⇒M (ξ)) ξ1 . . . ξk)

Def. 4.1=

{
nf⇒M (ξj) , if nf⇒M (ξ) = Πj for some j ∈ [r]
nf⇒M (nf⇒M (ξ)) , otherwise

=

{
Πj θ , if nf⇒M (ξ) = Πj for some j ∈ [r]
nf⇒M (ξ) , otherwise (nf⇒M (ξ) /∈ {Π1, . . . ,Πr})

= nf⇒M (ξ) θ.

• Induction step: Let k ∈ N+, δ ∈ ∆(k) and nf⇒M (ξ) = (δ t1 . . . tk) for some
t1, . . . , tk ∈ T∆.

By induction hypothesis nf⇒M (subr ti ξ1 . . . ξr) = tiθ for every i ∈ [k]. We deduce

nf⇒M (subr (δ t1 . . . tk) ξ1 . . . ξr)
Def. 4.1= nf⇒M (δ (subr t1 ξ1 . . . ξr) . . . (subr tk ξ1 . . . ξr))

= δ (nf⇒M (subr t1 ξ1 . . . ξr)) . . . (nf⇒M (subr tk ξ1 . . . ξr))
I.H.= δ (t1θ) . . . (tkθ)
= (δ t1 . . . tk) θ
= nf⇒M (ξ) θ.

Thus, the proof is completed. Figure 8 shows an example of an application of the lemma.

Using the previous lemma we can argue that one substitution function symbol sub
with maximal rank is actually sufficient, since calls to substitution function symbols with
lower rank can be emulated by calls to the substitution function symbol sub with the
corresponding substitution variables as additional context parameters. This motivates us
to introduce mx = (max ar(m−1(2))) − 1 context parameters for every function symbol
of the first module of a given 2-modular tree transducer M = (F,m,∆, e, R), of which
the first module is a top-down tree transducer and the second module is a substitution
module with substitution variables Π = {Π1, . . . ,Πmx}. Intuitively, we keep track of the
replacements in those context parameters, i.e. for every i ∈ [mx] we store, whatever is
to be substituted for a Πi in the input, in the i-th context parameter. This idea will
prove to be effective, since the associativity of substitutions allows us to simply adjust
the replacements without yet performing the substitution itself; thereby accumulating the
replacements.

Construction 4.5 (Accumulation technique). Let M = (F,m,∆, e, R) be a modular
tree transducer with 2 modules, of which the first module is a top-down tree trans-
ducer module and the second module is a substitution module with substitution vari-
ables Π = {Π1, . . . ,Πmx} for some mx ∈ N. We construct a macro tree transducer
M ′ = (F ′,∆, e′, R′) as follows:

4 THE CONSTRUCTION 29

transk

Πj %1 · · · %mx

= %j

transk

f %1 · · · %mx

x

=
f

x %1 · · · %mx

transk

δ %1 · · · %mx

s1 · · · sa

=

δ

transk · · · transk

s1 %1 · · · %mx sa %1 · · · %mx

transk

subr %1 · · · %mx

s s1 · · · sr

=

transk

s transk · · · transk %r+1 · · · %mx

s1 %1 · · · %mx sr %1 · · · %mx

Figure 9: The defining equations of the transk-mapping

• F ′ = { f (mx+1) | f ∈ m−1(1) },

• e′ = (f xΠ1 . . . Πmx), if e = (f x) with f ∈ m−1(1), and

• R′ contains for every k ∈ N, f ∈ F ′ and δ ∈ ∆(k) with (f (δx1 . . . xk) = rhsM (f, δ)) ∈
R the equation

f (δ x1 . . . xk) y1 . . . ymx = transk(rhsM (f, δ), y1, . . . , ymx),

where for every k ∈ N, we let MRHS = RHSMAC(F ′,∆, Xk, Ymx), F1 = m−1(1) and
F2 = m−1(2) in

transk : RHSF1,F2,∆(Xk, ∅)×MRHSmx −→ MRHS,

which is defined for every %1, . . . , %mx ∈ RHS(F ′,∆, Xk, Ymx) by the following equa-
tions, which are also illustrated in Figure 9.

transk(Πj , %1, . . . , %mx) = %j (4.1)

for every j ∈ [mx],

transk((f x), %1, . . . , %mx) = (f x %1 . . . %mx) (4.2)

30 4.1 Accumulation technique

for every f ∈ F1, x ∈ Xk,

transk((δ s1 . . . sa), %1, . . . , %mx) = (δ transk(s1, %1, . . . , %mx)
. . . (4.3)
transk(sa, %1, . . . , %mx))

for every a ∈ N, δ ∈ (∆(a) \Π) and s1, . . . , sa ∈ RHSF1,F2,∆(Xk, ∅), and

transk((subr s s1 . . . sr), %1, . . . , %mx) = transk(s, transk(s1, %1, . . . , %mx),
. . . , (4.4)
transk(sr, %1, . . . , %mx),
%r+1, . . . , %mx)

for every r ∈ [0,mx], subr ∈ F2
(r+1) and s, s1, . . . , sr ∈ RHSF1,F2,∆(Xk, ∅).

In the following, we will denote the result of this construction as M ′ = C4.5(M). 2

Since we will often deal with modular tree transducers suitable for Construction 4.5,
we will establish the class of 2-modular tree transducers, of which the first module is a top-
down tree transducer module and the second module is a substitution module, denoted
ModTT(TOP,SUB). Note that in contrast to common denotations used in the theory
of formal languages this denotes a syntactic class. Following up, we state a well-known
example, which already occurs in [KGK01] and is known to improve efficiency rather
drastically.

Example 4.6 (Reversing a list efficiently). The modular tree transducer Mrev of Exam-
ple 4.2 obeys all the restrictions necessary for Construction 4.5, thus the construction is
applicable. The result is known as efficient reverse

M ′
rev = ({rev(2)}, {A(1), B(1), N (0)}, (rev x N), R′) = C4.5(M)

with rule-set R′ containing:

rev N y1 = y1

rev (A x1) y1 = rev x1 (A y1)
rev (B x1) y1 = rev x1 (B y1).

The right hand side of the rev function symbol at A is computed as follows 35:

trans1(app (rev x1) (AΠ1), y1)
(4.4)
= trans1((rev x1), trans1((AΠ1), y1))

(4.2)
= rev x1 (trans1((AΠ1), y1))

(4.3)
= rev x1 (A (trans1(Π1, y1)))

(4.1)
= rev x1 (A y1).

2

35Note that Π1 = N .

4 THE CONSTRUCTION 31

4.2 Correctness proof

Construction 4.5 just provides a means of creating a macro tree transducer out of a given
2-modular tree transducer with certain restrictions. It does not state any properties of the
resulting macro tree transducer, the foremost important of which would be the equivalence
of the induced translations. Given this property both devices could interchangeably be
used to compute the translation, so we prepare the proof of this property by extending
the definition of the transM -mapping to sentential forms.

Definition 4.7 (transk on sentential forms). Let

M = (F,m,∆, e, R) ∈ ModTT(TOP,SUB)

with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N and M ′ = C4.5(M).
Additionally, let F1 = m−1(1) and F2 = m−1(2). Since RHSMAC(F ′,∆, Xk, Ymx) ⊆
SFXk,Ymx(M ′) and RHSF1,F2,∆(Xk, ∅) ⊆ SFXk,∅(M) for every k ∈ N, we extend transk
to sentential forms

transk : SFXk,∅(M)× SFXk,Ymx(M
′)mx −→ SFXk,Ymx(M

′)

by stating essentially the same equations for every ξ1, . . . , ξmx ∈ SFXk,Ymx(M ′) with relaxed
restrictions.

transk(Πj , ξ1, . . . , ξmx) = ξj (4.5)

for every j ∈ [mx],

transk((f s), ξ1, . . . , ξmx) = (f s ξ1 . . . ξmx) (4.6)

for every f ∈ F1, s ∈ Xk ∪ T∆,

transM ((δ s1 . . . sa), ξ1, . . . , ξmx) = (δ transk(s1, ξ1, . . . , ξmx)
. . . (4.7)
transk(sa, ξ1, . . . , ξmx))

for every a ∈ N, δ ∈ (∆(a) \Π) and s1, . . . , sa ∈ SFXk,∅(M) and

transk((subr s s1 . . . sr), ξ1, . . . , ξmx) = transk(s, transk(s1, ξ1, . . . , ξmx), (4.8)
. . . ,

transk(sr, ξ1, . . . , ξmx),
ξr+1, . . . , ξmx)

for every r ∈ [0,mx], subr ∈ F2
(r+1) and s, s1, . . . , sr ∈ SFXk,∅(M). 2

Example 4.8 (transk on sentential forms). We assume the modular tree transducer Mrev

of Example 4.2 and the sentential form ξ = app (rev (B (BN))) (AN) 36. The application

36This sentential form appears in the derivation of rev (A (B (B N))) to its normal form B (B (AN)).

32 4.2 Correctness proof

of trans0 to ξ yields 37

trans0(app (rev (B (B Π1))) (AΠ1),Π1)
(4.8)
= trans0(rev (B (B Π1)), trans0((AΠ1),Π1))

(4.6)
= rev (B (B Π1)) (trans0((AΠ1),Π1))

(4.7)
= rev (B (B Π1)) (A (trans0(Π1,Π1)))

(4.5)
= rev (B (B Π1)) (AΠ1)
= rev (B (B N)) (AN).

Note that this is indeed a sentential form of M ′
rev of Example 4.6, but the specific relation

will be made precise later. 2

Before proceeding to the actual proof, we establish some key properties of the transk-
mapping for every k ∈ N. They will be used later in the main proof of this section.

Lemma 4.9 (Properties of transk). Given (F,m,∆, e, R) = M ∈ ModTT(TOP,SUB)
with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N and M ′ = C4.5(M), the
following properties hold:

(a) Let ξ ∈ SFXk,∅(M) for some k ∈ N, then for arbitrary substitutions θ1 : Xk −→ T∆,
θ2 : Ymx −→ SF(M ′) and ξ1, . . . , ξmx ∈ SFXk,Ymx(M ′)

trans0(ξθ1, ξ1θ1θ2, . . . , ξmxθ1θ2) = transk(ξ, ξ1, . . . , ξmx)θ1θ2.

(b) For every t ∈ T∆ : trans0(t,Π1, . . . ,Πmx) = t.

(c) Let ξ, ξ′, ξ̄ ∈ SF(M ′) and p ∈ occ(ξ′) with ξ = ξ′[ξ̄]p. If

trans0(ξ̄, ξ1, . . . , ξmx) = trans0(ξ′|p, ξ1, . . . , ξmx)

for every ξ1, . . . , ξmx ∈ SF(M ′), then also

trans0(ξ,Π1, . . . ,Πmx) = trans0(ξ′,Π1, . . . ,Πmx).

Proof. The enumeration in the proof refers to the enumeration of the statements above.

(a) We prove the statement via structural induction over ξ ∈ SFXk,∅(M). Therefore, we
let θ = θ1θ2.

• Induction base:

– Let ξ ∈ ∆(0), then

trans0(ξθ1, ξ1θ, . . . , ξmxθ) = trans0(ξ, ξ1θ, . . . , ξmxθ)

(4.5) & (4.7)
=

{
ξjθ , if ξ = Πj for some j ∈ [mx]
ξθ , otherwise

(4.5) & (4.7)
= transk(ξ, ξ1, . . . , ξmx)θ.

37Note that again Π1 = N .

4 THE CONSTRUCTION 33

– Let ξ = (f s) with f ∈ m−1(1) and s ∈ Xk ∪ T∆
38, then

trans0((f s)θ1, ξ1θ, . . . , ξmxθ) = trans0((f sθ1), ξ1θ, . . . , ξmxθ)
(4.6)
= (f (sθ1) (ξ1θ) . . . (ξmxθ)) = (f s ξ1 . . . ξmx)θ

(4.6)
= transk((f s), ξ1, . . . , ξmx)θ.

If for all ξ1, . . . , ξmx

trans0

Ψ

ξ1 · · · ξmx

=

trans0

Φ
ξ1 · · · ξmx

,

then for arbitrary contexts Ω

trans0

Ω Π1 · · · Πmx

Ψ

=

trans0

Ω Π1 · · · Πmx

Φ

.

Figure 10: Local equivalence extends naturally to global equivalence.

• Induction step:

– Let ξ = (σ s1 . . . sa) with a ∈ N, σ ∈ ∆(a), s1, . . . , sa ∈ SFXk,∅(M), then
for every i ∈ [a] by induction hypothesis

trans0(siθ1, ξ1θ, . . . , ξmxθ) = transk(si, ξ1, . . . , ξmx)θ

and we conclude

trans0((σ s1 . . . sa)θ1, ξ1θ, . . . , ξmxθ)
= trans0((σ (s1θ1) . . . (saθ1)), ξ1θ, . . . , ξmxθ)

(4.7)
= (σ trans0(s1θ1, ξ1θ, . . . , ξmxθ) . . . trans0(saθ1, ξ1θ, . . . , ξmxθ))
I.H.= (σ (transk(s1, ξ1, . . . , ξmx)θ) . . . (transk(sa, ξ1, . . . , ξmx)θ))
= (σ transk(s1, ξ1, . . . , ξmx) . . . transk(sa, ξ1, . . . , ξmx))θ

(4.7)
= transk((σ s1 . . . sa), ξ1, . . . , ξmx)θ.

38Recapture that sentential forms are right hand sides with input trees possibly substituted in for recur-
sion arguments. Hence we also have to consider the case s ∈ T∆.

34 4.2 Correctness proof

– Let ξ = (subrss1 . . . sr) with r ∈ [0,mx], subr ∈ m−1(2)(r+1)
, s, s1, . . . , sr ∈

SFXk,∅(M), then for every i ∈ [r] by induction hypothesis

trans0(siθ1, ξ1θ, . . . , ξmxθ) = transk(si, ξ1, . . . , ξmx)θ

and since transk(si, ξ1, . . . , ξmx) ∈ SFXk,Ymx(M ′) for every i ∈ [r] also

trans0(sθ1,transk(s1, ξ1, . . . , ξmx)θ, . . . ,
transk(sr, ξ1, . . . , ξmx)θ, ξr+1θ, . . . , ξmxθ)

= transk(s,transk(s1, ξ1, . . . , ξmx), . . . ,
transk(sr, ξ1, . . . , ξmx), ξr+1, . . . , ξmx)θ.

We conclude

trans0((subr s s1 . . . sr)θ1, ξ1θ, . . . , ξmxθ)
= trans0((subr (sθ1) (s1θ1) . . . (srθ1)), ξ1θ, . . . , ξmxθ)

(4.8)
= trans0(sθ1, trans0(s1θ1, ξ1θ, . . . , ξmxθ), . . . ,

trans0(srθ1, ξ1θ, . . . , ξmxθ), ξr+1θ, . . . , ξmxθ)
I.H.= trans0(sθ1, transk(s1, ξ1, . . . , ξmx)θ, . . . ,

transk(sr, ξ1, . . . , ξmx)θ, ξr+1θ, . . . , ξmxθ)
I.H.= transk(s, transk(s1, ξ1, . . . , ξmx), . . . ,

transk(sr, ξ1, . . . , ξmx), ξr+1, . . . , ξmx)θ
(4.8)
= transk((subr s s1 . . . sr), ξ1, . . . , ξmx)θ.

Hence the proof is finished 39.

(b) We prove the statement via structural induction over t ∈ T∆.

• Induction base: Let t ∈ ∆(0), thus immediately by (4.5) and (4.7)

trans0(t,Π1, . . . ,Πmx) =

{
Πj , if t = Πj for some j ∈ [mx]
t , otherwise

= t.

• Induction step: Let t = (δt1 . . . ta) with a ∈ N+, δ ∈ ∆(a) and t1, . . . , ta ∈ T∆.
By induction hypothesis trans0(ti,Π1, . . . ,Πmx) = ti for every i ∈ [a] and,
consequently,

trans0((δ t1 . . . ta),Π1, . . . ,Πmx)
(4.7)
= (δ trans0(t1,Π1, . . . ,Πmx) . . . trans0(ta,Π1, . . . ,Πmx))
I.H.= (δ t1 . . . ta) = t.

This completes the proof.

39A similar proposition in a somewhat different setting can be found in [Voi01].

4 THE CONSTRUCTION 35

(c) We will prove the following more general statement: Let ξ, ξ′, ξ̄ ∈ SF(M ′) and
p ∈ occ(ξ′) with ξ = ξ′[ξ̄]p. If

trans0(ξ̄, ξ1, . . . , ξmx) = trans0(ξ′|p, ξ1, . . . , ξmx)

for every ξ1, . . . , ξmx ∈ SF(M ′), then also

trans0(ξ, ξ̄1, . . . , ξ̄mx) = trans0(ξ′, ξ̄1, . . . , ξ̄mx)

for arbitrary ξ̄1, . . . , ξ̄mx ∈ SF(M ′). The proof is an induction on the length of p.

• Induction base: Let |p| = 0 and, thereby p = ε. We set ξi = ξ̄i for every
i ∈ [mx] and immediately have the desired result by assumption.

• Induction step: Let |p| = n + 1 for some n ∈ N, thus p = p̄.j with j ∈
N+, p̄ ∈ occ(ξ), |p̄| = n and, since p ∈ occ(ξ′), obviously ξ′|p̄ = (σ s1 . . . sa)
with a ∈ N+, σ ∈ (∆ ∪ F)(a) and s1, . . . , sa ∈ SF(M). Thereby, j ∈ [a], ξ|p = ξ̄
and ξ′|p = sj , hence by definition

ξ = ξ′[(σ s1 . . . sj−1 ξ̄ sj+1 . . . sa)]p̄.

The induction hypothesis is: If

trans0(ξ|p̄, χ1, . . . , χmx) = trans0(ξ′|p̄, χ1, . . . , χmx)

for every χ1, . . . , χmx ∈ SF(M ′), then also

trans0(ξ, χ̄1, . . . , χ̄mx) = trans0(ξ′, χ̄1, . . . , χ̄mx)

for arbitrary χ̄1, . . . , χ̄mx ∈ SF(M ′).

– Let σ = δ ∈ ∆:

trans0(ξ|p̄, χ1, . . . , χmx)
= trans0((δ s1 . . . sj−1 ξ̄ sj+1 . . . sa), χ1, . . . , χmx)

(4.7)
= (δ trans0(s1, χ1, . . . , χmx) . . . trans0(ξ̄, χ1, . . . , χmx) . . .

trans0(sa, χ1, . . . , χmx))
Ass.= (δ trans0(s1, χ1, . . . , χmx) . . . trans0(sa, χ1, . . . , χmx))
(4.7)
= trans0((δ s1 . . . sa), χ1, . . . , χmx)
= trans0(ξ′|p̄, χ1, . . . , χmx).

– Let σ = f ∈ m−1(1), thus a = j = 1 and s1 ∈ T∆. The assumption requires

trans0(ξ̄, ξ1, . . . , ξmx) = trans0(s1, ξ1, . . . , ξmx)

for every ξ1, . . . , ξmx ∈ SF(M ′), hence we instantiate ξi = Πi for every
i ∈ [mx] and by Lemma 4.9(b) gain that ξ̄ = s1. This immediately proves

trans0(ξ|p̄, χ1, . . . , χmx) = trans0(ξ′|p̄, χ1, . . . , χmx).

36 4.2 Correctness proof

– Let σ = suba−1 ∈ m−1(2) with a ∈ N+. Since trans0(si, χ1, . . . , χmx) ∈
SF(M ′) for every i ∈ [a] we conclude

trans0(ξ|p̄, χ1, . . . , χmx)
= trans0((suba−1 s1 . . . sj−1 ξ̄ sj+1 . . . sa), χ1, . . . , χmx)

(4.8)
=



trans0(ξ̄, transk(s2, χ1, . . . , χmx), . . . ,
trans0(sa, χ1, . . . , χmx), χa+1, . . . , χmx)

, if j = 1

trans0(s1, trans0(s2, χ1, . . . , χmx), . . . ,
trans0(ξ̄, χ1, . . . , χmx), . . . ,
trans0(sa, χ1, . . . , χmx), χa+1, . . . , χmx)

, otherwise

Ass.=
trans0(s1, trans0(s2, χ1, . . . , χmx), . . . ,

trans0(sa, χ1, . . . , χmx), χa+1, . . . , χmx)
(4.8)
= trans0((suba−1 s1 . . . sa), χ1, . . . , χmx)
= trans0(ξ′|p̄, χ1, . . . , χmx).

Thus, in all cases we could show the prerequisite of the induction hypothesis,
such that the application of the induction hypothesis proves the statement 40.

Altogether, this successfully proves the statement.

The first property states that we can delay substitutions and apply them to the result
of the transk-mapping (in a restricted way), instead of applying them to its parameters
(and vice versa). This fact bridges the gap between instantiated right hand sides 41 and
sentential forms, namely instead of applying the matching substitution to the translated
right hand side, we can apply the substitution to the original right hand side of M and
then translate (via transk) this instantiated right hand side.

Example 4.10 (Property of Lemma 4.9(a)). Assume Mrev of Example 4.2 and the right
hand side app (rev x1) (A Π1) with Π1 = N . Furthermore, let θ1 = {x1 7→ (A Π1) } and

40The conclusions of both implications (the proof obligation and the induction hypothesis) coincide.
41In the derivation relation we require a substitution θ which matches the left hand side of an equation

to a redex in a sentential form. The instantiated right hand side is the corresponding right hand side with
the substitution θ applied.

4 THE CONSTRUCTION 37

θ2 = { y1 7→ (rev Π1 (B Π1)) }. Then

trans1(app (rev x1) (AΠ1), y1) θ1θ2
(4.8)
= trans1((rev x1), trans1((AΠ1), y1)) θ1θ2

(4.6)
= (rev x1 trans1((AΠ1), y1)) θ1θ2

(4.7)
= (rev x1 (A trans1(Π1, y1))) θ1θ2

(4.5)
= (rev x1 (A y1)) θ1θ2
= (rev (AΠ1) (A y1)) θ2
= rev (AΠ1) (A (rev Π1 (B Π1)))

(4.5)
= rev (AΠ1) (A trans0(Π1, (rev Π1 (B Π1))))

(4.7)
= rev (AΠ1) trans0((AΠ1), (rev Π1 (B Π1)))

(4.6)
= trans0((rev (AΠ1)), trans0((AΠ1), (rev Π1 (B Π1))))

(4.8)
= trans0((app (rev (AΠ1)) (AΠ1)), (rev Π1 (B Π1)))
= trans0((app (rev x1) (AΠ1)) θ1, y1θ1θ2).

2

Secondly, the lemma presents that for all terms solely made of constructors the trans0-
translation with Π1, . . . ,Πmx as the context computes the identity. This will be required
to show the correctness of the construction, where we will use closed sets, so we establish
the corresponding closure operator.

Lastly, in the third part of the lemma we provided a rather obvious property: Whenever
two sentential forms ξ and ξ′ differ only at a certain subtree located at path p and,
additionally, for every context ξ1, . . . , ξmx the translation of the subtrees at p is equivalent,
then so is the translation of the trees ξ and ξ′.

Definition 4.11 (Derivation closure). Assume a modular tree transducer M and a set
of sentential forms S ⊆ SF(M). Then the (non-deterministic) derivation closure of S
(derivation driven by ⇒M) is denoted cl⇒M (S) and defined by

cl⇒M (S) = { ξ ∈ SF(M) | s ∈ S, s⇒∗
M ξ }.

Equivalently, we define cl”|=>”M (G) = {Ξ ∈ SFG(M) | G ∈ G, G”| => ”∗MΞ } for every
G ⊆ SFG(M). 2

Example 4.12 (Derivation closure). In Figure 11 we will display all elements of

cl⇒Mrev
({rev (A (B (B N)))}),

where Mrev is the modular tree transducer of Example 4.2. 2

Lemma 4.13 (Derivation closure is a closure operator). For a fixed modular tree trans-
ducer M the derivation closure cl⇒M : P(SF(M)) → P(SF(M)) indeed defines a closure
operator over P(SF(M)).

38 4.2 Correctness proof

rev (A (B (B N)))⇒

app (rev (B (B N))) (AN)⇒

app (app (rev (B N)) (B N)) (AN)⇒

app (app (app (revN) (B N)) (B N)) (AN)⇒

app (app (appN (B N)) (B N)) (AN)⇒

app (app (B N) (B N)) (AN)⇒
app (B (appN (B N))) (AN)⇒ ⇒

app (B (B N)) (AN) B (app (appN (B N)) (AN))
⇒ ⇒

B (app (B N) (AN))⇒

B (B (appN (AN)))⇒

B (B (AN))

Figure 11: All elements of the derivation closure of rev (A (B (B N))), where ⇒=⇒Mrev .

Proof. Obviously, cl⇒M is an operator on P(SF(M)), so in order to show that cl⇒M is a
closure operator, we need to show extensionality, monotonicity and idempotency.

• Extensionality: We need to show that for every S ⊆ SF(M) the following holds:

S ⊆ cl⇒M (S) Def. 4.11= { ξ ∈ SF(M) | s ∈ S, s⇒∗
M ξ }.

This is trivially true, since ⇒0
M= idSF(M) ⊆⇒∗

M .

• Monotonicity: We assume S1 ⊆ S2 ⊆ SF(M). Monotonicity requires to show,
that cl⇒M (S1) ⊆ cl⇒M (S2). Consequently, we select ξ ∈ cl⇒M (S1) and by Definition
4.11 there exists s ∈ S1 with s⇒∗

M ξ. Since S1 ⊆ S2 we conclude s ∈ S2 and, thus,
ξ ∈ cl⇒M (T) by Definition 4.11.

• Idempotency: For every S ⊆ SF(M) we prove the following statement:

cl⇒M (S) = cl⇒M (cl⇒M (S)).

Actually it is sufficient to show cl⇒M (cl⇒M (S)) ⊆ cl⇒M (S), since cl⇒M is extensive
and monotone 42.

We arbitrarily select ξ′ ∈ cl⇒M (cl⇒M (S)), hence by Definition 4.11 there exists
ξ ∈ cl⇒M (S) with ξ ⇒∗

M ξ′. Furthermore, again by Definition 4.11 there exists
s ∈ S such that s⇒∗

M ξ. Consequently, s⇒∗
M ξ′, since ⇒∗

M is transitive, and, thus,
ξ′ ∈ cl⇒M (S).

42By extensionality S ⊆ cl⇒M (S) and, thus, by monotonicity cl⇒M (S) ⊆ cl⇒M (cl⇒M (S)).

4 THE CONSTRUCTION 39

Further, we add that the proof also applies to other derivation relations, in particular the
call-by-need derivation relation, since the necessary properties of reflexivity and transitiv-
ity are fulfilled trivially by the reflexive and transitive closure of each derivation relation.
Thus, cl”|=>”M is a closure operator over sentential form graphs.

Lemma 4.14 (Correspondence on sentential forms). Let M ∈ ModTT(TOP,SUB) with
substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N, M = (F,m,∆, e, R) and
let M ′ = (F ′,∆, e′, R′) = C4.5(M). Then for every input tree t ∈ T∆ and substitution
θ = {x 7→ t }

trans0(·,Π1, . . . ,Πmx) : cl⇒M ({eθ}) −→ cl⇒M′ ({e′θ}).

Proof. Note that C = {S ⊆ SF(M) | S = cl⇒M (S) } is the closure system, which corre-
sponds to cl⇒M . Additionally, cl⇒M ({eθ}) ∈ C, so in order to prove

trans0(ξ,Π1, . . . ,Πmx) ∈ cl⇒M′ ({e′θ}) (*)

for every ξ ∈ cl⇒M ({eθ}) it suffices to show

1. Statement (*) holds for each ξ ∈ {eθ}, i.e. Statement (*) holds for eθ and

2. the set S of all elements of cl⇒M ({eθ}), for which Statement (*) holds, is closed,

since cl⇒M ({eθ}) is obviously generated by {eθ} 43.

(1.) ξ = eθ = (f x)θ = f t for some f ∈ m−1(1) and t ∈ T∆ by Definition 3.3 and, thus,

trans0((f t,Π1, . . . ,Πmx)
(4.6)
= (f tΠ1 . . . Πmx)

Cons. 4.5= e′θ,

which is trivially an element of cl⇒M′ ({e′θ}) (since cl⇒M′ is extensive).

(2.) Note that cl⇒M ({eθ}) is finite, because ⇒M is terminating. To show that S is closed,
we need to prove S ∈ C or equivalently cl⇒M (S) = S. Obviously S ⊆ cl⇒M (S), so
we arbitrarily select ξ′ ∈ cl⇒M (S) and hence by Definition 4.11 there exists ξ ∈ S
with ξ ⇒∗

M ξ′. We prove that given ξ, which fulfills Statement (*), ξ′ ∈ S by natural
induction over the length n ∈ N of the derivation ξ ⇒n

M ξ′.

• Induction basis: Let n = 0, then ξ ⇒0
M ξ′ yields ξ = ξ′ ∈ S.

• Induction step: Let n = n′ + 1 and ξ ⇒n′
M ξ′′ ⇒M ξ′ with n′ ∈ N, where

by induction hypothesis ξ′′ ∈ S. By Definition 3.8 there exists p ∈ occ(ξ′′)
with ξ′′|p = f (δ s1 . . . sk) t1 . . . tr, where k, r ∈ N, f ∈ F (r+1), δ ∈ ∆(k) and
s1, . . . , sk, t1, . . . , tr ∈ SF(M), and also ξ′ = ξ′′[rhsM (f, δ){x1 7→ s1, . . . , xk 7→
sk, y1 7→ t1, . . . , yr 7→ tr }]p with (f (δ x1 . . . xk) y1 . . . yr = rhsM (f, δ)) ∈ R.
We perform the following case distinction:

(a) Let f = subr ∈ m−1(2), thus r ∈ [0,mx]. By Lemma 4.9(c), if we could
show

trans0(ξ′′|p, ξ1, . . . , ξmx) = trans0(ξ′|p, ξ1, . . . , ξmx)

43By definition cl⇒M ({eθ}) is the least closed set containing {eθ}, thus accordingly, cl⇒M ({eθ}) ⊆ S
and trivially S ⊆ cl⇒M ({eθ}).

40 4.2 Correctness proof

for every ξ1, . . . , ξmx ∈ SF(M), then

trans0(ξ′′,Π1, . . . ,Πmx) = trans0(ξ′,Π1, . . . ,Πmx),

hence by induction hypothesis trans0(ξ′′,Π1, . . . ,Πmx) ∈ cl⇒M′ ({e′θ}) :
ξ′ ∈ S. Accordingly, we proceed by

trans0(ξ′′|p, ξ1, . . . , ξmx)
= trans0((subr (δ s1 . . . sk) t1 . . . tr), ξ1, . . . , ξmx)

(4.8)
=

trans0((δ s1 . . . sk), trans0(t1, ξ1, . . . , ξmx),
. . . ,

trans0(tr, ξ1, . . . , ξmx), ξr+1, . . . , ξmx)

(4.5) & (4.7)
=



trans0(tj , ξ1, . . . , ξmx) , if δ = Πj for some j ∈ [r]
ξj , if δ = Πj for some j /∈ [r]
(δ trans0(s1,

trans0(t1, ξ1, . . . , ξmx),
. . . ,

trans0(tr, ξ1, . . . , ξmx),
ξr+1, . . . , ξmx)

. . .

trans0(sk,
trans0(t1, ξ1, . . . , ξmx),
. . . ,

trans0(tr, ξ1, . . . , ξmx),
ξr+1, . . . , ξmx))

, otherwise

(4.5) & (4.8)
=



trans0(tj , ξ1, . . . , ξmx) , if δ = Πj for some j ∈ [r]
trans0(δ, ξ1, . . . ξmx) , if δ = Πj for some j /∈ [r]
(δ trans0((subr s1 t1 . . . tr),

ξ1, . . . , ξmx)
. . .

trans0((subr sk t1 . . . tr),
ξ1, . . . , ξmx))

, otherwise

(4.7)
=



trans0(tj , ξ1, . . . , ξmx) , if δ = Πj for some j ∈ [r]
trans0((δ (subr s1 t1 . . . tr)

. . .

(subr sk t1 . . . tr)),
ξ1, . . . , ξmx)

, otherwise

Def. 4.1= trans0(ξ′|p, ξ1, . . . , ξmx).

We conclude ξ′ ∈ S.

4 THE CONSTRUCTION 41

(b) Let f ∈ m−1(1). ξ′′

M ��

trans // trans0(ξ′′,Π1, . . . ,Πmx)

∗

M
′ ��

ξ′
trans // trans0(ξ′,Π1, . . . ,Πmx)

We would like to show that the diagram above commutes. Therefore we
firstly need to determine the impact of the redex f (δ s1 . . . sk) in ξ′′

on trans0(ξ′′,Π1, . . . ,Πmx). Therefore, let g be a function symbol 44 with
f 6= g ∈ m−1(1). We define the sets P ′ and P ′′ by

P ′ = {π ∈ RM ′(t) | t = trans0(ξ′′,Π1, . . . ,Πmx), labelt(π) = f }

P ′′ = {π ∈ RM ′(t) | t = trans0(ξ′′[g (δ s1 . . . sk)]p,Π1, . . . ,Πmx),
labelt(π) = f }.

Note

occ(trans0(ξ′′,Π1, . . . ,Πmx)) = occ(trans0(ξ′′[g (δs1 . . . sk)]p,Π1, . . . ,Πmx))

and, thus, the finitely many redexes in trans0(ξ′′,Π1, . . . ,Πmx) created by
the redex ξ′′|p are at occurrences in P = P ′ \P ′′. If P = ∅, then we deduce

transM (ξ′′,Π1, . . . ,Πmx) = transM (ξ′,Π1, . . . ,Πmx) ∈ cl⇒M′ ({e′θ})

and, consequently, ξ′ ∈ S. Otherwise, according to Definition 3.7 we con-
clude s1, . . . , sk ∈ T∆ and determine the context parameters ξ1, . . . , ξmx ∈
SF(M ′) by stating that trans0(ξ′′,Π1, . . . ,Πmx)|π = f (δ s1 . . . sk)ξ1 . . . ξmx

for some π ∈ P . Note that for every choice of π the resulting context pa-
rameters will be the same 45. It is also easy to see that no element π′ ∈ P is
a prefix of another element π′ 6= π′′ ∈ P 46, hence having redexes at every
π ∈ P in trans0(ξ′′,Π1, . . . ,Πmx), we can apply rewriting 47 to all of the

44If no other function symbol is available, we simply add one together with dummy rules.
45Assume a term t ∈ SF(M) and an occurrence p ∈ occ(t) in t. By a simple induction on the length

of p, we show that if trans0 is applied to t|p, then the context is unique. If the length of p is zero, this

is immediate. Otherwise p = p′.j with p′ ∈ occ(t), labelt(p
′) ∈ (F ∪∆)(i) and j ∈ [i] for some i ∈ N+.

Since by induction hypothesis the context is unique (else trans0 is never applied to t|p′ and, thus, not to
t|p), we get trans0((σ t|p′.1 . . . t|p′.i), ξ1, . . . , ξmx). Exactly one defining equation of trans0 is applicable and
there is at most one call to trans0(t|p′.j , . . .) with a unique context in its right hand side. Since translated
(via trans0) terms are just copied (or deleted), the context parameters of redexes of M ′ created by t|p are
unique.

46Assume π′ is a proper prefix of π′′. By definition of sentential forms π′.1 is not a prefix of π′′. However,
for some j ∈ N+ with j > 1 : π′.j must be a prefix of π′′, but this violates the unique context parameter
claim.

47We use the notation t[t′]P with P = {p1, . . . , pv} with v ∈ N to denote (· · · ((t[t′]p1)[t′]p2) · · ·)[t′]pv , if
no element of P is a prefix of another (cf. [BN98]).

42 4.2 Correctness proof

redexes (since no occurrence is a prefix of another) in parallel, yielding

trans0(ξ′,Π1, . . . ,Πmx)
= trans0(ξ′′[rhsM (f, δ){x1 7→ s1, . . . , xk 7→ sk }]p,Π1, . . . ,Πmx)
= trans0(ξ′′,Π1, . . . ,Πmx)

[trans0(rhsM (f, δ){x1 7→ s1, . . . , xk 7→ sk }, ξ1, . . . , ξmx)]P
= trans0(ξ′′,Π1, . . . ,Πmx)

[trans0(rhsM (f, δ){x1 7→ s1, . . . , xk 7→ sk },
y1{x1 7→ s1, . . . , xk 7→ sk, y1 7→ ξ1, . . . , ymx 7→ ξmx },
. . . ,

ymx{x1 7→ s1, . . . , xk 7→ sk, y1 7→ ξ1, . . . , ymx 7→ ξmx })]P
Lem. 4.9(a)

= trans0(ξ′′,Π1, . . . ,Πmx)[trans0(rhsM (f, δ), y1, . . . , ymx)
{x1 7→ s1, . . . , xk 7→ sk, y1 7→ ξ1, . . . , ymx 7→ ξmx }]P

Cons. 4.5= trans0(ξ′′,Π1, . . . ,Πmx)
[rhsM ′(f, δ){x1 7→ s1, . . . , xk 7→ sk, y1 7→ ξ1, . . . , ymx 7→ ξmx }]P

where (f (δ x1 . . . xk) y1 . . . ymx = rhsM ′(f, δ)) ∈ R′. By Definition 3.8

trans0(ξ′′,Π1, . . . ,Πmx)

⇒card(P)
M ′ trans0(ξ′′,Π1, . . . ,Πmx)

[rhsM ′(f, δ){x1 7→ s1, . . . , xk 7→ sk, y1 7→ ξ1, . . . , ymx 7→ ξmx }]P

and, thereby, since trans0(ξ′′,Π1, . . . ,Πmx) ∈ cl⇒M′ ({e′θ}) by induction
hypothesis, we deduce trans0(ξ′,Π1, . . . ,Πmx) ∈ cl⇒M′ ({e′θ}) and, conse-
quently, ξ′ ∈ S.

Example 4.15 (Illustrating the correspondence). Given the derivation closures

cl⇒Mrev
({rev (A (B (B N)))}) and cl⇒M′

rev
({rev (A (B (B N)))N}),

Figure 12 illuminates the correspondence between the sentential forms, where Mrev and
M ′

rev are the modular tree transducers of Example 4.2 and Example 4.6, respectively. Note
the mere coincidence that the displayed mapping is surjective. 2

Theorem 4.16 (Correctness of Construction 4.5). Let M ∈ ModTT(TOP,SUB) and let
M ′ = C4.5(M).

τM = τM ′ .

Proof. Let M = (F,m,∆, e, R) with substitution variables Π = {Π1, . . . ,Πmx} for some
mx ∈ N and, further, let M ′ = (F ′,∆, e′, R′). Arbitrarily select t ∈ T∆.

cl⇒M ({e{x 7→ t }}) ∩ T∆ = {τM (t)} and cl⇒M′ ({e′{x 7→ t }}) ∩ T∆ = {τM ′(t)},

since ⇒M and ⇒M ′ are canonical [EV91].

τM (t)
Lem. 4.9(b)

= trans0(τM (t),Π1, . . . ,Πmx)
Lem. 4.14

∈ cl⇒M′ ({e′{x 7→ t }})

4 THE CONSTRUCTION 43

rev (A (B (B N)))⇒

app (rev (B (B N))) (AN)⇒

app (app (rev (B N)) (B N)) (AN)⇒

app (app (app (revN) (B N)) (B N)) (AN)⇒

app (app (appN (B N)) (B N)) (AN)⇒

app (app (B N) (B N)) (AN)⇒

app (B (appN (B N))) (AN)⇒ ⇒

app (B (B N)) (AN) B (app (appN (B N)) (AN))
⇒ ⇒

B (app (B N) (AN))⇒

B (B (appN (AN)))⇒
B (B (AN))

rev (A (B (B N)))N⇒
′

rev (B (B N)) (AN)⇒
′

rev (B N) (B (AN))⇒
′

rev (B (B (AN)))⇒
′

(B (B (AN)))

Computation using Mrev Computation using M ′
rev

Figure 12: Correspondence between the sentential forms, where ⇒ = ⇒Mrev and ⇒′ =
⇒M ′

rev
. The arrows denote the translation via trans0(·, N) pointing towards the result.

Additionally, τM (t) ∈ T∆, thus also τM (t) ∈ cl⇒M′ ({e′{x 7→ t }}) ∩ T∆ = {τM ′(t)}.
Consequently, τM (t) = τM ′(t).

44

5 A first efficiency analysis

In the last section we introduced a construction, which given a suitable modular tree trans-
ducer, constructs a macro tree transducer that induces the same translation as the original
modular tree transducer does. This provides us with two equivalent means of computing
this translation. Thus, the more efficient device should be used in implementations.

Before proceeding with efficiency considerations, we need to establish a formal effi-
ciency measure. Within this thesis we identify the efficiency with the number of deriva-
tion steps needed to compute the normal form using a deterministic derivation relation
(preferably call-by-need). Usually the amount of memory used is considered to be another
important aspect of efficiency, but memory usage is out of the scope of this thesis.

Definition 5.1 (Efficiency measure). Let M = (F,m,∆, e, R) be a modular tree trans-
ducer. The number of derivation steps needed to compute the normal form (with respect to
the call-by-need derivation relation) of e{x 7→ t } for every t ∈ T∆, denoted steps”|=>”M (t),
is

steps”|=>”M (t) = n, if and only if e{x 7→ t }”| => ”nMτM (t).

We will say that a modular tree transducer M ′ with τM = τM ′ is more efficient than M ,
if and only if steps”|=>”M′ (t) < steps”|=>”M (t) for every t ∈ T∆. Consequently, we will
call M ′ at least as efficient as M , if and only if steps”|=>”M′ (t) ≤ steps”|=>”M (t) for every
t ∈ T∆. 2

To support that our efficiency measure truly scales according to the computation time,
we feed the example modular tree transducers of Example 5.3 into the Haskell inter-
preter Hugs 48 and compared the number of derivation steps according to our definition of
efficiency with the number of reduction steps 49 outputted by the interpreter. The corre-
lation coefficients 50 are 0.9998626981 and 0.9999999997 for the modular tree transducers
Mfib and M ′

fib, respectively. Thus a strong (almost linear) correlation cannot be denied 51.

Example 5.2 (Efficiency of Mrev and M ′
rev). Reconsidering Example 4.2 together with

the derivations of Figure 12 (there for the non-deterministic derivation relation), we can
state

steps”|=>”Mrev
(A (B (B N))) = 10 and steps”|=>”M′

rev
(A (B (B N))) = 4.

Thus M ′
rev is more efficient than Mrev on the input A (B (BN)), but not yet in general as

required by the definition. Given an input list t ∈ T∆ of length k ∈ N (i.e. #{A,B}(t) = k)

48available under: <http://www.haskell.org/hugs>
49The interpreter uses different atomic units of computation; generally speaking this measure is known

to provide a poor measure, if different control structures, e.g. a recursive and an iterative version of a
program, are compared. As this is obviously not the case in our setting, we can rely on this measure,
which has the advantage of being machine-independent.

50Statistical measure, denoted ρu,v for sequences of numbers u and v both of length n, in the range

−1 ≤ ρu,v ≤ 1, which is computed as ρu,v =
1
n

Pn
i=1(ui−µu)(vi−µv)

σu∗σv
where σu and σv are the standard

deviations of u and v, respectively, and µu and µv are the averages over u and v, respectively. Note that
|ρu,v| = 1 signals a linear dependency.

51Profiler runs with the Glasgow Haskell Compilation System <http://www.haskell.org/ghc> also
support this claim.

5 A FIRST EFFICIENCY ANALYSIS 45

we derive the equations

steps”|=>”Mrev
(t) =

k+1∑
i=1

i =
k2 + 3k + 2

2
=
k2 + k

2
+k+1 and steps”|=>”M′

rev
(t) = k+1.

Given those equations we can conclude that M ′
rev is at least as efficient as Mrev. M ′

rev is not
more efficient than Mrev, since steps”|=>”Mrev

(N) = steps”|=>”M′
rev

(N) = 1. Nevertheless
we experience an efficiency gain from quadratic complexity (with respect to the input tree
size) to linear complexity.

2

Example 5.3 (Efficiency of Mfib and M ′
fib). Let us establish a modular tree transducer

Mfib = ({fib(1),fib′(1), add(2)},m, {S(1), Z(0)}, (fib x), R) with

• m(fib) = m(fib′) = 1, m(add) = 2 and

• R contains the equations:

fib Z = S Z fib′ Z = Z
fib (S x1) = add (fib′ x1) (fib x1) fib′ (S x1) = fib x1

add Z y1 = y1

add (S x1) y1 = S (add x1 y1).

According to Construction 4.5, the constructed macro tree transducer is

M ′
fib = ({fib(2),fib′(2)}, {S(1), Z(0)}, (fib x Z), R′)

with equations

fib Z y1 = S y1 fib′ Z y1 = y1

fib (S x1) y1 = fib′ x1 (fib x1 y1) fib′ (S x1) y1 = fib x1 y1.

By Theorem 4.16, for each t = (Sn Z) ∈ T{S(1),Z(0)} with n ∈ N

τMfib
(t) = τM ′

fib
(t) = (SFibonacci(n)Z),

where Fibonacci(n) is the n-th fibonacci number 52. Analyzing the efficiency of Mfib and
M ′

fib we gain the following statements for every input t = (Sn Z) ∈ T{S(1),Z(0)} with n ∈ N

steps”|=>”Mfib
(t) = Fibonacci(n+ 1) + Fibonacci(n+ 3) +

+(
n−2∑
i=0

Fibonacci(i) ∗ Fibonacci(n− 2− i))− 3

steps”|=>”M′
fib

(t) = Fibonacci(n+ 3)− 2.

n 0 1 2 3 4 5 6 7
steps”|=>”Mfib

(Sn Z) 1 4 9 17 31 54 93 158
steps”|=>”M′

fib

(Sn Z) 1 3 6 11 19 32 53 87

Consequentially, M ′
fib is at least as efficient as Mfib.

46

fib

Z
Z⇒

S

Z

fib

S

Z

Z⇒

add

fib′ fib

Z

Z⇒

add

Z fib

Z

Z⇒
fib

Z
Z⇒

S

Z

fib

S

S

Z

Z⇒

add

fib′ fib

S

Z

Z⇒

add

fib fib

S

Z

Z⇒

add

S

Z

fib

S

Z

Z⇒

S

add

Z fib

S

Z

Z⇒

S

fib

S

Z

Z⇒4

S

S

Z

Figure 13: Verification for the induction base, where ”| => ” = ”| => ”Mfib

Proof. First, we will prove the more complicated statement (concerning Mfib) via natural
induction on n.

• Induction base: We consider the cases n = 0, n = 1 and n = 2, then

steps”|=>”Mfib
(Z) = Fibonacci(1) + Fibonacci(3)− 3 = 1

steps”|=>”Mfib
(S Z) = Fibonacci(2) + Fibonacci(4)− 3 = 4

steps”|=>”Mfib
(S (S Z)) = Fibonacci(3) + Fibonacci(5) + 1− 3 = 9.

The verification for those statements can be found in Figure 13.

• Induction step: Let n ≥ 3. By induction hypothesis

steps”|=>”Mfib
(S(n−1)Z) = Fibonacci(n) + Fibonacci(n+ 2)+

+ (
n−3∑
i=0

Fibonacci(i) ∗ Fibonacci(n− 3− i))− 3

and also

steps”|=>”Mfib
(S(n−2)Z) = Fibonacci(n− 1) + Fibonacci(n+ 1)+

+ (
n−4∑
i=0

Fibonacci(i) ∗ Fibonacci(n− 4− i))− 3.

52The first fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, 21.

5 A FIRST EFFICIENCY ANALYSIS 47

A straightforward analysis of the recursive structure 53 of the equations yields 54

fib(SnZ)”| => ”Mfib
add(fib′(Sn−1Z))(fib(Sn−1Z))”| => ”Mfib

add(fib(Sn−2Z))(fib(Sn−1Z))

steps”|=>”Mfib
(Sn Z)

= 2 + steps”|=>”Mfib
(S(n−1) Z) + steps”|=>”Mfib

(S(n−2) Z) +

+Fibonacci(n− 2) + 1
I.H.= steps”|=>”Mfib

(S(n−1) Z) + Fibonacci(n− 1) + Fibonacci(n+ 1) +

+(
n−4∑
i=0

Fibonacci(i) ∗ Fibonacci(n− 4− i)) + Fibonacci(n− 2)

I.H.= Fibonacci(n− 2) + Fibonacci(n− 1) + Fibonacci(n) +
+Fibonacci(n+ 1) + Fibonacci(n+ 2) +

+(
n−3∑
i=0

Fibonacci(i) ∗ Fibonacci(n− 3− i)) +

+(
n−4∑
i=0

Fibonacci(i) ∗ Fibonacci(n− 4− i))− 3

= Fibonacci(n− 2) + Fibonacci(n+ 1) + Fibonacci(n+ 3) +

+(
n−4∑
i=0

Fibonacci(i) ∗ Fibonacci(n− 2− i)) + Fibonacci(n− 3)− 3

= Fibonacci(n+ 1) + Fibonacci(n+ 3) +

+(
n−2∑
i=0

Fibonacci(i) ∗ Fibonacci(n− 2− i))− 3

This completes the proof of the first statement; the second statement will be proven in a
similar fashion.

• Induction base: Let n = 0 and n = 1, then

steps”|=>”M′
fib

(Z) = Fibonacci(3)− 2 = 1

steps”|=>”M′
fib

(S Z) = Fibonacci(4)− 2 = 3.

Both statements are verified by Figure 14.

• Induction step: Let n ≥ 2. By induction hypothesis

steps”|=>”M′
fib

(S(n−1)Z) = Fibonacci(n+ 2)− 2

steps”|=>”M′
fib

(S(n−2)Z) = Fibonacci(n+ 1)− 2.

53along with the knowledge that add (Sn1 Z) (Sn2 Z)”| => ”n1+1
Mfib

(Sn1+n2 Z) for every n1, n2 ∈ N
54Strictly speaking, the call-by-need derivation relation is only defined on sentential form graphs, how-

ever, whenever the sharing is not emphasized, we will also use the terms corresponding to the sentential
form graphs.

48

fib

Z Z
Z⇒

S

Z

fib

S

Z

Z Z⇒

fib′

fib

Z Z

Z⇒
fib

Z Z
Z⇒

S

Z

Figure 14: Verification for the induction base, where ”| => ” = ”| => ”M ′
fib

Another straightforward analysis of the recursive structure of the equations of M ′
fib

yields

fib(SnZ)”| => ”M ′
fib

fib′(Sn−1Z)(fib(Sn−1Z)Z)”| => ”M ′
fib

fib(Sn−2Z)(fib(Sn−1Z)Z)

steps”|=>”M′
fib

(Sn Z) = 2 + steps”|=>”M′
fib

(S(n−1) Z) + steps”|=>”M′
fib

(S(n−2) Z)

I.H.= 2 + Fibonacci(n+ 2)− 2 + Fibonacci(n+ 1)− 2
= Fibonacci(n+ 3)− 2.

Hence, both statements are finally justified.

The previous examples showed that the construction might be well beneficial concern-
ing the efficiency, but in the example to follow we will show that an efficiency deterioration
is possible as well.

Example 5.4 (An efficiency deteriorating example). We introduce the modular tree trans-
ducer Mdoub = ({doub(1), sub(2)},m, {σ(2), α(0)}, (doub x), R) with

• m(doub) = 1, m(sub) = 2 and

• R contains the equations:

doub α = α
doub (σ x1 x2) = sub (σ α α) (σ (doub x1) (doub x2))

sub α y1 = y1

sub (σ x1 x2) y1 = σ (sub x1 y1) (sub x2 y1).

Construction 4.5 yields the macro tree transducer

M ′
doub = ({doub(2)}, {σ(2), α(0)}, (doub x α), R′)

with equations

doub α y1 = y1

doub (σ x1 x2) y1 = σ (σ (doub x1 y1) (doub x2 y1)) (σ (doub x1 y1) (doub x2 y1)).

5 A FIRST EFFICIENCY ANALYSIS 49

Assuming an input tree t ∈ T{σ(2),α(0)} we derive the statements 55

steps”|=>”Mdoub
(t) = #α(t) + 4 ∗#σ(t) and steps”|=>”M′

doub

(t) =
∑

p∈occ(t)

2|p|.

t α (σ α α) (σ α(σ α α)) (σ (σ α (σ α α)) (σ (σ (σ α α) α) α))
steps”|=>”Mdoub

(t) 1 6 11 31
steps”|=>”M′

doub

(t) 1 5 13 85

Thus, Mdoub and M ′
doub are incomparable with respect to the number of derivation steps

(efficiency), since the choice of the more efficient device depends on the actual input.
However, in this example we have to confront an efficiency loss from linear complexity (in
the size of the input tree) to exponential complexity. 2

5.1 Refinement of the construction

As we have already seen in Example 5.4, Construction 4.5 might seriously deteriorate
the efficiency of a program. In order to integrate the construction into an optimizing
compiler, we need to establish syntactic checks which ensure efficiency non-deterioration.
We already remarked that the deteriorating effect is only due to the duplication of redexes
(card(P) > 1 in the proof of Lemma 4.14). Such a duplication of a redex also occurs in the
derivation using the original program with the notable difference that all the duplicates
will be shared, i.e. they all share a common root node in the sentential form graph. We
will illustrate this particular effect in the following example.

Example 5.5 (The cause of the deterioration). We reuse the modular tree transducer
Mdoub and the constructed macro tree transducer M ′

doub of Example 5.4. We will show
part of a derivation using both devices.

In this example the macro tree transducer is still more efficient than its corresponding
modular tree transducer, but as we have seen in Example 5.4 for larger input trees the
additional redexes far outweigh the penalty of the derivation steps of Mdoub invested to
reduce redexes with root sub.

2

Instead of restricting the input modular tree transducer, such that this effect is avoided,
we manipulate the construction to cope with this situation. The result will no longer be a
macro tree transducer, rather it will be a macro tree transducer with term graph rewrite
rules. Modular tree transducers with term graph rewrite rules will be defined below.

Definition 5.6 (Modular tree transducer with term graph rewrite rules). A modular tree
transducer with term graph rewrite rules is a quintuple M = (F,m,∆, e, R) with R being
a set of term graph rewrite rules, such that M ′ = (F,m,∆, e, { term(G) | G ∈ R }) is a
regular modular tree transducer. All properties translate in an obvious fashion to modular
tree transducers with term graph rewrite rules. 2

55The proofs are again straightforward, though redexes can potentially be shared (cf. Example 5.5 for
an illustration of the effect). It is obvious that Mdoub might share redexes, while M ′

doub cannot. Thus,
given sufficiently long computations the shared redexes will eventually pay off, especially since the penalty
incurred by the call to the substitution function symbol sub in a right hand side of Mdoub is constant.

50 5.1 Refinement of the construction

Derivation using Mdoub

doub

σ

α α

Z⇒Mdoub

sub

σ

α α

σ

doub

α

doub

α

Z⇒Mdoub

σ

sub sub

α α

σ

doub doub

α α

Derivation using M ′
doub

doub

σ

α α

α Z⇒M ′
doub

σ

σ σ

doub doub doub doub

α α α

Figure 15: Illustrating the cause of the inefficiency of M ′
doub compared to Mdoub.

Definition 5.7 (Semantics of the newly defined construct). Let M = (F,m,∆, e, R) be
a modular tree transducer with term graph rewrite rules. The call-by-need derivation
relation ”| => ”M on sentential form graphs induced by M relates Ξ1”| => ”MΞ2 for
every Ξ1,Ξ2 ∈ SFG(M), if and only if

1. Locate redex: there exists a least element p ∈ RM (Ξ1) with respect to the lexico-
graphic ordering, which requires a term graph homomorphism ψ from G|1 to Ξ1|p
for some G ∈ R,

2. Build: let G|1 = (Nlhs, Elhs, llhs, rlhs) and G|2 = (Nrhs, Erhs, lrhs, rrhs) with Nrhs ∩
NΞ1 = ∅, then G′ = (N ′, E′, l′, rΞ1) is defined as

N ′ = NΞ1 ∪ (Nrhs \Nlhs)

E′(n, i) =


EΞ1(n, i) , if n ∈ NΞ1

Erhs(n, i) , if n,Erhs(n, i) ∈ Nrhs \Nlhs

ψ(Erhs(n, i)) , otherwise

l′(n) =

{
lΞ1(n) , if n ∈ NΞ1

lrhs(n) , otherwise

for every n ∈ N ′ and i ∈ N+
56 and

56We assume that the functions are undefined for the given parameters, if none of the above displayed
cases yields a definite result.

5 A FIRST EFFICIENCY ANALYSIS 51

3. Redirect: Ξ2 = G′[ψ(rlhs) ; rrhs], where we ensure the connectedness property,
i.e. trigger garbage collection if necessary.

Alternatively, Ξ1”| => ”MΞ2, if and only if there exists a least element p ∈ RM (Ξ1)
with respect to the lexicographic ordering, there exists for some G ∈ R a non-collapsing
term graph homomorphism ψlhs from G|1 to Ξ1|p and a non-collapsing term graph ho-
momorphism ψrhs from G|2 to Ξ2|p with ψlhs(n) = ψrhs(n) for every n ∈ NG|1 ∩ NG|2 ,
and, additionally, there exists a term graph isomorphism $ from Ξ1[ψlhs(rG|1) ; z] to
Ξ2[ψrhs(rG|2) ; z] 57 for some z /∈ NΞ1 ∪NΞ2 ∪NG

58.
The translation induced by M , denoted τM , is a mapping τM : T∆ −→ T∆ defined for

every t ∈ T∆ by
τM (t) = term(nf”|=>”M (Ge{x 7→t })).

2

Lemma 5.8 (Induced translations coincide). Let M = (F,m,∆, e, R) be a modular tree
transducer with term graph rewrite rules and M ′ = (F,m,∆, e, { term(G) |G ∈ R }).

τM = τM ′

Proof. The results of Theorem 3.18 extend naturally to ”| => ”M with M being a modular
tree transducer with term graph rewrite rules and ⇒M ′ (cf. [BvEG+87]) 59.

• Soundness: Thus, by Theorem 3.18(3), for every t ∈ T∆ :

if Ge{x 7→t }”| => ”∗Mnf”|=>”M (Ge{x 7→t }), then e{x 7→ t } ⇒∗
M ′ term(nf”|=>”M (Ge{x 7→t })).

The precondition is fulfilled for every t ∈ T∆, due to Theorem 3.18(2), and, addition-
ally, by Definition 5.7: term(nf”|=>”M (Ge{x 7→t })) = τM (t). Since τM (t) ∈ T∆, τM (t)
is also irreducible with respect to ⇒M ′ and, thus, by the uniqueness (cf. Theorem
3.9) of the normal form, also τM ′(t) = τM (t).

• Completeness: For every t ∈ T∆, there exists Ξ ∈ SFG(M) such thatGe{x 7→t }”| =>
”∗MΞ and term(Ξ) = nf⇒M′ (e{x 7→ t }) by Theorem 3.18(4). Since nf⇒M′ (e{x 7→
t }) ∈ T∆ by Theorem 3.9, we conclude that Ξ is irreducible with respect to ”| => ”M ,
thus τM (t) = term(Ξ) by Definition 5.7. Consequently, τM ′(t) = τM (t).

Although this thesis is not focussed on the language-theoretic aspects of tree transducer
theory, we will informally discuss the implications of the modification. In particular,
the transformational power, i.e. the class of translations that can be computed, of the

57We implicitly perform garbage collection.
58This approach is less constructive and uses the notion of a context, since both Ξ1[ψlhs(rG|1) ; z] and

Ξ2[ψrhs(rG|2) ; z] can be interpreted as contexts which do not change (due to the isomorphism). The
matching of the left hand side is performed by the homomorphism ψlhs, while the right hand side matches
with the subgraph Ξ2|p via homomorphism ψrhs. The additional restriction on ψlhs and ψrhs ensures that
variable nodes are instantiated equally.

59The one notable exception is item (5), which does not hold true, if some term graph rewrite rule of R
is not variable-shared. Any term graph rewrite rule constructed in Construction 5.10, however, is trivially
variable-shared.

52 5.1 Refinement of the construction

newly defined construct is equal to the transformational power of regular modular tree
transducers. The above definition already shows that the translations induced by modular
tree transducer with term graph rewrite rules can also be induced by regular modular tree
transducers. On the other hand a translation induced by a modular tree transducer can
also be induced by a modular tree transducer with term graph rewrite rules by using the
tree representation or even the variable-shared term graphs corresponding to the original
(term) rewrite rules.

Example 5.9 (M ′
doub with term graph rewrite rules). Let M ′

doub = (F,∆, e, R) be the
macro tree transducer of Example 5.4. Then M ′′

doub = (F,∆, e, R′) is a macro tree trans-
ducer with term graph rewrite rules R′ depicted in Figure 16, such that R = { term(G)|G ∈
R′ }. Reconsidering the number of derivation steps for this modular tree transducer with

Term graph rewrite rules of M ′′
doub

=

doub

α y1

and

=

σ

σ

doub doub doub

σ

x1 x2 y1

Figure 16: Term graph rewrite rules of M ′′
doub.

term graph rewrite rules, we gain the following equation

steps”|=>”M′′
doub

(t) = #{α,σ}(t)

for every input tree t ∈ T∆. Thus M ′′
doub is at least as efficient as M ′

doub as well as Mdoub.
2

Construction 5.10 (Refinement of Construction 4.5). Let M ∈ ModTT(TOP,SUB)
with M = (F,m,∆, e, R) and substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N.
We construct a macro tree transducer with term graph rewrite rules M ′ = (F ′,∆, e′, R′),
denoted C5.10(M), as follows:

• F ′ = { f (mx+1) | f ∈ m−1(1) },

• e′ = f xΠ1 . . . Πmx, if e = (f x) with f ∈ m−1(1), and

• R′ contains for every k ∈ N, f ∈ F ′ and δ ∈ ∆(k) with ρ = (f (δ x1 . . . xk) =
rhsM (f, δ)) ∈ R the term graph rewrite rule G′

ρ constructed out of the variable-
shared term graph rewrite rule Gρ = (Nρ, Eρ, lρ, rρ) via the term graph G′, which is
defined as

G′ = (Nρ ∪ { yi | i ∈ [mx] }, E′, lρ, rρ)

5 A FIRST EFFICIENCY ANALYSIS 53

with

E′ = EGρ|1 ∪ { ((Eρ(rρ, 1), i+ 1), yi) | i ∈ [mx] } ∪ {((rρ, 2), rH)} ∪ EH

where H = transGY ,k(Gρ|2, y1, . . . , ymx) with GY = (Ymx, ∅, ∅). However, the result
may be a non-connected term graph, so we invoke garbage collection, if necessary, to
get the final term graph rewrite rule G′

ρ. The application of the transGY ,k-mapping
is displayed in Figure 17.

Application of the transk-mapping

Gρ =

f Gρ|2

δ

x1 · · · xk

to

G′ =

f H

δ

x1 · · · xk y1 · · · ymx

with H = transGY ,k(Gρ|2, y1, . . . , ymx) and GY = ({y1, . . . , ymx}, ∅, ∅)

Figure 17: Applying the transGY ,k-mapping.

We will call the first parameter of the transG,k-mapping input graph, the result output
graph and G intermediate result graph. For every G ∈ T Gnr(RHSMAC(F ′,∆, Xk, Ymx))
the mapping

transG,k : {Grhs | rhs ∈ RHSm−1(1),m−1(2),∆(Xk, ∅), NGrhs
∩NG ⊆ Xk } ×Nmx

G

−→ T G(RHSMAC(F ′,∆, Xk, Ymx))

is defined for every %1, . . . , %mx ∈ NG via case analysis over its first argument H =
(NH , EH , lH , rH) with

H ∈ {Grhs | rhs ∈ RHSm−1(1),m−1(2),∆(Xk, ∅), NGrhs
∩NG ⊆ Xk }.

• Let lH(rH) = Πj for some j ∈ [mx], then

transG,k(H, %1, . . . , %mx) = (NG, EG, lG, %j). (5.1)

• Let lH(rH) ∈ m−1(1), then

transG,k(H, %1, . . . , %mx) = (NH′ , E′, lH′ , rH) (5.2)

where H ′ = H ∪G and E′ = EH′ ∪ { ((rH , i+ 1), %i) | i ∈ [mx] }.

54 5.1 Refinement of the construction

• Let lH(rH) ∈ ∆(a) \Π with a ∈ N, then

transG,k(H, %1, . . . , %mx) = (NH′ ∪ {rH}, EH′ ∪ E′, lH′ ∪ {(rH , lH(rH))}, rH) (5.3)

where H ′ =
⋃
i∈[a]Hi with Hi = transG,k(H|i, %1, . . . , %mx) for every i ∈ [a] and

E′ = { ((rH , i), rHi) | i ∈ [a] }.

• Let lH(rH) ∈ m−1(2)(a+1) with a ∈ N, then

transG,k(H, %1, . . . , %mx) = transH′,k(H|1, rH1 , . . . , rHa , %a+1, . . . , %mx) (5.4)

where H ′ = G ∪
⋃
i∈[a]Hi with Hi = transG,k(H|i+1, %1, . . . , %mx) for every i ∈ [a].

2

In the figures to follow, we often identify a node and the term graph rooted at that
particular node. This allows us to express the transG,k-mapping graphically without in-
convenient descriptions as in Figure 17. However, we should keep in mind that in general
the difference is noteworthy. Additionally, we drop the first subscript of the transG,k-
mapping in graphical depictions, assuming it is the (non-rooted) term graph containing
exactly all the term graphs, of which the context parameters are the root. Keeping this
in mind, we can also think of the mapping as a term graph rewrite system [BvEG+87], of

trans

Πj %1 · · · %mx

= %j (5.1)

trans

f %1 · · · %mx

x

=
f

x %1 · · · %mx

(5.2)

trans

δ %1 · · · %mx

s1 · · · sa

=

δ

trans trans

s1 · · · sa %1 · · · %mx

(5.3)

trans

suba %1 · · · %mx

s s1 · · · sa

=

trans

s trans trans

s1 · · · sa %1 · · · %a %a+1 · · · %mx

(5.4)

Figure 18: The transformation trans = transG,k on term graphs.

5 A FIRST EFFICIENCY ANALYSIS 55

which the defining equations are depicted in Figure 18. Note that we implicitly perform
garbage collection.

We should verify that all calls to the transG,k-mapping occurring in the definition are
valid (respect the typing) and that the term graph unions are well-defined. Therefore we
prove the following lemma.

Lemma 5.11 (transG,k-mapping is well-defined). Every call to transG,k in Construction
5.10 is well-defined, i.e. respects the typing and the term graph union conditions.

Proof. Let M = (F,m,∆, e, R) ∈ ModTT(TOP,SUB) be the considered modular tree
transducer and let F ′ = { f (mx+1) | f ∈ m−1(1) }. Assume a call

G′ = transG,k(H, %1, . . . , %mx)

for k ∈ N, G ∈ T Gnr(RHSMAC(F ′,∆, Xk, Ymx)), %1, . . . , %mx ∈ NG and

H ∈ {Grhs | rhs ∈ RHSm−1(1),m−1(2),∆(Xk, ∅) }.

We prove the statements

1. NG′ ⊆ NG ∪NH and

2. NG ∩NH ⊆ Xk.

The latter property assures that the call respects the typing and both statements together
verify that each term graph union appearing in Construction 5.10 is well-defined.

(1) We prove the statement inductively on the term graph structure of H.

• Induction base:

– Let lH(rH) ∈ Π, then G′ = (NG, EG, lG, %j) for some j ∈ [mx] and trivially
NG′ ⊆ NG.

– Let lH(rH) ∈ m−1(1), then G′ = (NH′ , E′, lH′ , rH) with H ′ = H ∪ G and
E′ = EH′ ∪ { ((rH , i+ 1), %i) | i ∈ [mx] }, so NG′ ⊆ NG ∪NH .

• Induction step:

– Let lH(rH) ∈ ∆(a) for some a ∈ N, hence by induction hypothesis for every
i ∈ [a] with Hi = transG,k(H|i, %1, . . . , %mx), we have NHi ⊆ NG ∪NH|i .

G′ = (NH′ ∪ {rH}, EH′ ∪ E′, lH′ ∪ {(rH , lH(rH))}, rH),

where H ′ =
⋃
i∈[a]Hi with Hi = transG,k(H|i, %1, . . . , %mx) for every i ∈ [a]

and E′ = { ((rH , i), rHi) |i ∈ [a] }. Thus, NG′ ⊆
⋃
i∈[a](NG∪NH|i)∪{rH} ⊆

NG ∪NH .

– Let lH(rH) ∈ m−1(2)(a+1) for some a ∈ N, hence by induction hypothesis
for every i ∈ [a] with Hi = transG,k(H|i+1, %1, . . . , %mx), we have NHi ⊆
NG ∪NH|i+1

.

G′ = transH′,k(H|1, rH1 , . . . , rHa , %a+1, . . . , %mx),

56 5.1 Refinement of the construction

where H ′ = G ∪
⋃
i∈[a]Hi with Hi = transG,k(H|i+1, %1, . . . , %mx) for every

i ∈ [a]. Since H ′ ∈ T Gnr(RHSMAC(F ′,∆, Xk, Ymx)), rH1 , . . . , rHa ∈ NH′

and %a+1, . . . , %mx ∈ NH′ , additionally, by induction hypothesis NG′ ⊆
NH′ ∪NH|1 . Consequently,

NG′ ⊆ NH|1 ∪NG ∪
⋃
i∈[a]

NHi ⊆ NH|1 ∪NG ∪
⋃
i∈[a]

(NG ∪NH|i+1
) ⊆ NG ∪NH .

(2) Since the call emerges from a call transGY ,k(Gρ|2, y1, . . . , ymx) with GY = (Ymx, ∅, ∅)
and ρ ∈ R, H obviously is a term subgraph of Gρ|2, thus for some unique 60 p ∈
occ(Gρ|2) :Gρ|2.p = H. We prove the statement via induction over the path structure
of p.

• Induction base: Let p = ε, then H = Gρ|2 and G = GY . Obviously NGY ∩
NGρ|2 = Ymx ∩NGρ|2 = ∅.

• Induction step: Let p = p̄.j with j ∈ N+ and by p ∈ occ(Gρ|2) also
lGρ(rGρ|2.p̄) ∈ (Σ ∪ F)(a) with a ∈ N+. Thus, j ∈ [a].

– Let lGρ(rGρ|2.p̄) ∈ m−1(1). Obviously j = 1 and this case is not applicable,
since there is no call transG,k(Gρ|p, %1, . . . , %mx) (the recursion argument of
a function symbol of the first module is an input subtree variable rGρ|p ∈
Xk, which is not translated).

– Let lGρ(rGρ|2.p̄) ∈ ∆. Induction hypothesis NG ∩ NH ⊆ Xk assures NG ∩
NH|i ⊆ Xk for every i ∈ [a] and, thereby, the property trivially holds for
every j ∈ [a] and transG,k(H|j , %1, . . . , %mx).

– Let lGρ(rGρ|2.p̄) ∈ m−1(2). Again the induction hypothesis NG ∩NH ⊆ Xk

assures NG∩NH|i ⊆ Xk for every i ∈ [a] and, thereby, the property trivially
holds for every j ∈ [2, a] and transG,k(H|j , %1, . . . , %mx). Finally, for j = 1
the call transH′,k(H|1, rH1 , . . . , rHa−1 , %a, . . . , %mx) also fulfills NH′∩NH|1 ⊆
Xk with H ′ = G ∪

⋃
i∈[a−1]Hi and Hi = transG,k(H|i+1, %1, . . . , %mx) for

every i ∈ [a− 1], since

NH′ ∩NH|1
Lem. 5.11(1)

⊆ (NG ∪
⋃

i∈[a−1]

NH|i+1
) ∩NH|1

= (NG ∩NH|1) ∪ (
⋃

i∈[a−1]

NH|i+1
∩NH|1)

I.H.
⊆ Xk ∪ (

⋃
i∈[a−1]

NH|i+1
∩NH|1)

⊆ Xk

by the property that H is (only) variable-shared.

Example 5.12 (The refined construction onMdoub). LetMdoub andM ′
doub = (F ′,∆, e′, R′)

be the modular tree transducer and the macro tree transducer, respectively, of Example

5 A FIRST EFFICIENCY ANALYSIS 57

The doub rule at α:

=

doub trans

α

α y1

(5.1)
=

=

doub

α y1

The doub rule at σ:

=

doub trans

sub y1

σ

α α σ

σ doub doub

x1 x2

(5.4)
=

=

trans

σ

doub α α trans

σ y1

σ doub doub

x1 x2

(5.3)
=

=

σ

trans trans

α α σ

doub trans trans

doub y1

σ doub

x1 x2

(5.1)
=

=

σ

σ

doub trans trans

doub y1

σ doub

x1 x2

(5.2)
=

=

σ

σ

doub doub doub

σ

x1 x2 y1

Figure 19: The term graph rewrite rules of M ′′
doub and their construction. Note α = Π1.

5.4. Construction 5.10 constructs the macro tree transducer M ′′
doub = C5.10(M ′

doub) =
(F ′,∆, e′, R′′), which coincides with M ′′

doub of Example 5.9, with term graph rewrite rules

60Only variable nodes are shared in Gρ, so only for variable nodes there exist different paths p, but
rH /∈ Xk (subgraphs rooted at variable nodes do not constitute valid right hand sides).

58 5.1 Refinement of the construction

and their construction depicted in Figure 19. 2

Having modified the construction, we again need to show the validity of the construc-
tion in the sense that the computed translation remains the same.

Lemma 5.13 (Correctness of the refined construction). Let

M = (F,∆, e, R) ∈ ModTT(TOP,SUB)

with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N and, additionally, let
M ′′ = C5.10(M) be the result of Construction 5.10 being applied to M .

τM = τM ′′

Proof. Let M ′ = (F ′′,∆, e′′, R′) = C4.5(M) and M ′′ = (F ′′,∆, e′′, R′′). By Lemma 5.8,
it is sufficient to show R′ = { term(G) | G ∈ R′′ } in order to prove τM ′′ = τM ′ . Ad-
ditionally, τM ′ = τM by Theorem 4.16, thus τM = τM ′′ . Since card(R′) = card(R′′),
we just show { term(G) | G ∈ R′′ } ⊆ R′ and conclude by the cardinality argument
R′ = { term(G) | G ∈ R′′ }. Apparently, by Construction 4.5 and Construction 5.10 the
left hand sides immediately coincide, thus we need to prove

term(transGY ,k(GrhsM (f,δ), y1, . . . , ymx)) = transk(rhsM (f, δ), y1, . . . , ymx)

for every k ∈ N, δ ∈ ∆(k), f ∈ m−1(1) and (f (δ x1 . . . xk) = rhsM (f, δ)) ∈ R
with GY = (Ymx, ∅, ∅). This will be done by using structural induction on term(H)
to prove the following, more general statement for any non-rooted term graph G ∈
T Gnr(RHSMAC(F ′′,∆, Xk, Ymx)) and %1, . . . , %mx ∈ NG:

term(transG,k(H, %1, . . . , %mx)) = transk(term(H), termG(%1), . . . , termG(%mx)).

• Induction base:

– Let α = lH(rH) ∈ ∆(0), then

term(transG,k(H, %1, . . . , %mx))

(5.1) & (5.3)
=

{
term((NG, EG, lG, %j)) , if α = Πj for some j ∈ [mx]
α , otherwise

=

{
termG(%j) , if α = Πj for some j ∈ [mx]
term(H) , otherwise

(4.1) & (4.3)
= transk(term(H), termG(%1), . . . , termG(%mx)).

– Let f = lH(rH) ∈ m−1(1), then

term(transG,k(H, %1, . . . , %mx))
(5.2)
= term((N(G∪H), EH′ ∪ { ((rH , i+ 1), %i) | i ∈ [mx] }, l(G∪H), rH))
= f term(H|1) termG(%1) . . . termG(%mx)

(4.2)
= transk(f term(H|1), termG(%1), . . . , termG(%mx))
= transk(term(H), termG(%1), . . . , termG(%mx)).

5 A FIRST EFFICIENCY ANALYSIS 59

• Induction step:

– let σ = lH(rH) ∈ ∆(a) with a ∈ N+, then the induction hypothesis is

term(transG,k(H|i, %1, . . . , %mx))
= transk(term(H|i), termG(%1), . . . , termG(%mx))

for every i ∈ [a] and we deduce

term(transG,k(H, %1, . . . , %mx))
(5.3)
= term((NH′ ∪ {rH}, EH′ ∪ { ((rH , i), rHi) | i ∈ [a] }, lH′ ∪ {(rH , σ)}, rH))

where H ′ =
⋃
i∈[a]

Hi with Hi = transG,k(H|i, %1, . . . , %mx) for every i ∈ [a]

= (σ term(transG,k(H|1, %1, . . . , %mx)) . . . term(transG,k(H|a, %1, . . . , %mx))
I.H.= σ transk(term(H|1), termG(%1), . . . , termG(%mx)) . . .

transk(term(H|a), termG(%1), . . . , termG(%mx))
(4.3)
= transk(term(H), termG(%1), . . . , termG(%mx)).

– Finally let suba = lH(rH) ∈ m−1(2)(a+1) with a ∈ N, then the induction
hypothesis is again

term(transG,k(H|i, %1, . . . , %mx))
= transk(term(H|i), termG(%1), . . . , termG(%mx))

and, especially, since G′ = (G ∪
⋃
i∈[a]Hi) ∈ T Gnr(RHSMAC(F ′,∆, Xk, Ymx))

with Hi = transG,k(H|i+1, %1, . . . , %mx) for every i ∈ [a] and rH1 , . . . , rHa ∈ NG′ ,
%a+1, . . . , %mx ∈ NG′ , also

term(transG′,k(H|1, rH1 , . . . , rHa , %a+1, . . . , %mx))
= transk(term(H|1), termG′(rH1), . . . , termG′(rHa),

termG′(%a+1), . . . , termG′(%mx)).

We gain:

term(transG,k(H, %1, . . . , %mx))
(5.4)
= term(transG′,k(H|1, rH1 , . . . , rHa , %a+1, . . . , %mx))
I.H.= transk(term(H|1), termG′(rH1), . . . , termG′(rHa),

termG′(%a+1), . . . , termG′(%mx))
= transk(term(H|1), term(H1), . . . , term(Ha),

termG(%a+1), . . . , termG(%mx))
I.H.= transk(term(H|1), transk(term(H|2), termG(%1), . . . , termG(%mx)), . . .

transk(term(H|a+1), termG(%1), . . . , termG(%mx)),
termG(%a+1), . . . , termG(%mx))

(4.4)
= transk(term(H), termG(%1), . . . , termG(%mx)).

60 5.1 Refinement of the construction

Thus the proof is complete.

In this subsection we introduced the refinement of Construction 4.5, namely Construc-
tion 5.10, and showed that this construction is preserving the semantics. So far, we have
not yet explored the applicability of term graphs in currently used functional programming
languages. However, most functional programming languages support explicit sharing via
especially designed constructs, such as let-constructs or where-clauses. Thus, we can
effectively implement our modular tree transducers with term graph rewrite rules on stock
hardware. An example will be provided that shows an implementation in Haskell (cf.
[Tho99]).

Example 5.14 (M ′′
doub in Haskell). The macro tree transducer M ′′

doub of Example 5.9
can be implemented in the functional programming language Haskell (cf. [Tho99]) as
follows:

data Tree = S Tree Tree | A

doub :: Tree -> Tree -> Tree
doub A y1 = y1
doub (S x1 x2) y1 = let z = S (doub x1 y1) (doub x2 y1) in S z z

Here the term graph rewrite rules were implemented using a let-construct, however, we
could also use where-clauses. 2

In the next subsection we study the efficiency impact of the refinement and show
our first major theorem concerning efficiency. We first extend the transG,k-mapping to
sentential form graphs in the obvious fashion (cf. Definition 4.7) and, additionally, restate
the propositions of Lemma 4.9 in the setting of modular tree transducers with term graph
rewrite rules.

Lemma 5.15 (Lemma 4.9 for modular tree transducers with term graph rewrite rules).
Given M = (F,m,∆, e, R) ∈ ModTT(TOP,SUB) with substitution variables Π = {Π1, . . . ,Πmx}
for some mx ∈ N, let M ′ = (F ′,∆, e′, R′) = C5.10(M) and GΠ = (Π, ∅, idΠ).

(a) Let k ∈ N, G ∈ T Gnr(RHSMAC(F ′,∆, Xk, Ymx)), G′ = T Gnr(SF(M ′)) and H ′ ∈
SFG(M ′) and

H ∈ {Grhs | rhs ∈ RHSm−1(1),m−1(2),∆(Xk, ∅), NGrhs
∩NG ⊆ Xk }.

Additionally, let ψ1 : NH −→ NH′ be a non-collapsing term graph homomorphism
from H to H ′ and ψ2 : NG −→ NG′ be a non-collapsing term graph homomorphism
from G to G′, such that for every x ∈ Xk ∩ NH : termH′(ψ1(x)) ∈ T∆, H ′|ψ1(x) =
G′|ψ2(x) and ψ1(x) = ψ2(x) 61. Then for every %1, . . . , %mx ∈ NG there exists a
non-collapsing term graph homomorphism ψ from Γ = transG,k(H, %1, . . . , %mx) to
Γ′ = transG′,0(H ′, ψ2(%1), . . . , ψ2(%mx)) with Γ′|ψ(v) = G′|ψ2(v) and ψ(v) = ψ2(v) for
every v ∈ (Xk ∪ Ymx) ∩NΓ.

(b) For every G ∈ SFG(M) with term(G) ∈ T∆ : transM,GΠ
(G,Π1, . . . ,Πmx) = G.

61Intuitively, ψ1 models the grounding substitution θ1 of Lemma 4.9(a) and ψ2 models the substitution
θ1θ2.

5 A FIRST EFFICIENCY ANALYSIS 61

(c) Let H,G,G′ ∈ SFG(M), G′′ = G ∪ G′ and H = (NG′′ , EG′′ , lG′′ , rG)[n ; rG′] for
some n ∈ NG. If for every Γ ∈ T Gnr(SF(M ′)) and ξ1, . . . , ξmx ∈ NΓ

transΓ,0(G′, ξ1, . . . , ξmx) = transΓ,0(G|n, ξ1, . . . , ξmx),

then also
transGΠ,0(H,Π1, . . . ,Πmx) = transGΠ,0(G,Π1, . . . ,Πmx).

Proof. The enumeration refers to the one above.

(a) We prove the statement via structural induction on the term graph structure of H.]

• Induction base:

– Let α = lH(rH) ∈ ∆(0):

transG′,0(H ′, ψ2(%1), . . . , ψ2(%mx))

(5.1) & (5.3)
=

{
(NG′ , EG′ , lG′ , ψ2(%j)) , if α = Πj for some j ∈ [mx]
({rH′}, ∅, {(rH′ , α)}, rH′) , otherwise

and {
(NG, EG, lG, %j) , if α = Πj for some j ∈ [mx]
({rH}, ∅, {(rH , α)}, rH) , otherwise

(5.1) & (5.3)
= transG,k(H, %1, . . . , %mx)

Thus, obviously, in the first case ψ = ψ2 (Γ′ is a term subgraph of G′), while
in the second case ψ = {(rH , rH′)}. Both are non-collapsing (trivially or
by assumption) and fulfill the required property concerning the variable
nodes.

– Let f = lH(rH) ∈ m−1(1):

transG′,0(H ′, ψ2(%1), . . . , ψ2(%mx))
(5.2)
= (N(G′∪H′), E(G′∪H′) ∪ { ((rH′ , i+ 1), ψ2(%i)) | i ∈ [mx] }, l(G′∪H′), rH′)

and
(N(G∪H), E(G∪H) ∪ { ((rH , i+ 1), %i) | i ∈ [mx] }, l(G∪H), rH)

(5.2)
= transG,k(H, %1, . . . , %mx)

Thus ψ = ψ1∪ψ2 is the required non-collapsing term graph homomorphism.
Since NG ∩NH ⊆ Xk by Lemma 5.11, ψ fulfills the property on variables
nodes.

• Induction step:

– let σ = lH(rH) ∈ ∆(a) with a ∈ N+, then the induction hypothesis assures
the existence of non-collapsing term graph homomorphisms ψ̄i from

transG,k(H|i, %1, . . . , %mx) to transG′,0(H ′|i, ψ2(%1), . . . , ψ2(%mx))

62 5.1 Refinement of the construction

for every i ∈ [a]. We compute

transG′,0(H ′, ψ2(%1), . . . , ψ2(%mx))
(5.3)
= (NH̄′ ∪ {rH′}, EH̄′ ∪ { ((rH′ , i), rH̄′

i
) | i ∈ [a] }, lH̄′ ∪ {(rH′ , σ)}, rH′)

where H̄ ′ =
⋃
i∈[a]

H̄ ′
i with H̄ ′

i = transG′,0(H ′|i, ψ2(%1), . . . , ψ2(%mx))

for every i ∈ [a]
and

(NH̄ ∪ {rH}, EH̄ ∪ { ((rH , i), rH̄i) | i ∈ [a] }, lH̄ ∪ {(rH , σ)}, rH)

where H̄ =
⋃
i∈[a]

H̄i with H̄i = transG,k(H|i, %1, . . . , %mx) for every i ∈ [a]

(5.3)
= transG,k(H, %1, . . . , %mx).

Thus, ψ = {(rH , rH′)}∪
⋃
i∈[a] ψ̄i is the required non-collapsing term graph

homomorphism, which apparently possesses the demanded properties.

– Finally let suba = lH(rH) ∈ m−1(2)(a+1) with a ∈ N, then the induction
hypothesis assures the existence of non-collapsing term graph homomor-
phisms ψ̄i from

transG,k(H|i+1, %1, . . . , %mx) to transG′,0(H ′|i+1, ψ2(%1), . . . , ψ2(%mx))

for every i ∈ [a]. Especially, since Ḡ = (G ∪
⋃
i∈[a] H̄i) is an element of

T Gnr(RHSMAC(F ′,∆, Xk, Ymx)) with H̄i = transG,k(H|i+1, %1, . . . , %mx) for
every i ∈ [a], rH̄1

, . . . , rH̄a , %a+1, . . . , %mx ∈ NḠ and Ḡ′ = (G′ ∪
⋃
i∈[a] H̄

′
i) ∈

T Gnr(SF(M ′) with

H̄ ′
i = transG′,0(H ′|i+1, ψ2(%1), . . . , ψ2(%mx))

for every i ∈ [a], rH̄′
1
, . . . , rH̄′

a
, ψ2(%a+1), . . . , ψ2(%mx) ∈ NḠ′ , there is also a

non-collapsing term graph homomorphism ψ̄ from

transḠ,k(H|1, rH̄1
, . . . , rH̄a , %a+1, . . . , %mx)

to

transḠ′,0(H
′|1, rH̄′

1
, . . . , rH̄′

a
, ψ2(%a+1), . . . , ψ2(%mx)).

This is due to induction hypothesis, which assures the existence of a non-
collapsing term graph homomorphism ψ̄ from Ḡ to Ḡ′, namely ψ̄ = ψ2 ∪⋃
i∈[a] ψ̄i. Additionally, ψ1 induces a non-collapsing term graph homomor-

phism from H|1 to H ′|1, and, thus, the application of the induction hy-
pothesis yields the required non-collapsing term graph homomorphism.

The other proofs are analogous to the ones for Lemma 4.9.

5 A FIRST EFFICIENCY ANALYSIS 63

5.2 Proof of efficiency non-deterioration

The general layout of the proof is very similar to the correctness proof found in the previous
section. However, in the call-by-need case which is considered in the lemma to follow, we
cannot arbitrarily rewrite any redex, rather the leftmost outermost redex is to reduced
next. Thus, additional effort is required to assure that the leftmost outermost redex of any
sentential form graph of M ; being the original modular tree transducer; is “reproduced”
(with context parameters) leftmost outermost in the translated (via trans) sentential form
graph, if it is reproduced at all.

Lemma 5.16 (Correspondence on the redex level). Let M = (F,m,∆, e, R) ∈ ModTT(TOP,SUB)
with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N, and let M ′′ = (F ′,∆, e′, R′′) =
C5.10(M). Then for every t ∈ T∆, let θ = {x 7→ t } and, additionally, G1 ∈ cl”|=>”M ({Geθ}).
Let p ∈ RM (G1) be the leftmost outermost redex (p is the least element with respect
to the lexicographic ordering) with f = lG1(rG1|p) ∈ m−1(1), and, furthermore, GΠ =
(Π, ∅, idΠ) and P (G1) = P ′(G1) \ P ′(G′

1) contains the occurrences of translations of
G1|p in transGΠ,0(G1,Π1, . . . ,Πmx) with the following definition of P ′(G) for every G ∈
T G(SF(M)) and G′

1 = (NG1 , EG1 , l
′, rG1) is essentially G1, but the root of G1|p is rela-

belled to another function symbol g ∈ m−1(1) with f 6= g 62, i.e. l′ = (lG1 \ {(rG1|p , f)}) ∪
{(rG1|p , g)} 63.

P ′(G) = {π ∈ RM ′′(H) |H = transGΠ,0(G,Π1, . . . ,Πmx), lH(rH|π) = f }

1. for every p1, p2 ∈ P (G1)

(transGΠ,0(G1,Π1, . . . ,Πmx))|p1 = (transGΠ,0(G1,Π1, . . . ,Πmx))|p2

and

2. the least element of RM ′′(transGΠ,0(G1,Π1, . . . ,Πmx)) is an element of P (G1).

Proof. The first statement is immediate by the property NG′ ⊆ NGΠ
∪ G1 with G′ =

transGΠ,0(G1,Π1, . . . ,Πmx) proven in Lemma 5.11 64.

We prove the second statement using structural induction over the sentential form graph
G1.

• Induction base:

– lG1(rG1) ∈ ∆(0) is not applicable.

– Let lG1(rG1) = f , then term(G1|1) ∈ T∆ and thus

RM ′′(transGΠ,0(G1,Π1, . . . ,Πmx)) = {ε} = P (G1),

so the properties are trivially fulfilled. The case lG1(rG1) 6= f , but lG1(rG1) ∈
m−1(1) is not possible, because it contradicts the leftmost-outermost property
of the redex at p.

62If no other function symbol with those properties exists, then add a new one with dummy rules.
63Roughly speaking, we first mark every call to the function symbol f in transGΠ,0(G1,Π1, . . . ,Πmx)

and then subtract those calls that do not correspond to the redex.
64Since the relabelled node rG1|p exists at most once in G′ by the stated property, all p̄ ∈ P (G1) must

actually point to this node. There may, however, exist different paths to that particular node.

64 5.2 Proof of efficiency non-deterioration

• Induction step:

– Let lG1(rG1) ∈ m−1(2)(k+1) with k ∈ N. Obviously in order for the leftmost-
outermost redex to be at p, p = 1.p̄ with p̄ ∈ occ(G1|1). Further note that G1

is a term graph in S, where S is the following set:

∗ (f t) ∈ S with t = term(G1|p.1),
∗ if u ∈ S, then (g u u1 . . . ui) ∈ S for every i ∈ N, g ∈ m−1(2)(i+1) and
u1, . . . , ui ∈ SF(M), and

∗ all elements of S can be obtained by a finite number of applications of the
above rules.

Thus, we perform structural induction on the term graph structure induced
by S to prove that ε ∈ RM ′′(transG,0(H, ξ1, . . . , ξmx)) and ε ∈ P (H) for every
term graph G ∈ T Gnr(SF(M ′)) with ξ1, . . . , ξmx ∈ NG and H ∈ T G(S) being a
subgraph of G1.

∗ Induction base: Let lH(rH) = f , then term(H|1) = term(G1|p.1) and,
thus,

ε ∈ RM ′′(transG,0(H, ξ1, . . . , ξmx))

and also ε ∈ RM ′′(transG,0(H,Π1, . . . ,Πmx)), hence ε ∈ P (H).

∗ Induction step: Let lH(rH) ∈ m−1(2)(k+1) with k ∈ N. Obviously,
in order for the leftmost-outermost redex to be at p, p = 1.p̄ with p̄ ∈
occ(H|1). This yields

transG,0(H, ξ1, . . . , ξmx)
(5.4)
= transG′,0(H|1, rG′

1
, . . . , rG′

k
, ξk+1, . . . , ξmx)

where G′
i = transM,G(H|i+1, ξ1, . . . , ηmx) and G′ = G ∪

⋃
i∈[k]G

′
i. Since

rG′
1
, . . . , rG′

k
, ξk+1, . . . , ξmx ∈ NG′ and G′ ∈ T Gnr(SF(M ′)), by induction

hypothesis ε ∈ RM ′′(transG,0(H|1, rG′
1
, . . . , rG′

k
, ξk+1, . . . , ξmx)), hence also

ε ∈ RM ′′(transG,0(H, ξ1, . . . , ξmx)) and ε ∈ P (H).

Consequently, we instantiate the proven statement with ξi = Πi for every i ∈ [mx]
and H = G1, G = GΠ to gain ε ∈ P (G1) and ε ∈ RM ′′(transG,0(G1,Π1, . . . ,Πmx)).

• Let lG1(rG1) ∈ ∆(k) with k ∈ N+, then there exists j ∈ [k] with p = j.p̄ where
p̄ ∈ occ(G1|j). Note that G1|1, . . . , G1|j−1 are necessarily redex-free 65. Thus,

transGΠ,0(G1,Π1, . . . ,Πmx)
(5.3)
= (NH ∪ {rG1}, EH ∪ { ((rG1 , i), rHi) | i ∈ [k] }, lH ∪ {(rG1 , lG1(rG1))}, rG1)

where H =
⋃
i∈[k]Hi with Hi = transGΠ,0(G1|i,Π1, . . . ,Πmx) for every i ∈ [k].

Obviously, H1, . . . ,Hj−1 are redex-free by Lemma 5.15(b), since G1|1, . . . , G1|j−1

are redex-free. By induction hypothesis the leftmost-outermost redex of

RM ′′(transGΠ,0(G1|j ,Π1, . . . ,Πmx))

65else the leftmost-outermost redex is not at p

5 A FIRST EFFICIENCY ANALYSIS 65

is at π̄ ∈ P (G1|j) and, consequently, π = j.π̄ is the leftmost-outermost redex of

RM ′′(transGΠ,0(G1,Π1, . . . ,Πmx))

and π ∈ P (G1).

This completes the proof of the proposition.

Lemma 5.17 (Strong correspondence on sentential forms). Let

M = (F,m,∆, e, R) ∈ ModTT(TOP,SUB)

with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N and let M ′′ = C5.10(M) =
(F ′,∆, e′, R′′). Then for every t ∈ T∆, let θ = {x 7→ t } and we claim

transGΠ,0(·,Π1, . . . ,Πmx) : cl”|=>”M ({Geθ}) −→ cl”|=>”M′′ ({Ge′θ})

is a surjective mapping with GΠ = (Π, ∅, idΠ), where we require Π ∩ NḠ = ∅ for every
Ḡ ∈ cl”|=>”M ({Geθ}).

Proof. First we prove the validity of the typing specified above. The proof of the surjec-
tivity is presented at end. We apply the principle of natural induction over the length of
the derivation using ”| => ”M in order to prove the claim

transGΠ,0(H,Π1, . . . ,Πmx) ∈ cl”|=>”M′′ ({Ge′θ}) (**)

for every H ∈ cl”|=>”M ({Geθ}), thus for some unique n ∈ N : Geθ”| => ”nMH. Alongside
we prove that the transGΠ,0-mapping is well-defined.

• Induction base: Let n = 0, hence H = Geθ. We show Equation (**) for Geθ,
where the modified transGΠ,0-mapping on sentential forms is well-defined by Lemma
5.11.

transGΠ,0(Geθ,Π1, . . . ,Πmx)
(5.2)
= (NGeθ ∪Π, EGeθ ∪ { ((rGeθ , i+ 1),Πi) | i ∈ [mx] }, lGeθ ∪ idΠ, rGeθ)

Cons. 5.10= Ge′θ,

which is trivially an element of cl”|=>”M′′ ({Ge′θ}). Note that all unions are in fact
disjoint unions by the assumption that Π and NGeθ are disjoint.

• Induction step: By induction hypothesis assume Geθ”| => ”nMG1”| => ”MG2

with G1, G2 ∈ cl”|=>”M ({Geθ}) for some n ∈ N and

transGΠ,0(G1,Π1, . . . ,Πmx) ∈ cl”|=>”M′′ ({Ge′θ})

is well-defined. Consequently there exists a least (with respect to the lexicographic
ordering) element p ∈ RM (G1) with rG1n1

p, k, a ∈ N, lG1(n1) = f ∈ F (a+1) and
lG1(EG1(n1, 1)) = δ ∈ ∆(k). G2 is constructed according to Definition 3.16 with
n2 ∈ NG2 such that rG2n2

p. We perform the following case distinction on the
leftmost-outermost redex at p.

66 5.2 Proof of efficiency non-deterioration

1. Let f ∈ m−1(2). According to Lemma 5.15(c), it is sufficient to show the local
equality

transG′,0(G1|p, ξ1, . . . , ξmx) = transG′,0(G2|p, ξ1, . . . , ξmx)

for every term graph G′ ∈ T Gnr(SF(M ′′)) and ξ1, . . . , ξmx ∈ NG′ to prove

transGΠ,0(G1,Π1, . . . ,Πmx) = transGΠ,0(G2,Π1, . . . ,Πmx).

We show this statement graphically in Figures 20 and 21, which correspond to
our subcase distinction.

suba

Πj s1 · · · sa

Z⇒M sj

Application of trans Application of trans

trans

suba ξ1 · · · ξmx

Πj s1 · · · sa

trans

sj ξ1 · · · ξmx

(5.4)
=

(5.1)
=

trans

Πj trans trans

s1 · · · sa ξ1 · · · ξa ξa+1 · · · ξmx

Figure 20: The local equality for the case δ = Πj ∈ Π for some j ∈ [a].

5 A FIRST EFFICIENCY ANALYSIS 67

– Let δ = Πj for some j ∈ [a].

transG′,0(G1|p, ξ1, . . . , ξmx)
(5.4)
= transG′′,0(G1|p.1, rH1 , . . . , rHa , ξa+1, . . . , ξmx)

where Hi = transG′,0(G1|p.i+1, ξ1, . . . , ξmx) for each i ∈ [a]

G′′ = G′ ∪
⋃
i∈[a]

Hi

(5.1)
= (NG′′ , EG′′ , lG′′ , rHj)

where Hi = transG′,0(G1|p.i+1, ξ1, . . . , ξmx) for each i ∈ [a]

G′′ = G′ ∪
⋃
i∈[a]

Hi

G.C.= transG′,0(G1|p.j+1, ξ1, . . . , ξmx)
Def. 3.16= transG′,0(G2|p, ξ1, . . . , ξmx),

since n2 = EG1(n1, j + 1) and G2 = G1[n1 ; n2].

– Let δ ∈ ∆ \ {Π1, . . . ,Πa}.

transG′,0(G1|p, ξ1, . . . , ξmx)
(5.4)
= transG′′,0(G1|p.1, rH1 , . . . , rHa , ξa+1, . . . , ξmx)

where Hi = transG′,0(G1|p.i+1, ξ1, . . . , ξmx) for each i ∈ [a],

G′′ = G′ ∪
⋃
i∈[a]

Hi

(5.3)
=

(NH′ ∪ {EG1(n1, 1)}, EH′ ∪ { ((EG1(n1, 1), i), rH′
i
) | i ∈ [k] },

lH′ ∪ {(EG1(n1, 1), δ)}, EG1(n1, 1))
where Hi = transG′,0(G1|p.i+1, ξ1, . . . , ξmx) for every i ∈ [a],

H ′
j = transG′′,0(G1|p.1.j , rH1 , . . . , rHa , ξa+1, . . . , ξmx) for all j ∈ [k],

G′′ = G′ ∪
⋃
i∈[a]

Hi and H ′ =
⋃
j∈[k]

H ′
j

By the definition of the call-need derivation relation (Definition 3.16) and
the restriction on right hand sides of a substitution module (Definition 4.1),
we conclude the following equivalences in the sentential form graphs.

G1|p.1.j = G2|p.j.1 and G1|p.i+1 = G2|p.j.i+1 for every j ∈ [k], i ∈ [a]

Using the second equivalence, we deduce for every j ∈ [k] and i ∈ [a]
the facts Hi = J ′j,i and thereby also G′′ = J ′j . Moreover using the first
concluded equivalence, we derive the statements Jj = H ′

j for every j ∈ [k]
and consequently J = H ′. Summing up, all the previously mentioned term
graphs are well-defined by induction hypothesis and the following equalities.

68 5.2 Proof of efficiency non-deterioration

We continue

Def. 3.16=
(NJ ∪ {rG2|p}, EJ ∪ { ((rG2|p , i), rJi) | i ∈ [k] },

lJ ∪ {(rG2|p , δ)}, rG2|p)

where J ′j,i = transG′,0(G2|p.j.i+1, ξ1, . . . , ξmx) for each j ∈ [k], i ∈ [a]
Jj = transJ ′j ,0(G2|p.j.1, rJ ′j,1 , . . . , rJ ′j,a , ξa+1, . . . , ξmx) for all j ∈ [k],

J ′j = G′ ∪
⋃
i∈[a]

J ′j,i for every j ∈ [k] and J =
⋃
j∈[k]

Jj

(5.4)
=

(NJ ∪ {rG2|p}, EJ ∪ { ((rG2|p , i), rJi) | i ∈ [k] },
lJ ∪ {(rG2|p , δ)}, rG2|p)

where Jj = transG′,0(G2|p.j , ξ1, . . . , ξmx) for each j ∈ [k],

J =
⋃
j∈[k]

Jj

(5.3)
= transG′,0(G2|p, ξ1, . . . , ξmx).

In both cases we could show local equivalence, which allows us to claim

transGΠ,0(G1,Π1, . . . ,Πmx) = transGΠ,0(G2,Π1, . . . ,Πmx) ∈ cl”|=>”M′′ ({Ge′θ}),

i.e. fulfills Equation (**), by Lemma 5.15(c) and, furthermore, we have shown
that transGΠ,0(G2,Π1, . . . ,Πmx) is well-defined given that the sentential form
graph transGΠ,0(G1,Π1, . . . ,Πmx) is, which completes this part of the proof.

2. Let f ∈ m−1(1). Roughly speaking we try to prove the commutation of the
following diagram: G1__

M

��

trans // transGΠ,0(G1,Π1, . . . ,Πmx)__

M
′′ ��

G2
trans // transGΠ,0(G2,Π1, . . . ,Πmx)

By Lemma 5.16 the least element p′ ∈ RM ′′(transGΠ,0(G1,Π1, . . . ,Πmx)) (i.e.
a leftmost outermost redex occurrence) is the occurrence of the redex corre-
sponding to G1|p. Note, however, that this redex might be shared. First we fix
some additional shorthands, namely

H1 = transGΠ,0(G1,Π1, . . . ,Πmx) and H2 = transGΠ,0(G2,Π1, . . . ,Πmx).

So we need to prove H1”| => ”M ′′H2. The derivation step from H1 to H2

apparently should use the redex at p′. The situation is displayed in Figure
22, which also illustrates the relationships between the many introduced term
graphs. Consequently, there exists a non-collapsing term graph homomorphism
ψ1 : NGρ,lhs

−→ NG1 from Gρ,lhs to G1|p 66 with ρ = (f (δ . . .) = . . .) ∈
R. Moreover, by Definition 3.8 there also exists a non-collapsing term graph
homomorphism ψ2 : NGρ,rhs

−→ NG2 from Gρ,rhs to G2|p. By p′ ∈ RM ′′(H1) and
again Definition 3.8, there exists a non-collapsing term graph homomorphism
ψ3 : NGρ′,lhs

−→ NH1 from Gρ′,lhs to H1|p′ with Gρ′ ∈ R′′ and term(Gρ′) =

66exists due to p ∈ RM (G1)

5 A FIRST EFFICIENCY ANALYSIS 69

(f (δ . . .) . . . = . . .). Furthermore, there exists a term graph isomorphism $G

from G1[ψ1(rGρ,lhs
) ; z] to G2[ψ2(rGρ,rhs

) ; z], where z /∈ NG1 ∪NG2 ∪NH1 ∪
NH2 .
Due to the isomorphism $G and the application of the (deterministic) trans-
mapping, we gain an isomorphism $H from H1[ψ3(rGρ′,lhs

) ; z] to H2[n ; z]
with n ∈ NH2 and rH2n

p′ 67.
Let ξi = ψ3(yi) (alternatively ξi = rH1|p′.i+1

) for every i ∈ [mx] such that
ξi ∈ NG for some G ∈ T Gnr(SF(M ′′)). Intuitively, the translation via the
trans-mapping approaches at n1 with the context ξ1, . . . , ξmx and intermediate
term graph G, i.e. a call

transG,0(G1|n1 , ξ1, . . . , ξmx)

occurs during the computation of transGΠ,0(G1,Π1, . . . ,Πmx).
According to Lemma 5.15(a) there is a non-collapsing term graph homomor-
phism ψ4 from

transGρ′,lhs,k
(Gρ,rhs, y1, . . . , ymx)

G.C. & Cons. 5.10= Gρ′,rhs

to
transG,0(G2|p, ξ1, . . . , ξmx) = H2|p′ ,

since ψ2 and ψ3 constitute the required non-collapsing term graph homomor-
phisms 68.
Altogether, we have a term graph isomorphism $H and two non-collapsing
term graph homomorphisms ψ3 and ψ4 with ψ3(n) = ψ4(n) for every n ∈
NGp′,lhs

∩ NGp′,rhs
by Lemma 5.15(a). Using Definition 3.16 we can conclude

H1”| => ”M ′′H2.
Thus, the property is proven and consequently also H2 ∈ cl”|=>”M′′ ({Ge′θ}).
Additionally it is also well-defined, since trans on right hand sides is well-defined
by Lemma 5.11.

This completes the proof that the mapping is indeed well-typed and well-defined, however,
we still have to prove that the such defined mapping is surjective. We will prove this
property via induction on the length of the derivation Ge′θ”| => ”nM ′′G with n ∈ N and
G ∈ cl”|=>”M′′ ({Ge′θ}).

• Induction base: Let n = 0, then G = Ge′θ. However, we have already evidenced
transGΠ,0(Geθ,Π1, . . . ,Πmx) = G with GΠ = (Π, ∅, idΠ), hence G is the image of Geθ.

• Induction step: Assume that everyG′ ∈ cl”|=>”M′′ ({Ge′θ}) withGe′θ”| => ”nM ′′G′”| =>
”M ′′G is the image of some element of cl”|=>”M ({Geθ}) by induction hypothesis. Let

S = {H ∈ cl”|=>”M ({Geθ}) | transGΠ,0(H,Π1, . . . ,Πmx) = G′ }

67since for each prefix p< of p we have rG1w
(p<) implies rG2w

(p<) (by Definition 3.16 and $G), thus,

for each prefix p′< of p′ we also have rH1w
(p′<) implies rH2w

(p′<)

68The property (G2|p)|ψ2(x) = G|ψ3(x) and termG2|p(ψ2(x)) for every x ∈ Xk ∩NGρ,rhs is easily verified.

70 5.2 Proof of efficiency non-deterioration

and H ′ ∈ S be the maximal element of S with respect to ”| => ”∗M . Since ”| => ”∗M
is a total order on cl”|=>”M ({Geθ}) and S is non-empty by induction hypothesis, H ′

is guaranteed to exist. H ′ /∈ T∆, else H ′ Lem. 5.15(b)
= transGΠ,0(H

′,Π1, . . . ,Πmx) =
G′ ∈ T∆ which contradicts G′”| => ”M ′′G. Consequently, there exists H ′′ ∈
cl”|=>”M ({Geθ}) with H ′”| => ”MH ′′. Let p ∈ RM (H ′) be the position of the
redex that was used according to Definition 3.16 to construct H ′′. We perform a
case distinction on f = lH′(rH′|p).

– f ∈ m−1(2), then

transGΠ,0(H
′′,Π1, . . . ,Πmx) = transGΠ,0(H

′,Π1, . . . ,Πmx) = G′,

which was proven in the previous part of the proof. This, however, contradicts
the maximality of H ′, since H ′”| => ”MH ′′, hence this case is not possible.

– f ∈ m−1(1), then

G′ = transGΠ,0(H
′,Π1, . . . ,Πmx)”| => ”M ′′transGΠ,0(H

′′,Π1, . . . ,Πmx) = G,

by the previous part of the proof and the fact that ”| => ”M ′′ is deterministic.
Consequently, G is the image of H ′′.

Thus, the mapping is surjective, which completes the proof.

Example 5.18 (Illustrating this correspondence). In Figure 23, we computed the cor-
respondence for the modular tree transducer Mdoub of Example 5.4 and the macro tree
transducer with term graph rewrite rules M ′′

doub of Example 5.9. 2

Having established and illustrated the close correspondence on sentential form graphs,
we are ready to state the main theorem of this section. Informally this theorem assures
that the refined construction always yields a macro tree transducer which is at least as
efficient as the 2-modular tree transducer which was the input of the construction. Thus
according to our measure of efficiency the application of the refined construction is safe,
i.e. we can always apply it.

Theorem 5.19 (Efficiency non-deterioration). Let

M = (F,m,∆, e, R) ∈ ModTT(TOP,SUB)

and let M ′′ = (F ′,∆, e′, R′′) = C5.10(M) be the result of Construction 5.10 applied to M .
Then for every t ∈ T∆ : steps”|=>”M′′ (t) ≤ steps”|=>”M (t), thus, M ′′ is at least as efficient
as M .

Proof. Note that

steps”|=>”M (t) = card(cl”|=>”M ({Ge{x 7→t }}))− 1

and
steps”|=>”M′′ (t) = card(cl”|=>”M′′ ({Ge′{x 7→t }}))− 1.

In Lemma 5.17 we showed that there exists a surjective mapping between those two closed
sets, hence

card(cl”|=>”M ({Ge{x 7→t }})) ≥ card(cl”|=>”M′′ ({Ge′{x 7→t }})),

which immediately establishes the proposition.

5 A FIRST EFFICIENCY ANALYSIS 71

suba

δ s1 · · · sa

t1 · · · tk

Z⇒M

δ

suba suba

t1 · · · tk s1 · · · sa

Application of trans Application of trans

trans

suba ξ1 · · · ξmx

δ s1 · · · sa

t1 · · · tk

trans

δ ξ1 · · · ξmx

suba suba

t1 · · · tk s1 · · · sa

(5.4)
=

(5.3)
=

trans

δ trans trans

t1 · · · tk s1 · · · sa ξ1 · · · ξa ξa+1 · · · ξmx

δ

trans trans

suba suba

t1 · · · tk s1 · · · sa ξ1 · · · ξmx

(5.3)
=

(5.4)
=

δ

trans trans

t1 · · · tk

trans trans

s1 · · · sa ξ1 · · · ξa ξa+1 · · · ξmx

Figure 21: The local equality for the case δ ∈ ∆ \ {Π1, . . . ,Πa}.

72 5.2 Proof of efficiency non-deterioration

G1

Ω

f

t

p Z⇒M

Ω
G2

ψ2(Gρ,rhs)

p

Application of trans

=

Gρ,lhs Gρ,rhs

Application of trans

H1

Ω′

f

t ξ1 · · · ξmx

p′
Z⇒M ′′

Ω′
H2

ψ4(Gρ′,rhs)

p′

=

Gρ′,lhs Gρ′,rhs

ψ1 ψ2

ψ3 ψ4

Figure 22: Term graphs and their relationships; we use ψ(G) to denote the image of G
under ψ.

5 A FIRST EFFICIENCY ANALYSIS 73

Derivation using Z⇒M = Z⇒Mdoub

doub

σ

α α

Z⇒M

sub

σ

α α

σ

doub

α

doub

α

Z⇒M

σ

sub sub

α α σ

doub doub

α α

Z⇒M

σ

sub

α σ

doub doub

α α

doub

σ

α α

α Z⇒M ′′

σ

σ

doub doub

α α α

Z⇒M ′′

σ

σ

doub

α α

Z⇒M ′′

σ

σ

α

Derivation using Z⇒M ′′ = Z⇒M ′′
doub

Z⇒M

σ

sub

α σ

α doub

α

Z⇒M

σ

sub

α σ

α α

Z⇒M

σ

σ

α α

Derivation using Z⇒M = Z⇒Mdoub (continued)

Figure 23: Illustrating the correspondence; the arrows connect corresponding sentential
form graphs.

74

6 The extended construction

The previous sections established a construction, which given a 2-modular tree transducer
consisting of a top-down tree transducer module and a substitution module (in that order),
constructs a semantically equivalent macro tree transducer. In [Küh01] the possibility to
extend the indirect construction of [KGK01] was already discussed. Namely, the condition
that the first module is a top-down tree transducer module is lifted, so, roughly speaking,
the composition phase of the indirect construction has to be altered to cope with macro
tree transducers.

However, the composition of the translation induced by an unrestricted macro tree
transducer with a yield translation (the macro tree transducer at the composition phase
of [KGK01] realizes a yield function [FV98]) is, in general, not computable by a macro tree
transducer. We will prove this claim formally, but beforehand we introduce yield macro
tree transducers.

Definition 6.1 (Yield macro tree transducer). A macro tree transducer

M = ({yield(mx+1)},∆′, (yield xΠ1 . . . Πmx), R)

for some mx ∈ N is a yield macro tree transducer, if and only if there exists a partition
∆′ = ∆ ∪ {SUB(mx+1)} of ∆′ into the SUB-constructor and the output constructors with
∆ ∩ {SUB(mx+1)} = ∅, such that

({yield(mx+1)}, ∅, ∆, R \ {yield (SUB x1 . . . xmx+1) y1 . . . ymx = rhsM (yield,SUB)})

is a substitution module with substitution variables Π = {Π1, . . . ,Πmx} and R contains

yield(SUBx1 . . . xmx+1)y1 . . . ymx = yieldx1 (yieldx2 y1 . . . ymx) . . . (yieldxmx+1 y1 . . . ymx).

2

Example 6.2 (Yield macro tree transducer Myield). We construct the yield macro tree
transducer

Myield = ({yield(2)}, {SUB(2), S(1), Z(0)}, (yield x Z), R),

where R contains the equations

yield Z y1 = y1

yield (S x1) y1 = S (yield x1 y1)
yield (SUB x1 x2) y1 = yield x1 (yield x2 y1).

The set of substitution variables is Π = {Z} and the partition is {S,Z} ∪ {SUB}. 2

The proof uses results of formal language theory and there one usually defines classes
of translations computable by certain devices. We will introduce the classes of translations
for macro tree transducers, top-down tree transducers and yield macro tree transducers.

Definition 6.3 (Classes of induced translations). We denote the class of translations
computable by

• macro tree transducers as MAC = (τM |M is a macro tree transducer),

• top-down tree transducers as TOP = (τM |M is a top-down tree transducer) and

6 THE EXTENDED CONSTRUCTION 75

• yield macro tree transducers as YIELD = (τM |M is a yield macro tree transducer).

Additionally, we define the composition of classes of relations C1 and C2 to be

C1 ◦ C2 = (c1 ◦ c2 | c1 ∈ C1, c2 ∈ C2).

2

The next lemma states an important property of macro tree transducers, namely the
property that the class of translations induced by macro tree transducers is not closed
under composition. We will use this statement to derive a contradiction in the proof of
Lemma 6.5.

Lemma 6.4 (The class of macro tree transductions is not closed under composition).

MAC ⊂ MAC ◦MAC

Proof. The proof can be found in [EV85].

Lemma 6.5 (Composition of MAC and YIELD).

MAC ◦YIELD 6⊆ MAC

Proof. Assume MAC ◦YIELD ⊆ MAC. By classical results found in [EV85, Eng80]

MAC = MAC ◦ TOP (6.1)

and
TOP ◦YIELD = MAC. (6.2)

Note, that the class YIELD is defined differently in [Eng80] 69. Thus, we get the charac-
terization

MAC ◦YIELD
(6.1)
= MAC ◦ TOP ◦YIELD

(6.2)
= MAC ◦MAC ⊆ MAC,

which is a contradiction to Lemma 6.4. Hence, MAC ◦YIELD 6⊆ MAC.

Since the result of the construction shall be a macro tree transducer, we have to restrict
the first module appropriately. In [Voi01] a construction which composes a non-copying
macro tree transducer with a weakly single-use macro tree transducer was introduced. This
construction can be applied, because a second order term substitution (yield mapping)
can be induced by a weakly single-use macro tree transducer. We establish the mentioned
properties in the next definitions.

69There several SUB-constructors are used, but we have already seen that those might be emulated by
one SUB-constructor with maximal rank by simply supplying the corresponding substitution variables as
additional subtrees, i.e. we replace a term SUBk t t1 . . . tk by SUBmx t t1 . . . tk Πk+1 . . . Πmx for every
k ∈ [mx] with {Π1, . . . ,Πmx} being the substitution variables for some mx ∈ N. Additionally, all symbols
of the output signature were set to rank 0, however, the yield-mapping mapped the new nullary output
symbols to their original counterparts.

76

Definition 6.6 (Non-copying macro tree transducer module). A macro tree transducer
module (F,E,∆, R) is non-copying (in context parameters) or context-linear, if and only
if for every (lhs = rhs) ∈ R and i ∈ N+ the condition

#yi(rhs) ≤ 1

holds 70. Obviously top-down tree transducer modules are always non-copying. 2

Definition 6.7 (Weakly single-use macro tree transducer). A macro tree transducer
M = (F,∆, e, R) is called weakly single-use, if and only if for every k, r ∈ N,δ ∈ ∆(r),
f ∈ F (r+1) and xi ∈ Xk a call (f xi . . .) occurs in at most one right hand side of
{ rhsM (f ′, δ) | (f ′ (δ . . .) . . . = rhsM (f ′, δ)) ∈ R, f ′ ∈ F }, and there at most once. 2

Example 6.8 (Non-copying and weakly single-use). We will illustrate both properties on
examples.

• The macro tree transducer M ′
rev of Example 4.2 (considered as a macro tree trans-

ducer module) is non-copying, while the second module of the modular tree trans-
ducer Mfact in Example 3.4 is not non-copying (or alternatively copying) as well as
M ′

doub of Example 5.4.

• The macro tree transducer M ′
rev of Example 4.2 is weakly single-use, whereas the

macro tree transducer M ′
doub in Example 5.4 is not weakly single-use.

• Any yield macro tree transducer is weakly single-use.

2

The construction of [Voi01] requires a non-copying macro tree transducer M1 and a
weakly single-use macro tree transducer M2 and outputs a macro tree transducer, which
induces the composition of the induced translations of M1 and M2. Since we will apply the
method of [KGK01] extended to cope with non-copying macro tree transducer modules as
the first module, we will introduce another distinguished form of a top-down tree trans-
ducer module. This type of top-down tree transducer module is created as an intermediate
result during the construction process, however, in the direct construction stated in the
next subsection interpretation modules will not occur.

Definition 6.9 (Interpretation module). An interpretation module is a top-down tree
transducer module ({int(1)}, E,∆, R), for which there exists a partition of ∆ = Σ ∪ CF
into regular constructors Σ and frozen function symbols CF with Σ ∩ CF = ∅ and an
injective interpretation mapping ı : CF −→ E, such that

• for every n ∈ N and σ ∈ Σ(n)

(int(σ x1 . . . xn) = σ (int x1) . . . (int xn)) ∈ R

• and for every n ∈ N and f ∈ C(n)
F

(int(f x1 . . . xn) = ı(f) (int x1) . . . (int xn)) ∈ R.

2

70We will also call macro tree transducers non-copying, if they fulfill the presented linearity condition.

6 THE EXTENDED CONSTRUCTION 77

6.1 Extended accumulation technique

In this subsection we will instantiate the construction of [Voi01] to gain an extended con-
struction, which will coincide with Construction 4.5 when applied to suitable 2-modular
tree transducers, of which the first module is a top-down tree transducer module. The ex-
ample to follow will be used throughout this subsection and all the presented constructions
are illustrated on this particular example.

The syntactic class of all 2-modular tree transducers, of which the first module is
non-copying and the second is a substitution module, is denoted ModTT(MACnc,SUB),
while the syntactic class of all 2-modular tree transducers, of which the first module is
an interpretation module and the second module is a substitution module, is denoted
ModTT(INT,SUB).

Example 6.10 (Sorting the stripes). We define the 2-modular tree transducer

Musa = ({coll(2), app(2)}, {(coll, 1), (app, 2)}, {W (1), R(1), |(1), N (0)}, (coll x N), P),

where P contains the equations:

coll N y1 = y1 app N y1 = y1

coll (| x1) y1 = app y1 (coll x1 N) app (| x1) y1 = | (app x1 y1)
coll (R x1) y1 = R (coll x1 y1) app (R x1) y1 = R (app x1 y1)
coll (W x1) y1 = coll x1 (W y1) app (W x1) y1 = W (app x1 y1).

Obviously, Musa ∈ ModTT(MACnc,SUB). 2

Lemma 6.11 (Extended Lemma 11 of [KGK01]). Let M ∈ ModTT(MACnc,SUB) with
substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N. Then there exist a non-
copying macro tree transducer M1 and a modular tree transducer M2 ∈ ModTT(INT,SUB)
with substitution variables Π, such that

τM = τM1 ◦ τM2 .

Proof. Let M = (F,m,∆, e, R) consist of the modules m1 = (m−1(1),m−1(2),∆, R1) and
m2 = (m−1(2), ∅,∆, R2) (in that order), where m1 is non-copying and m2 is a substitution
module with substitution variables Π. We construct the non-copying macro tree transducer
M1 by freezing external function symbols in m1, thus let ∆′ = ∆ ∪ {SUB(mx+1)} in

M1 = (m−1(1),∆′, e, R′),

where SUB /∈ ∆ is a new constructor and R′ contains for every k, r ∈ N, f ∈ m−1(1)(r+1),
δ ∈ ∆(k) and (f (δ x1 . . . xk) y1 . . . yr = rhsM (f, δ)) ∈ R1, the equation

f (δ x1 . . . xk) y1 . . . yr = freezek,r(rhsM (f, δ)).

For every k, r ∈ N the mapping

freezek,r : RHS(1, F,m,∆, Xk, Yr) −→ RHS(m−1(1),∆′, Xk, Yr)

is defined by structural recursion over its only argument.

• for y ∈ Yr:
freezek,r(y) = y (6.3)

78 6.1 Extended accumulation technique

• for a ∈ N, δ ∈ ∆(a) and s1, . . . , sa ∈ RHS(1, F,m,∆, Xk, Yr):

freezek,r(δ s1 . . . sa) = (δ freezek,r(s1) . . . freezek,r(sa)) (6.4)

• for a ∈ N, f ∈ m−1(1)(a+1)
, x ∈ Xk and s1, . . . , sa ∈ RHS(1, F,m,∆, Xk, Yr):

freezek,r(f x s1 . . . sa) = (f x freezek,r(s1) . . . freezek,r(sa)) (6.5)

• for a ∈ N, suba ∈ m−1(2)(a+1) and s, s1, . . . , sa ∈ RHS(1, F,m,∆, Xk, Yr):

freezek,r(suba s s1 . . . sa) = SUB freezek,r(s) freezek,r(s1) . . . freezek,r(sa)Πa+1 . . .Πmx

(6.6)

Thus, for every k, r ∈ N, δ ∈ ∆(k), f ∈ m−1(1)(r+1) and (f (δ x1 . . . xk) y1 . . . yr =
rhsM (f, δ)) ∈ R no function symbol sub ∈ m−1(2) occurs in freezek,r(rhsM (f, δ)) and also
#yi(freezek,r(rhsM (f, δ))) ≤ 1 for every i ∈ [r], since no context variable is duplicated.
Consequently, M1 is a well-defined non-copying macro tree transducer.

The 2-modular tree transducer M2 is defined by

M2 = ({int(1), sub(mx+1)}, {(int, 1), (sub, 2)}, ∆′, (int x), R′′),

where {sub} = m−1(2)(mx+1)
, int /∈ F and R′′ contains

• sub(SUBx1 . . . xmx+1)y1 . . . ymx = SUB(subx1 y1 . . . ymx) . . . (subxmx+1 y1 . . . ymx)
71,

• the equation (sub (δ x1 . . . xk) y1 . . . ymx = rhsM (sub, δ)) of R2 for every k ∈ N and
δ ∈ ∆(k),

• for every k ∈ N and δ ∈ ∆(k), the equation int (δ x1 . . . xk) = (δ (intx1) . . . (intxk))
and

• the equation int (SUB x1 . . . xmx+1) = sub (int x1) . . . (int xmx+1).

Thus, M2 is a 2-modular tree transducer consisting of an interpretation module (partition
∆∪{SUB(mx+1)} and mapping ı = {(SUB, sub)}) together with a substitution module with
substitution variables Π. In the following we will use the shorthand (M1,M2) = C6.11(M)
to denote the application of this construction to M . The proof that τM = τM1 ◦ τM2 is
then immediate from Lemma 5.1 of [EV91].

Example 6.12 (Sorting the stripes, continued). Let Musa be the 2-modular tree trans-
ducer of Example 6.10. Then C6.11(Musa) = (Musa,1,Musa,2) with

Musa,1 = ({coll(2)}, {W (1), R(1), |(1), N (0),SUB(2)}, (coll x N), P ′),

where P ′ contains the equations:
71This equation is only required to satisfy the totality restriction in accordance with the restrictions on

right hand sides of substitution modules. In particular, outputting an arbitrary output symbol (dummy
symbol) is not possible, since the second module of M2 shall be a substitution module.

6 THE EXTENDED CONSTRUCTION 79

collN y1 = freeze0,1(y1)
(6.3)
= y1

coll (| x1) y1 = freeze1,1(app y1 (coll x1 N))
(6.6)
= SUB freeze1,1(y1) freeze1,1(coll x1 N)

(6.3)
= SUB y1 freeze1,1(coll x1 N)

(6.5)
= SUB y1 coll x1 freeze1,1(N)

(6.4)
= SUB y1 coll x1 N

coll (R x1) y1 = freeze1,1(R (coll x1 y1))
(6.4) & (6.5) & (6.3)

= R (coll x1 y1)

coll (W x1) y1 = freeze1,1(coll x1 (W y1))
(6.5) & (6.4) & (6.3)

= coll x1 (W y1).

Obviously, Musa,1 is a non-copying macro tree transducer. Musa,2 is

({int(1), app(2)}, {(int, 1), (sub, 2)}, {W (1), R(1), |(1), N (0),SUB(2)}, (int x), P ′′),

where P ′′ contains:
app N y1 = y1 int N = N
app (| x1) y1 = | (app x1 y1) int (| x1) = | (int x1)
app (R x1) y1 = R (app x1 y1) int (R x1) = R (int x1)
app (W x1) y1 = W (app x1 y1) int (W x1) = W (int x1)

along with the two equations

app(SUBx1x2)y1 = SUB(appx1y1)(appx2y1) and int(SUBx1x2) = app(intx1)(intx2).

Apparently, Musa,2 ∈ ModTT(INT,SUB). 2

Lemma 6.13 (Extended Lemma 13 of [KGK01]). Let

M2 = ({int(1), sub(mx+1)}, {(int, 1), (sub, 2)},∆′, e, R) ∈ ModTT(INT,SUB)

with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N and an interpretation
mapping ı = {(SUB, sub)}. Then there exists a weakly single-use (yield) macro tree trans-
ducer M ′

2 with
τM2 = τM ′

2
.

Proof. The macro tree transducer M ′
2 is defined by

M ′
2 = ({sub(mx+1)},∆′, e′, R′),

where e′ = (sub xΠ1 . . . Πmx) and R′ contains

• the equation (sub (δ x1 . . . xk) y1 . . . ymx = rhsM2(sub, δ)) ∈ R for every k ∈ N and
δ ∈ ∆(k) \ {SUB} and

• the equation

sub(SUBx1 . . . xmx+1)y1 . . . ymx = subx1(subx2y1 . . . ymx) . . . (subxmx+1y1 . . . ymx).

80 6.1 Extended accumulation technique

Obviously, M ′
2 is a weakly single-use (yield) macro tree transducer by Definition 4.1. We

will use M ′
2 = C 6.13(M2) to denote the application of this construction. The equivalence

of the induced translations, i.e. τM2 = τM ′
2
, is immediate from [EV85, FV98], since we

have already proven in Lemma 4.4 that substitution modules provide (first order term)
substitutions 72, so together with the interpretation module M2 realizes a yield-mapping
73, which was shown to be implemented by M ′ 74.

Example 6.14 (Sorting the stripes (3)). Let Musa,2 be the 2-modular tree transducer of
Example 6.12. Then C6.13(Musa,2) = M ′

usa,2 with

M ′
usa,2 = ({app(2)}, {W (1), R(1), |(1), N (0),SUB(2)}, (app x N), P2),

where P2 contains:

app N y1 = y1

app (| x1) y1 = | (app x1 y1)
app (R x1) y1 = R (app x1 y1)
app (W x1) y1 = W (app x1 y1)
app (SUB x1 x2) y1 = app x1 (app x2 y1).

M ′
usa,2 is weakly single-use. 2

The heart of the extended construction is the composition of a non-copying macro tree
transducer with a weakly single-use macro tree transducer. In [Voi01] a direct construction
for the given scenario is presented. Another presentation of the construction can be
found in [VK01], but we prefer to use the version of [Voi01], because this way the gained
construction will subsume Construction 4.5.

Before stating Construction 3.2 of [Voi01], we give a brief overview and the underlying
idea of this construction. This is basically an excerpt of [Voi01], where elucidation on
every single detail of the construction can be found.

The construction is a generalization of a classical construction of [EV85], which was
used to prove MAC◦TOP ⊆ MAC. Given sets of function symbols F1 and F2 of the macro
tree transducers M1 and M2, respectively, the constructed macro tree transducer M uses
paired function symbols (f, g) ∈ F1 × F2 and expressions like (f, g) x ? · · ·? to correspond
to the composition expression 75 g (f x ? · · ·?) ? · · ·?. Obviously, we can keep any context
parameter of g, such that

(f, g) x ? · · ·? z1 . . . zκ corresponds to g (f x ? · · ·?) z1 . . . zκ,

if κ ∈ N, g ∈ F
(κ+1)
2 . Following the idea of [EV85], we have to provide all translations

of context parameters y1, . . . , yr with r ∈ N of f as context parameters to (f, g). This is
necessary, because the call (f xy1 . . . yr) might reduce to some yj with j ∈ [r] and (gyj . . .)

72The base function of the yield-mapping.
73In Lemma 6.5 we have already elucidated on the slight differences encountered in [EV85] as well as

[FV98].
74Alternatively, in [KGK01] the proof is spelled out with the marginal difference that the substitution

module might possibly contain several function symbols, which are preserved in the result.
75Strictly speaking, the correspondence is established on sentential forms, i.e. with concrete input and

output tree substituted for the input as well as output subtree variables.

6 THE EXTENDED CONSTRUCTION 81

does not constitute a valid right hand side of a macro tree transducer, thus (g yj . . .) is
supplied as context parameter. The translation of yj via g is denoted y1,g, thus

(f, g)xy1,g1 . . . yr,g1 y1,g2 . . . yr,gcard(F2)
z1 . . . zκ corresponds to g (f xy1 . . . yr)z1 . . . zκ,

where F2 = {g1, . . . , gcard(F2)}. Consequently, the rank of the new function symbol (f, g)
is card(F2) ∗ r + κ+ 1.

The right hand side of the new paired function symbol (f, g) at δ is constructed by
rewriting the right hand side rhsM1(f, δ) of f at a constructor δ using the equations
of M2. This rewriting is straightforward, if rhsM1(f, δ) consists of constructors solely.
If, however, a context parameter is encountered, then we output the appropriate (pre-
translated) supplied context parameter, i.e. if during the rewriting process a function
symbol g′ ∈ F2 approaches at some yj , then we output yj,g′ . Finally, during rewriting the
right hand side a function symbol g′ ∈ F (κ′+1)

2 with κ′ ∈ N might also hit calls to function
symbols, like (f ′ xi φ1 . . . φa) for some a ∈ N, f ′ ∈ F

(a+1)
1 , with context parameters

φ1, . . . , φa. By the established correspondence we imagine that we should perform the
following rewrite:

g′ (f ′ xi φ1 . . . φa) z1 . . . zκ′ = (f ′, g′) xi (g′ φ1 ? · · ·?) . . . (g′ φa ? · · ·?) z1 . . . zκ′ .

In case M2 is a top-down tree transducer we are done, since g′ does not have context
parameters. Otherwise, we somehow need to determine the values at the question mark
positions and we will use designated function symbols to accomplish this task, namely the
function symbol (hf , lg) 76 shall compute the l-th context parameter of g when g (during
the derivation process of M2) is applied to the h-th context parameter of f . Accordingly,
we should demand that we can actually (uniquely) determine the l-th context parameter
of g in the situation mentioned above. Therefore, we restrict the macro tree transducer
M1 to be non-copying 77 and M2 to be weakly single-use. The latter property allows us
to determine the sought l-th context parameter (of g) in a bottom-up fashion starting at
the unique occurrence of the value stored in the h-th context parameter of f in the output
tree of M1 in the following manner:

• Assume a call (g′ s η1 . . . ηκ′) and s = yh, i.e. yh occurs at the root of s, then if
g′ = g, the sought context parameter is ηl, otherwise we output some dummy value.

• Again assume a call (g′ sη1 . . . ηκ′), but yh occurs nested under some output symbol
δ of M1, say as the i-th descendant of δ. Then there is at most one way, how a state
g′′ ∈ F

(r+1)
2 with r ∈ N can reach yh, namely by the unique; if existing; (due to

the weakly single-use property) call to (g′′ xi χ1 . . . χr) in a right hand side at δ.
Thus, we can determine the required context parameters depending on the context
parameters occurring in χl. These context parameters can be determined in a similar
fashion, thereby walking upwards in the output tree of M1; eventually reaching the
root.

We note that this explanation is not complete, nor is it readily applicable. Additional
effort is required to ensure that the above mentioned strategy can be implemented by a

76This shall not denote indexed integers, rather we use it as a shorthand for ((f, h), (g, l)).
77Consequently, any subtree stored in a context variable is outputted at most once by M1.

82 6.1 Extended accumulation technique

macro tree transducer, which as such is not able to compute the normal form of some term
and then compute the sought context parameter in a bottom-up fashion starting at the
image of some context parameter of M1.

We conclude our overview by stating the general purpose of the mappings used in the
construction. The trans-mappings perform the rewriting of the right hand sides of M1 in
combination with the thru-mappings, which perform the rewrites using equations of the
right hand sides of M2. The unfold-mappings compute the context parameter translations
provided and, finally, the ctx-mappings generate the right hand sides of the auxiliary
function symbols, like (hf , lg).

Construction 6.15 (Construction 3.2 of [Voi01]). Let M1 = (F1,∆, e1, R1) and M ′
2 =

(F2,∆, e2, R2) be macro tree transducers, such that M1 is non-copying and M ′
2 is weakly

single-use. We construct the macro tree transducer M = (F,∆, e, R) = C6.15(M1,M
′
2) as

follows:
Let µ = card(F2) and fix some ordering of states in F2, such that F2 = {g1, . . . , gµ}.

For 1 ≤ i ≤ µ, let κi ∈ N be such that gi ∈ F2
(κi+1). Additionally, let nil ∈ ∆(0) be

some dummy output symbol and ZF2 = {zg1,1, . . . , zg1,κ1 , . . . , zgµ,1, . . . , zgµ,κµ}. Then the
components of M are obtained as follows:

• F = { (f, g)(r∗µ+κ+1) | r, κ ∈ N, f ∈ F1
(r+1), g ∈ F2

(κ+1) }∪
∪ { (hf , lg)

(r∗µ+card(ZF2
)+1) | r, κ ∈ N, f ∈ F1

(r+1), h ∈ [r], g ∈ F2
(κ+1), l ∈ [κ] }

• e = thru1,0,1,0,∅(e2, e1)

• R contains:

– for k, r, κ ∈ N, δ ∈ ∆(k), f ∈ F1
(r+1) and g ∈ F2

(κ+1), the rule:

(f, g) (δ x1 . . . xk) y1,g1 . . . yr,gµ z1 . . . zκ = transg,k,r,Zκ(rhsM1(f, δ), z1, . . . , zκ),

if R1 contains the rule f (δ x1 . . . xk) y1 . . . yr = rhsM1(f, δ)

– for k, r, κ ∈ N, δ ∈ ∆(k), f ∈ F1
(r+1), h ∈ [r] , g ∈ F2

(κ+1) and l ∈ [κ], the rule:

(hf , lg) (δ x1 . . . xk) y1,g1 . . . yr,gµ zg1,1 . . . zpµ,κµ = ψ,

if R1 contains the rule f (δ x1 . . . xk) y1 . . . yr = rhsM1(f, δ), where ψ = nil,
if rhsM1(f, δ) ∈ RHS(F1,∆, Xk, Yr) does not contain the context variable yh;
otherwise ψ = ctxg,rhsM1

(f,δ),k,r(p, l) with p ∈ occ(rhsM1(f, δ)) as the unique
occurrence of yh in rhsM1(f, δ) (M1 is non-copying, thus #yh(rhsM1(f, δ)) ≤ 1!).

For every k, r ∈ N and finite set of variables V , the following set of mappings is defined
by simultaneous recursion.

{ transg,k,r,V | g ∈ F2 } ∪ {unfoldf(xi),k,r,V | f ∈ F1, xi ∈ Xk }∪
∪ { thrua,κ,k,r,V | a ∈ ar(∆), (κ+ 1) ∈ ar(F2) or a = 1, κ = 0 }

With RHSk,r,V = RHS(F,∆, Xk, {y1,g1 , . . . , yr,gµ} ∪ V), these have the following types:

• for κ ∈ N, g ∈ F2
(κ+1):

transg,k,r,V : RHS(F1,∆, Xk, Yr)× (RHSk,r,V)κ −→ RHSk,r,V

6 THE EXTENDED CONSTRUCTION 83

• for a ∈ ar(∆), (κ+ 1) ∈ ar(F2) or a = 1, κ = 0:

thrua,κ,k,r,V : RHS(F2,∆, Xa, Yκ)×RHS(F1,∆, Xk, Yr)a×(RHSk,r,V)κ −→ RHSk,r,V

• for a ∈ N, f ∈ F1
(a+1) and xi ∈ Xk:

unfoldf(xi),k,r,V : [a]×F2×P([a]×F2)×RHS(F1,∆, Xk, Yr)a× (RHSk,r,V)card(ZF2
)

−→ RHSk,r,V

For every κ ∈ N and g ∈ F2
(κ+1), the mapping transg,k,r,V is defined with %1, . . . , %κ ∈

RHSk,r,V as follows:

• for yh ∈ Yr
transg,k,r,V (yh, %1, . . . , %κ) = yh,g (6.7)

• for a ∈ N, f ∈ F1
(a+1), xi ∈ Xk and s1, . . . , sa ∈ RHS(F1,∆, Xk, Yr), where for

every κ′ ∈ N, g′ ∈ F2
(κ′+1) and l′ ∈ [κ′], we have %g′,l′ = (if g′ = g then %l′ else nil)

transg,k,r,V (f xi s1 . . . sa, %1, . . . , %κ)
= (f, g) xi unfoldf(xi),k,r,V (1, g1, ∅, s1, . . . , sa, %g1,1, . . . , %gµ,κµ)

. . .

unfoldf(xi),k,r,V (a, gµ, ∅, s1, . . . , sa, %g1,1, . . . , %gµ,κµ)
%1 . . . %κ

(6.8)

• for a ∈ N, δ ∈ ∆(a), s1, . . . , sa ∈ RHS(F1,∆, Xk, Yr) and rule g(δx1 . . . xa)y1 . . . yκ =
rhsM ′

2
(g, δ) in R2, with rhsM ′

2
(p, δ) ∈ RHS(F2,∆, Xa, Yκ)

transg,k,r,V ((δ s1 . . . sa), %1, . . . , %κ) = thrua,κ,k,r,V (rhsM ′
2
(g, δ), s1, . . . , sa, %1, . . . , %κ)

(6.9)

For every a ∈ ar(∆), (κ+ 1) ∈ ar(F2) or a = 1, κ = 0, the mapping thrua,κ,k,r,V is defined
with s1, . . . , sa ∈ RHS(F1,∆, Xk, Yr) and %1, . . . , %κ ∈ RHSk,r,V as follows:

• for yl ∈ Yκ
thrua,κ,k,r,V (yl, s1, . . . , sa, %1, . . . , %κ) = %l (6.10)

• for n ∈ N, δ ∈ ∆(n) and φ1, . . . , φn ∈ RHS(F2,∆, Xa, Yκ)

thrua,κ,k,r,V ((δ φ1, . . . , φn), s1, . . . , sa, %1, . . . , %κ)
= (δ thrua,κ,k,r,V (φ1, s1, . . . , sa, %1, . . . , %κ)

. . .

thrua,κ,k,r,V (φn, s1, . . . , sa, %1, . . . , %κ))

(6.11)

• for n ∈ N, g ∈ F2
(n+1), xi ∈ Xa and φ1, . . . , φn ∈ RHS(F2,∆, Xa, Yκ)

thrua,κ,k,r,V (g xi φ1 . . . φn, s1, . . . , sa, %1, . . . , %κ)
= transg,k,r,V (si, thrua,κ,k,r,V (φ1, s1, . . . , sa, %1, . . . , %κ),

. . . ,

thrua,κ,k,r,V (φn, s1, . . . , sa, %1, . . . , %κ))

(6.12)

84 6.1 Extended accumulation technique

For every a ∈ N, f ∈ F1
(a+1), xi ∈ Xk, the mapping unfoldf(xi),k,r,V is defined with h ∈

[a], g ∈ F2, S ⊆ ([a]×F2), s1, . . . , sa ∈ RHS(F1,∆, Xk, Yr) and %g1,1, . . . , %gµ,κµ ∈ RHSk,r,V
as follows:

• if (h, g) ∈ S

unfoldf(xi),k,r,V (h, g, S, s1, . . . , sa, %g1,1, . . . , %gµ,κµ) = nil (6.13)

• if (h, g) /∈ S, κ ∈ N and g ∈ F2
(κ+1)

unfoldf(xi),k,r,V (h, g, S, s1, . . . , sa, %g1,1, . . . , %gµ,κµ)

= transg,k,r,V (sh,
((hf , 1g) xi unfoldf(xi),k,r,V (1, g1, S ∪ {(h, g)}, s1, . . . , sa, %g1,1, . . . , %gµ,κµ)

. . .

unfoldf(xi),k,r,V (a, gµ, S ∪ {(h, g)}, s1, . . . , sa, %g1,1, . . . , %gµ,κµ)
%g1,1 . . . %gµ,κµ),

. . . ,

((hf , κg) xi unfoldf(xi),k,r,V (1, g1, S ∪ {(h, g)}, s1, . . . , sa, %g1,1, . . . , %gµ,κµ)
. . .

unfoldf(xi),k,r,V (a, gµ, S ∪ {(h, g)}, s1, . . . , sa, %g1,1, . . . , %gµ,κµ)
%g1,1 . . . %gµ,κµ))

(6.14)

Using the mappings defined above, we additionally define for every k, r ∈ N and s ∈
RHS(F1,∆, Xk, Yr), the following set of mappings by simultaneous recursion:

{ ctxg,s,k,r : { p ∈ occ(s) | labels(p) /∈ Xk } × [κ] −→ RHSk,r,ZF2
| κ ∈ N, g ∈ F2

(κ+1) }

For every κ ∈ N, g ∈ F2
(κ+1), the mapping ctxg,s,k,r is defined with l ∈ [κ] as follows:

•
ctxg,s,k,r(ε, l) = zg,l (6.15)

• in case labels(p) = δ with p ∈ occ(s), a ∈ N, δ ∈ ∆(a) and i ∈ [a], if, with κ′ ∈
N, g′ ∈ F2

(κ′+1) and φ1, . . . , φκ ∈ RHS(F2,∆, Xa, Yκ′), the only occurrence of a
(g xi . . .) call in the δ-equations of the weakly single-use M ′

2 looks as follows:

g′ (δ x1 . . . xa) y1 . . . yκ′ = · · · (g xi φ1 . . . φκ) · · · ,

then

ctxg,s,k,r(p.i, l) = thrua,κ′,k,r,ZF2
(φl, s|p.1, . . . , s|p.a,

ctxg′,s,k,r(p, 1), . . . , ctxg′,s,k,r(p, κ′))
(6.16)

If no such call exists in the δ-rules of M ′
2, then

ctxg,s,k,r(p.i, l) = nil (6.17)

6 THE EXTENDED CONSTRUCTION 85

• in case labels(p) = f with p ∈ occ(s), a ∈ N, f ∈ F1
(a+1), labels(p.1) = xb ∈ Xk and

2 ≤ i ≤ a+ 1:

ctxg,s,k,r(p.i, l)
= ((i− 1)f , lg) xb

unfoldf(xb),k,r,ZF2
(1, g1, {(i− 1, g)}, s|p.2, . . . , s|p.a+1, ctxg1,s,k,r(p, 1),

. . . ,

ctxgµ,s,k,r(p, κµ))
. . .

unfoldf(xb),k,r,ZF2
(a, gµ, {(i− 1, g)}, s|p.2, . . . , s|p.a+1, ctxg1,s,k,r(p, 1),

. . . ,

ctxgµ,s,k,r(p, κµ))
ctxg1,s,k,r(p, 1) . . . ctxgµ,s,k,r(p, κµ)

(6.18)

2

Theorem 6.16 (Correctness of Construction 6.15). Let M1 and M ′
2 be macro tree trans-

ducers, such that M1 is non-copying and M ′
2 is weakly single-use, and, furthermore, let

M = C6.15(M1,M
′
2) be the macro tree transducer constructed by Construction 6.15 applied

to M1 and M ′
2. Then

τM1 ◦ τM ′
2

= τM .

Proof. The proof of the above theorem can be found in the appendix of [Voi01].

Example 6.17 (Sorting the stripes (3)). Let Musa,1 be the non-copying macro tree trans-
ducer of Example 6.12 and M ′

usa,2 be the weakly single-use (yield) macro tree transducer
of Example 6.14. Then C6.15(Musa,1,M

′
usa,2) = M ′

usa, which is 78

M ′
usa = ({(coll, app)(3), (1coll, 1app)

(3)}, {W (1), R(1), |(1), N (0)},
((coll, app) x ((1coll, 1app) x N N)N), P)

with equations:

(coll, app)N y1,app z1 = y1,app

(coll, app) (| x1) y1,app z1 = y1,app

(coll, app) (R x1) y1,app z1 = R ((coll, app) x1 y1,app z1)
(coll, app) (W x1) y1,app z1 = (coll, app) x1 (W y1,app) z1

(1coll, 1app)N y1,app zapp,1 = zapp,1

(1coll, 1app) (| x1) y1,app zapp,1 = (coll, app) x1 ((1coll, 1app) x1 N zapp,1) zapp,1

(1coll, 1app) (R x1) y1,app zapp,1 = (1coll, 1app) x1 N zapp,1

(1coll, 1app) (W x1) y1,app zapp,1 = (1coll, 1app) x1 N zapp,1.

78Strictly speaking, M ′
usa should also have the constructor SUB and equations at SUB, but since SUB

does not appear in the input and output, we dropped that constructor from the specification. This is also
evident from [Voi01], where the input and output signatures can be different.

86 6.1 Extended accumulation technique

To illustrate the generation, we compute:

(coll, app) (W x1) y1,app z1

= transapp,1,1,{z1}((coll x1 (Wy1)), z1)
(6.8)
= (coll, app) x1 unfoldcoll(x1),1,1,{z1}(1, app, ∅, (W y1), z1) z1

(6.14)
= (coll, app) x1 transapp,1,1,{z1}((W y1),

((1coll, 1app) x1 unfoldcoll(x1),1,1,{z1}(1, app, {(1, app)}, (W y1), z1) z1)) z1
(6.9)
= (coll, app) x1 thru1,1,1,1,{z1}((W (app x1 y1)), y1

((1coll, 1app) x1 unfoldcoll(x1),1,1,{z1}(1, app, {(1, app)}, (W y1), z1) z1)) z1
(6.11)
= (coll, app) x1 (W thru1,1,1,1,{z1}((app x1 y1), y1

((1coll, 1app) x1 unfoldcoll(x1),1,1,{z1}(1, app, {(1, app)}, (W y1), z1) z1))) z1
(6.12)
= (coll, app) x1 (W transapp,1,1,{z1}(y1, thru1,1,1,1,{z1}(y1, y1

((1coll, 1app) x1 unfoldcoll(x1),1,1,{z1}(1, app, {(1, app)}, (W y1), z1) z1)))) z1
(6.7)
= (coll, app) x1 (W y1,app) z1

and

(1coll, 1app) (| x1) y1,app zapp,1

= ctxapp,(SUB y1 (coll x1 N)),1,1(1, 1)
(6.16)
= thru2,1,1,1,{zapp,1}((app x2 y1), y1, (coll x1 N), ctxapp,(SUB y1 (coll x1 N)),1,1(ε, 1))

(6.15)
= thru2,1,1,1,{zapp,1}((app x2 y1), y1, (coll x1 N), zapp,1)

(6.12)
= transapp,1,1,{zapp,1}((coll x1 N), thru2,1,1,1,{zapp,1}(y1, y1, (coll x1 N), zapp,1))

(6.10)
= transapp,1,1,{zapp,1}((coll x1 N), zapp,1)

(6.8)
= (coll, app) x1 unfoldcoll(x1),1,1,{zapp,1}(1, app, ∅, N, zapp,1) zapp,1

(6.14)
= (coll, app) x1 transapp,1,1,{zapp,1}(N, ((1coll, 1app) x1

unfoldcoll(x1),1,1,{zapp,1}(1, app, {(1, app)}, N, zapp,1) zapp,1)) zapp,1

(6.13)
= (coll, app) x1 transapp,1,1,{zapp,1}(N, ((1coll, 1app) x1 N zapp,1)) zapp,1

(6.9)
= (coll, app) x1 thru0,1,1,1,{zapp,1}(y1, ((1coll, 1app) x1 N zapp,1)) zapp,1

(6.10)
= (coll, app) x1 ((1coll, 1app) x1 N zapp,1) zapp,1.

Theorem 6.18 (Correctness of the extended indirect construction). Let M ∈ ModTT(MACnc,SUB)
be a 2-modular tree transducer, of which the first module is non-copying and the second
module is a substitution module. Then there exists a macro tree transducer M ′, such that

τM = τM ′ .

6 THE EXTENDED CONSTRUCTION 87

Proof. Let (M1,M2) = C6.11(M) and M ′
2 = C6.13(M2) and, finally, M ′ = C6.15(M1,M

′
2).

By Lemma 6.11, Lemma 6.13 and Theorem 6.16 we gain

τM
Lem. 6.11= τM1 ◦ τM2

Lem. 6.13= τM1 ◦ τM ′
2

Thm. 6.16= τM ′ .

Theorem 6.19 (Characterization theorem).

(τM |M ∈ ModTT(MACnc,SUB)) = MAC = (τM |M ∈ ModTT(TOP,SUB))

Proof.

(τM |M ∈ ModTT(MACnc,SUB))
Thm. 6.18

⊆ MAC

holds by Theorem 6.18,

MAC ⊆ (τM |M ∈ ModTT(TOP,SUB))

was proven in [KGK01] and, since ModTT(TOP,SUB) ⊂ ModTT(MACnc,SUB), imme-
diately also

(τM |M ∈ ModTT(TOP,SUB)) ⊆ (τM |M ∈ ModTT(MACnc,SUB)).

Lemma 6.20 (Composing the constructions C6.11 and C6.13). Let

M = (F,m,∆, e, R) ∈ ModTT(MACnc,SUB)

with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N. Then there exists a non-
copying macro tree transducer M1 and a weakly single-use (yield) macro tree transducer
M ′

2, such that
τM = τM1 ◦ τM ′

2
.

Proof. Let (M1,M2) = C6.11(M) and M ′
2 = C6.13(M2). We want to provide a construc-

tion, such that (M1,M
′
2) = C6.20(M). Obviously the first component M1 is constructed

according to Lemma 6.11, while the second is constructed according to Lemma 6.11 and
Lemma 6.13.

The weakly single-use (yield) macro tree transducer M ′
2 is defined as

M ′
2 = ({sub(mx+1)}, ∆ ∪ {SUB(mx+1)}, (sub xΠ1 . . . Πmx), R′

2),

where sub ∈ m−1(2)(mx+1) and R′
2 contains

• for every r ∈ N and δ ∈ ∆(r) \ Π by Construction C6.13 and Definition 4.1 the
equation

sub (δ x1 . . . xr) y1 . . . ymx = δ (sub x1 y1 . . . ymx) . . . (sub xr y1 . . . ymx), (6.19)

• for every j ∈ [mx] and Πj ∈ Π by Construction C6.13 and Definition 4.1 the equation

sub Πj y1 . . . ymx = yj (6.20)

88 6.1 Extended accumulation technique

• and by Construction C6.13 the equation

sub(SUBx1 . . . xmx+1)y1 . . . ymx = subx1(subx2y1 . . . ymx) . . . (subxmx+1y1 . . . ymx).
(6.21)

The SUB-constructor is added to ∆ in Construction C6.11 and preserved in Construction
C6.13. Furthermore, the substitution variables remain invariant over both constructions
and, together with the only function symbol of the substitution module created in Con-
struction C6.11, this uniquely determines the substitution module of M2. Since the only
reference to the interpretation module of M2 in Construction C6.13 is the interpretation
mapping which maps SUB to sub; defined to be such in Construction C6.11; we can identify
the SUB-constructor without this reference.

Apparently, M ′
2 is a weakly single-use macro tree transducer and

τM1 ◦ τM ′
2

Lem. 6.13= τM1 ◦ τM2

Lem. 6.11= τM .

Construction 6.21 (Composing C6.20 and C6.15). LetM ′ = (F ′,m,∆, e′, R′) ∈ ModTT(MACnc,SUB)
with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N. Additionally, let
(M1,M2) = C6.20(M ′) with M1 = (m−1(1),∆′, e′, R1) and

M2 = ({sub(mx+1)}, ∆′, (sub xΠ1 . . . Πmx), R2)

be the macro tree transducers created by Lemma 6.20 with ∆′ = ∆ ∪ {SUB(mx+1)}. We
construct the macro tree transducer M = (F,∆′, e, R) as follows:

Let µ = card({sub}) = 1 and for 1 ≤ i ≤ µ, let κi ∈ N be such that gi ∈
{sub(mx+1)}(κi+1)

, thus g1 = sub and κ1 = mx. Additionally, let nil ∈ ∆(0) be some
dummy output symbol and {zg1,1, . . . , zg1,κ1 , . . . , zgµ,1, . . . , zgµ,κµ} = {z1, . . . , zmx} = Zmx.
Then the components of M are obtained as follows:

• the new set of function symbols:

F = { (f, g)(r∗µ+κ+1) | r, κ ∈ N, f ∈ m−1(1)(r+1)
, g ∈ {sub(mx+1)}(κ+1) } ∪

∪ { (hf , lg)
(r∗µ+card(Zmx)+1) | r, κ ∈ N, f ∈ m−1(1)(r+1)

, h ∈ [r],

g ∈ {sub(mx+1)}(κ+1)
, l ∈ [κ] }

= { (f, sub)(r+mx+1) | r ∈ N, f ∈ m−1(1)(r+1) } ∪

∪ { (hf , lsub)
(r+mx+1) | r ∈ N, f ∈ m−1(1)(r+1)

, h ∈ [r], l ∈ [mx] }
∼= { f (r+mx+1) | r ∈ N, f ∈ m−1(1)(r+1) } ∪ (6.22)

∪ { (f, h, l)(r+mx+1) | r ∈ N, f ∈ m−1(1)(r+1)
, h ∈ [r], l ∈ [mx] } (6.23)

• the new initial expression:

e = thru1,0,1,0,∅(sub xΠ1 . . . Πmx, e
′)

(6.12)
= transsub,1,0,∅(e

′, thru1,0,1,0,∅(Π1, e
′), . . . , thru1,0,1,0,∅(Πmx, e

′))
(6.11)
= transsub,1,0,∅(e

′,Π1, . . . ,Πmx)
Def.= trans1,0,∅(e

′,Π1, . . . ,Πmx)

6 THE EXTENDED CONSTRUCTION 89

• the new set of equations R contains:

– for r, k ∈ N, f ∈ m−1(1)(r+1) and δ ∈ ∆′(k), the equation:

f (δ x1 . . . xk) y1 . . . yr z1 . . . zmx = transsub,k,r,Zmx(rhsM1(f, δ), z1, . . . , zmx)
Def.= transk,r,Zmx(rhsM1(f, δ), z1, . . . , zmx)

if R1 contains the equation f (δ x1 . . . xk) y1 . . . yr = rhsM1(f, δ).

– for r, k ∈ N, f ∈ m−1(1)(r+1)
, h ∈ [r], l ∈ [mx] and δ ∈ ∆′(k), the equation:

(f, h, l) (δ x1 . . . xk) y1 . . . yr z1 . . . zmx = ψ,

if R1 contains the equation f (δx1 . . . xk)y1 . . . yr = rhsM1(f, δ), where ψ = nil,
if rhsM1(f, δ) ∈ RHS(m−1(1),∆′, Xk, Yr) does not contain the context variable
yh; otherwise

ψ = ctxsub,rhsM1
(f,δ),k,r(p, l)

Def.= ctxrhsM1
(f,δ),k,r(p, l)

with p ∈ occ(rhsM1(f, δ)) as the unique occurrence of yh in rhsM1(f, δ) (M1 is
non-copying, thus #yh(rhsM1(f, δ)) ≤ 1!)

For every k, r ∈ N and finite set of variables V , the following set of mappings is defined
by simultaneous recursion:

{transk,r,V } ∪ {unfoldf(xi),k,r,V | f ∈ m
−1(1), xi ∈ Xk }∪

∪ { thrua,mx,k,r,V | a ∈ ar(∆′) } ∪ {thru1,0,k,r,V }

All mappings are modified to output function symbols of F as specified in lines 6.22 and
6.23, but otherwise they shall be equivalent to the original mappings of Construction 6.15.
We use Def.= to denote this particular equivalence. With RHSk,r,V = RHS(F,∆′, Xk, Yr∪V),
these have the following types:

• transk,r,V : RHS(m−1(1),∆′, Xk, Yr)× (RHSk,r,V)mx −→ RHSk,r,V 79

• thru1,0,k,r,V : RHS({sub(mx+1)},∆′, {x1}, ∅)×RHS(m−1(1),∆′, Xk, Yr) −→ RHSk,r,V ,

• for a ∈ ar(∆′):

thrua,mx,k,r,V : RHS({sub(mx+1)},∆′, Xa, Ymx)× (RHS(m−1(1),∆′, Xk, Yr))a×
× (RHSk,r,V)mx −→ RHSk,r,V

• and for a ∈ N, f ∈ m−1(1)(a+1) and xi ∈ Xk
80:

unfoldf(xi),k,r,V : [a]×P([a])× (RHS(m−1(1),∆′, Xk, Yr))a × (RHSk,r,V)mx

−→ RHSk,r,V
79Compared to Construction 6.15, we simply dropped the first subscript, since it is always sub.
80Since [a]× {sub} ∼= [a], we used this isomorphism twice to gain the new type.

90 6.1 Extended accumulation technique

The mapping transk,r,V
Def.= transsub,k,r,V is defined with %1, . . . , %mx ∈ RHSk,r,V as follows:

• for yh ∈ Yr

transk,r,V (yh, %1, . . . , %mx)
Def.= transsub,k,r,V (yh, %1, . . . , %mx) = yh (6.24)

• for a ∈ N, δ ∈ ∆′(a), s1, . . . , sa ∈ RHS(m−1(1),∆′, Xk, Yr) and equation

sub (δ x1 . . . xa) y1 . . . ymx = rhsM2(sub, δ)

in R2, with rhsM2(sub, δ) ∈ RHS({sub(mx+1)},∆′, Xa, Ymx)

transk,r,V ((δ s1 . . . sa), %1, . . . , %mx)
Def.= transsub,k,r,V ((δ s1 . . . sa), %1, . . . , %mx)
(6.9)
= thrua,mx,k,r,V (rhsM2(sub, δ), s1, . . . , sa, %1, . . . , %mx)

We perform the following case distinction.

– let δ ∈ ∆ \Π, then by Equation (6.19) we continue

thrua,mx,k,r,V (rhsM2(sub, δ), s1, . . . , sa, %1, . . . , %mx)
(6.19)
= thrua,mx,k,r,V ((δ (sub x1 y1 . . . ymx) . . .

(sub xa y1 . . . ymx)), s1, . . . , sa, %1, . . . , %mx)
(6.11)
= (δ thrua,mx,k,r,V (sub x1 y1 . . . ymx, s1, . . . , sa, %1, . . . , %mx) . . .

thrua,mx,k,r,V (sub xa y1 . . . ymx, s1, . . . , sa, %1, . . . , %mx))
(6.12)
= (δ transsub,k,r,V (s1, thrua,mx,k,r,V (y1, s1, . . . , sa, %1, . . . , %mx), . . . ,

thrua,mx,k,r,V (ymx, s1, . . . , sa, %1, . . . , %mx)) . . .
transsub,k,r,V (sa, thrua,mx,k,r,V (y1, s1, . . . , sa, %1, . . . , %mx), . . . ,

thrua,mx,k,r,V (ymx, s1, . . . , sa, %1, . . . , %mx)))
(6.10)
= (δ transsub,k,r,V (s1, %1, . . . , %mx) . . . transsub,k,r,V (sa, %1, . . . , %mx))

Def.= (δ transk,r,V (s1, %1, . . . , %mx) . . . transk,r,V (sa, %1, . . . , %mx))

– let δ = Πj for some j ∈ [mx], then by Equation (6.20) we continue

thrua,mx,k,r,V (rhsM2(sub,Πj), s1, . . . , sa, %1, . . . , %mx)
(6.20)
= thrua,mx,k,r,V (yj , s1, . . . , sa, %1, . . . , %mx)

(6.10)
= %j

6 THE EXTENDED CONSTRUCTION 91

– let δ = SUB, then by Equation (6.21) we continue

thrua,mx,k,r,V (rhsM2(sub,SUB), s1, . . . , sa, %1, . . . , %mx)
(6.21)
= thrua,mx,k,r,V (sub x1 (sub x2 y1 . . . ymx) . . .

(sub xa y1 . . . ymx), s1, . . . , sa, %1, . . . , %mx)
(6.12)
= transsub,k,r,V (s1, thrua,mx,k,r,V (sub x2 y1 . . . ymx, s1, . . . , sa, %1, . . . , %mx),

. . . ,

thrua,mx,k,r,V (sub xa y1 . . . ymx, s1, . . . , sa, %1, . . . , %mx))
(6.12)
= transsub,k,r,V (s1,

transsub,k,r,V (s2, thrua,mx,k,r,V (y1, s1, . . . , sa, %1, . . . , %mx), . . . ,
thrua,mx,k,r,V (ymx, s1, . . . , sa, %1, . . . , %mx)), . . . ,

transsub,k,r,V (sa, thrua,mx,k,r,V (y1, s1, . . . , sa, %1, . . . , %mx), . . . ,
thrua,mx,k,r,V (ymx, s1, . . . , sa, %1, . . . , %mx)))

(6.10)
= transsub,k,r,V (s1, transsub,k,r,V (s2, %1, . . . , %mx), . . . ,

transsub,k,r,V (sa, %1, . . . , %mx))
Def.= transk,r,V (s1, transk,r,V (s2, %1, . . . , %mx), . . . , transk,r,V (sa, %1, . . . , %mx))

• for a ∈ N, f ∈ m−1(1)(a+1)
, xi ∈ Xk and s1, . . . , sa ∈ RHS(m−1(1),∆′, Xk, Yr)

transk,r,V ((f xi s1 . . . sa), %1, . . . , %mx)
Def.= transsub,k,r,V (f xi s1 . . . sa, %1, . . . , %mx)
(6.8)
= f xi unfoldf(xi),k,r,V (1, ∅, s1, . . . , sa, %1, . . . , %mx)

. . .

unfoldf(xi),k,r,V (a, ∅, s1, . . . , sa, %1, . . . , %mx)
%1 . . . %mx

For every a ∈ ar(∆′) the mapping thrua,mx,k,r,V is defined with %1, . . . , %mx ∈ RHSk,r,V
and s1, . . . , sa ∈ RHS(m−1(1),∆′, Xk, Yr) as follows:

• for yl ∈ Ymx

thrua,mx,k,r,V (yl, s1, . . . , sa, %1, . . . , %mx) = %l

• for n ∈ N, δ ∈ ∆′(n) and φ1, . . . , φn ∈ RHS({sub(mx+1)},∆′, Xa, Ymx)

thrua,k,r,V ((δ φ1, . . . , φn), s1, . . . , sa, %1, . . . , %mx) =
δ thrua,mx,k,r,V (φ1, s1, . . . , sa, %1, . . . , %mx)
. . .

thrua,mx,k,r,V (φn, s1, . . . , sa, %1, . . . , %mx)

92 6.1 Extended accumulation technique

• for xi ∈ Xa and φ1, . . . , φmx ∈ RHS({sub(mx+1)},∆′, Xa, Ymx)

thrua,mx,k,r,V ((sub xi φ1 . . . φmx), s1, . . . , sa, %1, . . . , %mx)
= transsub,k,r,V (si, thrua,mx,k,r,V (φ1, s1, . . . , sa, %1, . . . , %mx)

. . .

thrua,mx,k,r,V (φmx, s1, . . . , sa, %1, . . . , %mx))
= transk,r,V (si, thrua,mx,k,r,V (φ1, s1, . . . , sa, %1, . . . , %mx)

. . .

thrua,mx,k,r,V (φmx, s1, . . . , sa, %1, . . . , %mx))

The mapping thru1,0,k,r,V is defined with s1 ∈ RHS(m−1(1),∆′, Xk, Yr) as follows:

• for n ∈ N, δ ∈ ∆′(n) and φ1, . . . , φn ∈ RHS({sub(mx+1)},∆′, {x1}, ∅)

thru1,0,k,r,V ((δ φ1, . . . , φn), s1) = (δ thru1,0,k,r,V (φ1, s1) . . . thru1,0,k,r,V (φn, s1))

• for φ1, . . . , φmx ∈ RHS({sub(mx+1)},∆′, {x1}, ∅)

thru1,0,k,r,V ((sub x1 φ1 . . . φmx), s1) = transsub,k,r,V (s1,thru1,0,k,r,V (φ1, s1)
. . .

thru1,0,k,r,V (φn, s1))

For every a ∈ N, f ∈ m−1(1)(a+1)
, xi ∈ Xk, the mapping unfoldf(xi),k,r,V is defined

with h ∈ [a], S ⊆ [a], s1, . . . , sa ∈ RHS(m−1(1),∆′, Xk, Yr) and %1, . . . , %mx ∈ RHSk,r,V as
follows:

• if h ∈ S
unfoldf(xi),k,r,V (h, S, s1, . . . , sa, %1, . . . , %mx) = nil (6.25)

• otherwise

unfoldf(xi),k,r,V (h, S, s1, . . . , sa, %1, . . . , %mx)

= transk,r,V (sh, (f, h, 1) xi
unfoldf(xi),k,r,V (1, S ∪ {h}, s1, . . . , sa, %1, . . . , %mx)

. . .

unfoldf(xi),k,r,V (a, S ∪ {h}, s1, . . . , sa, %1, . . . , %mx)

%1 . . . %mx, . . . ,

(f, h,mx) xi
unfoldf(xi),k,r,V (1, S ∪ {h}, s1, . . . , sa, %1, . . . , %mx)

. . .

unfoldf(xi),k,r,V (a, S ∪ {h}, s1, . . . , sa, %1, . . . , %mx)

%1 . . . %mx)

6 THE EXTENDED CONSTRUCTION 93

Using the mappings defined above, we additionally define for every k, r ∈ N and
s ∈ RHS(m−1(1),∆′, Xk, Yr), the following mapping by simultaneous recursion:

ctxs,k,r : { p ∈ occ(s) | labels(p) /∈ Xk } × [mx] −→ RHSk,r,Zmx

The mapping ctxs,k,r is defined with l ∈ [mx] as follows 81:

• ctxs,k,r(ε, l) = zl

• in case labels(p) = δ with p ∈ occ(s), a ∈ N, δ ∈ ∆′(a) and i ∈ [a], if, φ1, . . . , φmx ∈
RHS({sub(mx+1)},∆′, Xa, Ymx), the only occurrence of a (sub xi . . .)-call in the δ-
equations of the weakly single-use macro tree transducer M2 looks as follows:

sub (δ x1 . . . xa) y1 . . . ymx = · · · (sub xi φ1 . . . φmx) · · · ,

then

ctxs,k,r(p.i, l) = thrua,mx,k,r,Zmx(φl, s|p.1, . . . , s|p.a, ctxs,k,r(p, 1), . . . , ctxs,k,r(p,mx)).

We perform the following case distinction:

– δ ∈ ∆(0) is not applicable,

– let δ ∈ ∆(a) with a ∈ N+, then for every j ∈ [mx] by Equation (6.19) φj = yj
and we continue

thrua,mxk,r,Zmx(yl, s|o.1, . . . , s|o.a, ctxs,k,r(p, 1), . . . , ctxs,k,r(p,mx))
(6.10)
= ctxs,k,r(p, l)

– let δ = SUB, then for every j ∈ [mx]

∗ if i = 1, then by Equation (6.21) φj = sub xj+1 y1 . . . ymx and

thrua,mx,k,r,Zmx((sub xl+1 y1 . . . ymx), s|p.1, . . . , s|p.a,
ctxs,k,r(p, 1), . . . , ctxs,k,r(p,mx))

(6.12)
= transk,r,Zmx(s|p.l+1,

thrua,mx,k,r,Zmx(y1, s|p.1, . . . , s|p.a, ctxs,k,r(p, 1), . . . , ctxs,k,r(p,mx))
. . .

thrua,mx,k,r,Zmx(ymx, s|p.1, . . . , s|p.a, ctxs,k,r(p, 1), . . . , ctxs,k,r(p,mx)))
(6.10)
= transk,r,Zmx(s|p.l+1, ctxs,k,r(p, 1) . . . ctxs,k,r(p,mx))

∗ if i > 1, then φj = yj and, thus

thrua,mx,k,r,Zmx(yl, s|p.1, . . . , s|p.a, ctxs,k,r(p, 1), . . . , ctxs,k,r(p,mx))
(6.10)
= ctxs,k,r(p, l)

81Compared to Construction 6.15, we dropped the first subscript, since it is always sub.

94 6.1 Extended accumulation technique

If no such call exists in the δ-rules of M2, then

ctxs,k,r(p.i, l) = nil

• in case labels(p) = f with p ∈ occ(s), a ∈ N, f ∈ m−1(1)(a+1)
, labels(p.1) = xb ∈ Xk

and 2 ≤ i ≤ a+ 1:

ctxs,k,r(p.i, l)
= (f, i− 1, l) xb

unfoldf(xb),k,r,Zmx
(1, {i− 1}, s|p.2, . . . , s|p.a+1, ctxs,k,r(p, 1), . . . , ctxs,k,r(p,mx))

. . .

unfoldf(xb),k,r,Zmx
(a, {i− 1}, s|p.2, . . . , s|p.a+1, ctxs,k,r(p, 1), . . . , ctxs,k,r(p,mx))

ctxs,k,r(p, 1) . . . ctxs,k,r(p,mx)

2

Obviously the thru-mappings are no longer required in the construction above. Addi-
tionally, we want to drop the SUB-constructor, since it neither appears in any input of M1,
nor in the output of M2. Thereby, we also translate all references to R1 into references to
R′ by “undoing” the freezing step (cf. Lemma 6.11). We will highlight the spots, where
this applies. Finally, we gain Construction 6.22.

Construction 6.22 (The extended construction). LetM ′ = (F ′,m,∆, e′, R′) ∈ ModTT(MACnc,SUB)
with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N. Let F1 = m−1(1) and
F2 = m−1(2). We construct the macro tree transducer M = (F,∆, e, R) as follows:

• F = { f (r+mx+1) | r ∈ N, f ∈ F (r+1)
1 }∪

∪ { (f, h, l)(r+mx+1) | r ∈ N, f ∈ F (r+1)
1 , h ∈ [r], l ∈ [mx] },

• e = trans1,0,∅(e′,Π1, . . . ,Πmx) and

• the set of equations R contains:

– for every k, r ∈ N, f ∈ F (r+1)
1 and δ ∈ ∆(k) the equation 82

f (δ x1 . . . xk) y1 . . . yr z1 . . . zmx = transk,r,Zmx(rhsM ′(f, δ), z1, . . . , zmx),

if (f (δ x1 . . . xk) y1 . . . yr = rhsM ′(f, δ)) ∈ R′, and

– for every k, r ∈ N, f ∈ F (r+1)
1 , δ ∈ ∆(k), h ∈ [r] and l ∈ [mx] the equation

(f, h, l) (δ x1 . . . xk) y1 . . . yr z1 . . . zmx = ψ,

if (f (δ x1 . . . xk) y1 . . . yr = rhsM ′(f, δ)) ∈ R′, where ψ = nil for some
dummy output symbol nil ∈ ∆(0), if #yh(rhsM ′(f, δ)) = 0, otherwise ψ =
ctxrhsM′ (f,δ),k,r(p, l) with p ∈ occ(rhsM ′(f, δ)) such that rhsM ′(f, δ)|p = yh

83.

82We supply the right hand side of M ′, since we will adjust the trans-mapping such that it can cope
with substitution function symbols.

83p is unique, since the first module of M ′ is context-linear.

6 THE EXTENDED CONSTRUCTION 95

Let RHSk,r,V = RHS(F,∆, Xk, Yr ∪ V). We define the following mappings for every k, r ∈
N and finite set of variables V by simultaneous recursion:

{transk,r,V } ∪ {unfoldf(xi),k,r,V | f ∈ F1, xi ∈ Xk }.

These are typed

• transk,r,V : RHSF1,F2,∆(Xk, Yr)× (RHSk,r,V)mx −→ RHSk,r,V and

• unfoldf(x),k,r,V : [n]×P([n])× (RHSF1,F2,∆(Xk, Yr))n× (RHSk,r,V)mx −→ RHSk,r,V ,

where n ∈ N with f ∈ F (n+1)
1 .

The transk,r,V -mapping is defined for every %1, . . . , %mx ∈ RHSk,r,V by the following equa-
tions.

transk,r,V (yh, %1, . . . , %mx) = yh

for every yh ∈ Yr.

transk,r,V (Πl, %1, . . . , %mx) = %l

for every l ∈ [mx].

transk,r,V ((f x s1 . . . sa), %1, . . . , %mx) = (f x unfoldf(x),k,r,V (1, ∅, s1, . . . , sa, %1, . . . , %mx)

. . .

unfoldf(x),k,r,V (a, ∅, s1, . . . , sa, %1, . . . , %mx)

%1 . . . %mx)

for every a ∈ N, f ∈ F (a+1)
1 , x ∈ Xk and s1, . . . , sa ∈ RHSF1,F2,∆(Xk, Yr).

transk,r,V ((δ s1 . . . sa), %1, . . . , %mx) = (δ transk,r,V (s1, %1, . . . , %mx)
. . .

transk,r,V (sa, %1, . . . , %mx))

for every a ∈ N+, δ ∈ ∆(a) and s1, . . . , sa ∈ RHSF1,F2,∆(Xk, Yr).

transk,r,V ((suba s s1 . . . sa), %1, . . . , %mx) = transk,r,V (s, transk,r,V (s1, %1, . . . , %mx), . . . ,
transk,r,V (sa, %1, . . . , %mx),
%a+1, . . . , %mx)

for every a ∈ N, suba ∈ F (a+1)
2 and s, s1, . . . , sa ∈ RHSF1,F2,∆(Xk, Yr) 84.

For every x ∈ Xk, a ∈ N, f ∈ F (a+1)
1 , h ∈ [a], S ⊆ [a], s1, . . . , sa ∈ RHSF1,F2,∆(Xk, Yr)

and %1, . . . , %mx ∈ RHSk,r,V the unfoldf(x),k,r,V -mapping is defined as

unfoldf(x),k,r,V (h, S, s1, . . . , sa, %1, . . . , %mx) = nil

84An occurrence SUB-constructor is gained by freezing a sub-function symbol. By the definition of
freezing 6.6, Πa+1, . . . ,Πmx are supplied directly at the missing argument positions. Translating those
substitution variables leads to the occurrences of %a+1, . . . , %mx.

96 6.1 Extended accumulation technique

for some nil ∈ ∆(0), if h ∈ S, and otherwise

unfoldf(x),k,r,V (h, S, s1, . . . , sa, %1, . . . , %mx)
= transk,r,V (sh, (f, h, 1) x unfoldf(x),k,r,V (1, S ∪ {h}, s1, . . . , sa, %1, . . . , %mx) . . .

unfoldf(x),k,r,V (a, S ∪ {h}, s1, . . . , sa, %1, . . . , %mx)
%1 . . . %mx, . . . ,

(f, h,mx) x unfoldf(x),k,r,V (1, S ∪ {h}, s1, . . . , sa, %1, . . . , %mx) . . .
unfoldf(x),k,r,V (a, S ∪ {h}, s1, . . . , sa, %1, . . . , %mx)
%1 . . . %mx),

Finally, for every k, r ∈ N and s ∈ RHSF1,F2,∆(Xk, Yr) the ctxs,k,r-mapping is typed

ctxs,k,r : { p ∈ occ(s) | ψ|p /∈ Xk } × [mx] −→ RHSk,r,Zmx

and defined for every l ∈ [mx] and p.i ∈ occ(s) with i ∈ N+ and s|p.i /∈ Xk by

ctxs,k,r(ε, l) = zl.

ctxs,k,r(p.i, l) = ctxs,k,r(p, l),

if labelψ(p) = δ for some δ ∈ ∆.

ctxs,k,r(p.i, l) = ctxs,k,r(p, l),

if labels(p) = suba for some a ∈ N, suba ∈ F (a+1)
2 and i > 1.

ctxs,k,r(p.i, l) = (f, i− 1, l) x unfoldf(x),k,r,Zmx
(1, {i− 1}, s|p.2, . . . , s|p.(a+1),

ctxs,k,r(p, 1), . . . , ctxs,k,r(p,mx)) . . .
unfoldf(x),k,r,Zmx

(a, {i− 1}, s|p.2, . . . , s|p.(a+1),

ctxs,k,r(p, 1), . . . , ctxs,k,r(p,mx))
ctxs,k,r(p, 1) . . . ctxs,k,r(p,mx),

if labels(p) = f and labels(p.1) = x ∈ Xk and f ∈ F (a+1)
1 with a ∈ N.

ctxs,k,r(p.1, l) = transk,r,Zmx(s|p.l+1, ctxs,k,r(p, 1), . . . , ctxs,k,r(p, a),Πa+1, . . . ,Πmx)

if labels(p) = suba for some a ∈ N and suba ∈ F (a+1)
2

85. 2

Theorem 6.23 (Correctness of Construction 6.22). Let M ∈ ModTT(MACnc,SUB) and,
furthermore, let M ′ = C 6.22(M). Then

τM = τM ′ .

Proof. By Theorem 6.18 this property holds for the extended indirect construction and
in Construction 6.21 we computed the composition of the three steps of the indirect
construction, thus, the property also holds for Construction 6.21. Construction 6.22,
however, was derived (equivalence preserving) from Construction 6.21 and, thereby, we
conclude the equivalence τM = τM ′ .

85The first argument of a SUB-constructor corresponds to the recursion argument of a suba function
call. The additional parameters, according to Equation 6.6 are Πa+1, . . . ,Πmx, which remain invariant
under the thru-mapping.

7 EFFICIENCY ANALYSIS REVISITED 97

7 Efficiency analysis revisited

In this section we will study the efficiency implications of the extended Construction 6.22.
Roughly speaking, we will first highlight a particular cause of inefficiency, which we will
avoid by refining the construction. However, we will not prove the correctness of the
refined construction, since the proof is tedious. Afterwards we are going to instantiate the
refined construction to gain a construction suitable for restricted modular tree transducers;
called leaf-accumulating; M ∈ ModTT(MACnc,SUB), such that we can ensure efficiency
non-deterioration.

Example 7.1 (A particular cause of inefficiency). Assume the modular tree transducer
Musa of Example 6.10 and the macro tree transducer M ′

usa of Example 6.17 with function
symbols renamed to coll and (1, 1). In Figure 24 and Figure 25 the computations of Musa

coll

R

W

R

W

N

N

Z⇒M

R

coll

W

R

W

N

N
Z⇒M

R

coll

R

W

N

W

N

Z⇒M

R

R

coll

W

N

W

N

Z⇒M

R

R

coll

N W

W

N

Z⇒M

R

R

W

W

N

Figure 24: The particular cause of inefficiency illustrated, where M = Musa

and M ′
usa, respectively, are displayed. Hence steps”|=>”Musa

(R (W (R (W N)))) = 5 and
steps”|=>”M′

usa
(R (W (R (W N)))) = 10. 2

Intuitively, this inefficiency results out of the different setting. If two macro tree
transducers are composed the whole output of the first macro tree transducer is processed
by the second macro tree transducer, however, with a 2-modular tree transducer part of the
output might be created solely by the first module without being processed by the second
module. Therefore, we introduce a new set of function symbols with basically the original
right hand sides 86. So as long as there is no call to some substitution function symbol,
we compute using the alternative function symbols and, thereby, avoid the illustrated
inefficiency.

Through a series of modified constructions, we will refine the extended Construction
6.22. We will always justify the modifications, such that the correctness of the final
construction is assured by the correctness of the extended Construction 6.22.

Construction 7.2 (Refined extended construction, step 1). Let

M = (F,m,∆, e, R) ∈ ModTT(MACnc,SUB)

with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N and let M ′ = C6.22(M) =
(F ′,∆, e′, R′). We construct the macro tree transducer M ′′ = (F ′′,∆, e′′, R′′) defined by

86The context parameters containing the translations of the original context parameters remain, since
they might be needed as soon as a substitution function symbol is encountered.

98

• F ′′ = F ′ ∪ { f̄ (2r+mx+1) | r ∈ N, f ∈ m−1(1)(r+1) },

• e′′ = (f̄ s1 . . . srΠ1 . . .Πmxt1 . . . tr), if e′ = (f s1 . . . srΠ1 . . .Πmx) and e = (f t1 . . . tr),
and

• R′′ = R′ ∪ R̄, which contains for every k, r ∈ N, f ∈ m−1(1)(r+1) and δ ∈ ∆(k) the
equation:

f̄ (δ x1 . . . xk) y1 . . . yr z1 . . . zmx yr+1 . . . y2r = transk,r,Zmx(rhsM (f, δ), z1, . . . , zmx).

The transk,r,V -mappings are defined for every k, r ∈ N and finite set of variables V by
structural recursion. With RHSk,r,V = RHSMAC(F ′′,∆, Xk, Yr ∪ V) they are typed

transk,r,V : RHSm−1(1),m−1(2),∆(Xk, Yr)× (RHSk,r,V)mx −→ RHSk,r,V .

The transk,r,V -mapping is defined for every %1, . . . , %mx ∈ RHSk,r,V by the following equa-
tions:

transk,r,V (yh, %1, . . . , %mx) = yh

for every yh ∈ Yr.

transk,r,V (Πj , %1, . . . , %mx) = %j

for every j ∈ [mx].

transk,r,V ((f x s1 . . . sa), %1, . . . , %mx) = f̄ x unfoldf(x),k,r,V (1, ∅, s1, . . . , sa, %1, . . . , %mx)

. . .

unfoldf(x),k,r,V (a, ∅, s1, . . . , sa, %1, . . . , %mx)

%1 . . . %mx

transk,r,V (s1, %1, . . . , %mx) . . .
transk,r,V (sa, %1, . . . , %mx)

for every a ∈ N, f ∈ m−1(1)(a+1), x ∈ Xk and s1, . . . , sa ∈ RHSm−1(1),m−1(2),∆(Xk, Yr).

transk,r,V ((δ s1 . . . sa), %1, . . . , %mx) = (δ transk,r,V (s1, %1, . . . , %mx) . . .
transk,r,V (sa, %1, . . . , %mx))

for every a ∈ N, δ ∈ ∆(a) \Π and s1, . . . , sa ∈ RHSm−1(1),m−1(2),∆(Xk, Yr).

transk,r,V (suba s s1 . . . sa, %1, . . . , %mx) = transk,r,V (s, transk,r,V (s1, %1, . . . , %mx), . . . ,
transk,r,V (sa, %1, . . . , %mx),
%a+1, . . . , %mx)

for every a ∈ N, suba ∈ F (a+1)
2 and s, s1, . . . , sa ∈ RHSm−1(1),m−1(2),∆(Xk, Yr).

Apparently, τM = τM ′ = τM ′′ , since the right hand sides of the f̄ -function symbols (for
every f ∈ m−1(1)) are essentially those of f with additional context parameters, which so
far are not used. 2

7 EFFICIENCY ANALYSIS REVISITED 99

We note that for every call to a transk,r,V -mapping the parameters %1, . . . , %mx will be
z1, . . . , zmx

87, respectively. Consequently, we drop %1, . . . , %mx from the specification and
replace every %i by zi for every i ∈ [mx] in the defining equations. Further, we note that
in every right hand side rhsM ′′(f, δ) with k, r ∈ N, f ∈ m−1(1)(r+1), δ ∈ ∆(k) and

(f (δ x1 . . . xk) y1 . . . yr z1 . . . zmx yr+1 . . . y2r = rhsM ′′(f, δ)) ∈ R̄

every call to some f̄ with f ∈ m−1(1) now looks like (f̄ xξ1 . . . ξr z1 . . . zmx ξr+1 . . . ξ2r) for
some x ∈ Xk and ξ1, . . . , ξ2r ∈ RHSMAC(F ′′,∆, Xk, Yr ∪ Zmx). Together with the initial
expression, where the z1, . . . , zmx are set to Π1, . . . ,Πmx, respectively, this leads us to
replace every zi by Πi for every i ∈ [mx], and then drop the context parameters z1, . . . , zmx

completely from the specification. Thereby, one of the defining equation changes to

transk,r,V (Πj , %1, . . . , %mx) = %j = zj = Πj

and, thus, merges with the case where the first parameter is an element of ∆ \ Π. Alto-
gether, we arrive at the following construction.

Construction 7.3 (Refined extended construction, step 2). Let

M = (F,m,∆, e, R) ∈ ModTT(MACnc,SUB)

with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N, and let M ′ = C6.22(M) =
(F ′,∆, e′, R′). We construct the macro tree transducer M ′′ = (F ′′,∆, e′′, R′′) defined by

• F ′′ = F ′ ∪ { f̄ (2r+1) | r ∈ N, f ∈ m−1(1)(r+1) },

• e′′ = (f̄ s1 . . . sr t1 . . . tr), if e′ = (f s1 . . . sr Π1 . . . Πmx) and e = (f t1 . . . tr), and

• R′′ = R′∪ R̄, where R̄ contains for every k, r ∈ N, f ∈ m−1(1)(r+1) and δ ∈ ∆(k) the
equation:

f̄ (δ x1 . . . xk) y1 . . . yr yr+1 . . . y2r = transk,r(rhsM (f, δ))

We define the transk,r-mappings for every k, r ∈ N by structural recursion. They are
typed

transk,r : RHSm−1(1),m−1(2),∆(Xk, Yr) −→ RHS(F ′′,∆, Xk, Yr).

The transk,r-mapping is defined by the following equations.

transk,r(yh) = yh

for every yh ∈ Yr.

transk,r(f x s1 . . . sa) = (f̄ x unfoldf(x),k,r,∅(1, ∅, s1, . . . , sa,Π1, . . . ,Πmx) . . .

unfoldf(x),k,r,∅(a, ∅, s1, . . . , sa,Π1, . . . ,Πmx)

transk,r(s1) . . . transk,r(sa))

87z1, . . . , zmx are supplied in the definition of the right hand sides for the new function symbols and they
are copied unchanged to all calls to transk,r,V in the defining equations of transk,r,V .

100

for every a ∈ N, f ∈ m−1(1)(a+1), x ∈ Xk and s1, . . . , sa ∈ RHSm−1(1),m−1(2),∆(Xk, Yr).

transk,r(δ s1 . . . sa) = (δ transk,r(s1) . . . transk,r(sa))

for every a ∈ N, δ ∈ ∆(a) and s1, . . . , sa ∈ RHSm−1(1),m−1(2),∆(Xk, Yr).

transk,r(suba s s1 . . . sa) = transk,r,∅(s, transk,r(s1), . . . , transk,r(sa),Πa+1, . . . ,Πmx)

for every a ∈ N, suba ∈ m−1(2)(a+1) and s, s1, . . . , sa ∈ RHSm−1(1),m−1(2),∆(Xk, Yr).

Still τM = τM ′ = τM ′′ . 2

So far the additional parameters yr+1, . . . , y2r of a function symbol f̄ ∈ F ′′(r+1) with
r ∈ N are not used, but in the final construction, we replace the defining equation

transk,r(yh) = yh by transk,r(yh) = yh+r.

Intuitively, this replacement is governed by the fact that we do not need to translate
the context parameter (via the (f, h, l)-function symbols), since the substitution is never
applied to yh. Thus, we can output the original context parameter, of which we kept track
in yh+r.

Construction 7.4 (Refined extended construction). LetM = (F,m,∆, e, R) ∈ ModTT(MACnc,SUB)
with substitution variables Π = {Π1, . . . ,Πmx} for some mx ∈ N and letM ′ = (F ′,∆, e′, R′) =
C6.22(M). We construct the macro tree transducer M ′′ = (F ′′,∆, e′′, R′′) defined by

• F ′′ = F ′ ∪ { f̄ (2r+1) | r ∈ N, f ∈ m−1(1)(r+1) },

• e′′ = (f̄ s1 . . . sr t1 . . . tr), if e′ = (f s1 . . . sr Π1 . . . Πmx) and e = (f t1 . . . tr) and

• R′′ = R′∪ R̄, where R̄ contains for every k, r ∈ N, f ∈ m−1(1)(r+1) and δ ∈ ∆(k) the
equation:

f̄ (δ x1 . . . xk) y1 . . . yr yr+1 . . . y2r = transk,r(rhsM (f, δ))

We define the transk,r-mappings for every k, r ∈ N by structural recursion. They are
typed

transk,r : RHSm−1(1),m−1(2),∆(Xk, Yr) −→ RHS(F ′′,∆, Xk, Y2r).

The transk,r-mapping is defined by the following equations.

transk,r(yh) = yh+r

for every yh ∈ Yr.

transk,r(f x s1 . . . sa) = (f̄ x unfoldf(x),k,r,∅(1, ∅, s1, . . . , sa,Π1, . . . ,Πmx)

. . .

unfoldf(x),k,r,∅(a, ∅, s1, . . . , sa,Π1, . . . ,Πmx)

transk,r(s1) . . . transk,r(sa))

7 EFFICIENCY ANALYSIS REVISITED 101

for every a ∈ N, f ∈ m−1(1)(a+1), x ∈ Xk and s1, . . . , sa ∈ RHSm−1(1),m−1(2),∆(Xk, Yr).

transk,r(δ s1 . . . sa) = (δ transk,r(s1) . . . transk,r(sa))

for every a ∈ N, δ ∈ ∆(a) and s1, . . . , sa ∈ RHSm−1(1),m−1(2),∆(Xk, Yr).

transk,r(suba s s1 . . . sa) = transk,r,∅(s, transk,r(s1), . . . , transk,r(sa),Πa+1, . . . ,Πmx)

for every a ∈ N, suba ∈ m−1(2)(a+1) and s, s1, . . . , sa ∈ RHSm−1(1),m−1(2),∆(Xk, Yr).

As usual the result M ′′ is denoted M ′′ = C 7.4(M). 2

Conjecture 7.5 (Correctness of Construction 7.4). Let M ∈ ModTT(MACnc,SUB) and
M ′′ = C7.4(M), then

τM = τM ′′ .

As already stated, we will not formally verify this claim, since the proof is pretty intense
and tedious. 2

We illustrate, how the refined Construction 7.4 avoids the particular inefficiency in-
curred by Construction 6.22, in the following example.

Example 7.6 (The refined construction applied to Musa). Let Musa be the modular tree
transducer of Example 6.10. The macro tree transducer M ′′

usa = C7.4(M) = (F ′′,∆, e′′, P ′′)
is

• F ′′ = {coll(3), (coll, 1, 1)(3), coll(3)},

• e′′ = coll x ((coll, 1, 1) x N N)N

• P ′′ contains

collN y1 z1 = y1 collN y1 y2 = y2

coll (| x1) y1 z1 = y1 coll (| x1) y1 y2 = y1

coll (R x1) y1 z1 = R (coll x1 y1 z1) coll (R x1) y1 y2 = R (coll x1 y1 y2)

coll (W x1) y1 z1 = coll x1 (W y1) z1 coll (W x1) y1 y2 = coll x1 (W y1) (W y2)

(coll, 1, 1)N y1 z1 = z1

(coll, 1, 1) (| x1) y1 z1 = coll x1 ((coll, 1, 1) x1 N z1) z1
(coll, 1, 1) (R x1) y1 z1 = (coll, 1, 1) x1 N z1

(coll, 1, 1) (W x1) y1 z1 = (coll, 1, 1) x1 N z1.

Thus, steps”|=>”M′′
usa

(R (W (R (W N)))) = 5 as evidenced by Figure 26. 2

As already pointed out in [Voi02], it is quite hard to relate the number of derivation
steps invested to pre-translate the context parameters. Thus, we introduce a property,
namely leaf-accumulating, that assures that such pre-translations are never used.

102

Definition 7.7 (Leaf-accumulating modular tree transducer). A modular tree transducer
M = (F,m,∆, e, R) ∈ ModTT(MACnc,SUB) is called leaf-accumulating, if and only if
there exists a partition of m−1(1) = F1 ∪ F ′

1 with F1 ∩ F ′
1 = ∅ and F ′

1 ⊆ m−1(1)(1), such
that for every k, r ∈ N, f ∈ m−1(1)(r+1) and δ ∈ ∆(k) the right hand side rhsM (f, δ) with
(f (δ x1 . . . xk) y1 . . . yr = rhsM (f, δ)) ∈ R the following condition holds:

% ∈ RHSF ′
1,m

−1(2),∆(Xk, ∅)

for every p ∈ occ(rhsM (f, δ)) with rhsM (f, δ)|p = (suba %%1 . . . %a) for some a ∈ N, suba ∈
m−1(2)(a+1) and %, %1, . . . , %a ∈ RHS(1, F,m,∆, Xk, Yr) and, additionally, if f ∈ F ′

1, then
also rhsM (f, δ) ∈ RHSF ′

1,m
−1(2),∆(Xk, ∅). 2

Example 7.8 (Leaf-accumulating modular tree transducer). Let

Mfrev = ({rev(1), frev(2), app(2)},m, {A(1), B(1), C(1), N (0)}, (frev x N), R)

with m(frev) = m(rev) = 1, m(app) = 2 and R contains:

frevN y1 = y1 revN = N

frev (A x1) y1 = app (rev x1) (frev x y1) rev (A x1) = app (rev x1) (AN)
frev (B x1) y1 = app (rev x1) (frev x y1) rev (B x1) = app (rev x1) (B N)
frev (C x1) y1 = app (rev x1) (frev x (C y1)) rev (C x1) = rev x1

appN y1 = y1

app (A x1) y1 = A (app x1 y1)
app (B x1) y1 = B (app x1 y1)
app (C x1) y1 = C (app x1 y1).

Mfrev is leaf-accumulating (the partition is m−1(1) = {rev} ∪ {frev}) and computes a
concatenated inits-like function on the reversed list, which also filters C’s and appends
them to the end. For example τMfrev

(C (A (B N))) = B (A (B (C N))). However, Musa of
Example 6.10 is not leaf-accumulating. 2

If a modular tree transducer M ∈ ModTT(MACnc,SUB) is leaf-accumulating, then we
can separate a 2-modular tree transducer M ′ ∈ ModTT(TOP,SUB), which contains the
first module with function symbols restricted to the function symbols of F ′

1 according to
Definition 7.7 and the whole second module. To this part we can then apply Construction
5.10 to gain a macro tree transducer M̄ ′ which is at least as efficient as M ′. The remaining
right hand sides of the function symbols of F1 (according to Definition 7.7) can be obtained
by taking the variable shared term graph rewrite rules corresponding to the equations
created by Construction 7.4. We claim the following:

Conjecture 7.9 (Refined extended construction). Let M be a leaf-accumulating modular
tree transducer. The macro tree transducer M ′ constructed according to the specification
above is at least as efficient as M . 2

7 EFFICIENCY ANALYSIS REVISITED 103

coll

(1, 1) N

R N N

W

R

W

N

Z⇒M ′

R

coll

(1, 1) N

R N N

W

R

W

N

Z⇒M ′

R

coll

W N

(1, 1)

R N N

W

R

W

N

Z⇒M ′

R

R

coll

W N

(1, 1)

R N N

W

R

W

N

Z⇒M ′

R

R

coll

W N

W

(1, 1)

R N N

W

R

W

N

Z⇒M ′

R

R

W

W

(1, 1)

R N N

W

R

W

N

Z⇒5
M ′

R

R

W

W

N

Figure 25: The particular cause of inefficiency illustrated, where M ′ = C6.22(Musa)

104

coll

(1, 1) N

R N N

W

R

W

N

Z⇒M ′′

R

coll

(1, 1) N

R N N

W

R

W

N

Z⇒M ′′

R

coll

W W

(1, 1) N

R N N

W

R

W

N

Z⇒M ′′

R

R

coll

W W

(1, 1) N

R N N

W

R

W

N

Z⇒M ′′

R

R

coll

W W

W W

(1, 1) N

R N N

W

R

W

N

Z⇒M ′′

R

R

W

W

N

Figure 26: The particular cause of inefficiency resolved, where M ′′ = M ′′
usa and (1, 1) =

(coll, 1, 1)

8 COMPARING THE CONSTRUCTION 105

8 Comparing the construction

Before proceeding with the efficiency analysis, we compare the given construction with
similar ones found in the literature.

8.1 Comparison to the indirect construction of [KGK01]

As already pointed out, an indirect construction may be found in [KGK01]. Obviously
both constructions produce semantically equivalent macro tree transducers (as shown in
Theorem 4.16), else the constructions would not be correct.

However syntactic equality, in the sense that the constructed macro tree transducers
are syntactically equivalent, is not achieved. This is due to the preservation of the original
substitution function symbols until stage 3 (Composition) in [KGK01]. In our construction
we implicitly freeze (cf. Freezing in [KGK01]) all substitution function symbol calls to one
88 substitution function symbol constructor. So we implicitly replace substitution function
symbol calls like

subi s s1 . . . si by sub s s1 . . . si Πi+1 . . . Πmx,

where subi ∈ F2
(i+1) with i ∈ N, mx = max(ar(F2)) − 1 and (F2, ar) as the function

symbol signature of the substitution module and {Π1, . . . ,Πmx} as substitution variables.
This replacement is justified by Lemma 4.4, which immediately proves preservation of

semantics, i.e.

s{Π1 7→ s1, . . . ,Πi 7→ si } = s{Π1 7→ s1, . . . ,Πi 7→ si,Πi+1 7→ Πi+1, . . . ,Πmx 7→ Πmx }.

So by replacing Lemma 11 of [KGK01] by Lemma 6.11 and deleting step 2 in Lemma 13 in
[KGK01] we gain syntactic equality. The adjusted Lemmata can be found in the previous
section (there for the extended setting) as Lemma 6.11 and 6.13.

We will not formally prove the claim that the constructed macro tree transducers (with
respect to Construction 4.5 and the adjusted construction of [KGK01]) are syntactically
equivalent (modulo renaming of the function symbols). We note, however, that, similar to
the approach in the previous section, the steps can be formally composed, yielding in the
first step a yield macro tree transducer [FV98] (cf. 6.20). Then our construction simply
represents the composition of steps 1 and 3, thereby avoiding the explicit freezing.

Lastly, the question arises why we modified the original indirect construction to match
with the construction presented herein arises. We could have adjusted Construction 4.5 as
well, but we consider the simplification to one substitution function symbol to be beneficial,
since it avoids awkward equations in the constructed macro tree transducers (cf. Example
8.1). Furthermore, direct constructions usually exhibit a better space and time behavior
compared to indirect constructions. On the other hand an indirect construction usually
provides a better insight into the process, thereby possibly admitting a straightforward
lifting of the construction to less-restricted settings. In our case, however, the discussed
simplification was proven to be essential for the extended construction to be applicable.

Example 8.1 (Comparing the constructed macro tree transducers). In Example 4.2
we have already presented the resulting macro tree transducer M ′

rev, when Construc-
tion 4.5 is applied to Mrev. In [KGK01] the same example is studied with respect to

88and not many substitution function symbol constructors as in [KGK01]

106 8.2 Comparison to Wadler’s transformation

the construction presented there and the outcome is the macro tree transducer M ′′
rev =

({rev(1), rev′(2)}, {A(1), B(1), N (0)}, (rev x), R) with equations

rev N = N
rev (A x1) = rev′ x1 (A N)
rev (B x1) = rev′ x1 (B N)

rev′ N y1 = y1

rev′ (A x1) y1 = rev′ x1 (A N)
rev′ (B x1) y1 = rev′ x1 (B N)

Thus, our construction avoids the unnecessary function symbol rev (with respect to the
macro tree transducer presented in this example) by providing an initial value to the con-
text parameters in the initial expression. Note that in this example the effect seems to be
rather small, but in general for an arbitrary modular tree transducer M = (F,m,∆, e, R)
suitable for Construction 4.5, the original indirect construction outputs a macro tree trans-
ducer with at least card(m−1(1)) ∗ card(m−1(2)) function symbols, whereas Construction
4.5 yields a macro tree transducer with only card(m−1(1)) function symbols. 2

8.2 Comparison to Wadler’s transformation

In [Wad87] a transformation based on lists is presented. The setting of this transforma-
tion assumes a list result type, possibly polymorphic, and occurrences of the concatenate
operator. This setting is incomparable to our modular tree transducer approach, since the
general shape of equations of a program is less restricted and we cannot handle polymor-
phic types.

Construction 8.2 (Wadler’s transformation [Wad87]). We assume a syntactically cor-
rect and well-typed functional program P , considered as a set of equations. For each
equation

(f p1 . . . pn = e) ∈ P

with a function symbol f with a list result type, patterns p1, . . . , pn with n ∈ N and an
expression e, we introduce a new equation to the new program script P ′

(f ′ p1 . . . pn y = append e y) ∈ P ′,

where f ′ is a new function symbol and y is a new variable. Concatenation of lists is realized
by append and the constructors : and [] are used to construct lists 89. Then obviously
f p1 . . . pn = f ′ p1 . . . pn []. We then rewrite the right hand side to its normal form
according to the following rewrite rules.

append [] x → x (8.1)
append (x : y) z → x : (append y z) (8.2)

append (append x y) z → append x (append y z) (8.3)
append (f x1 . . . xn) y → f ′ x1 . . . xn y (8.4)

append (f ′ x1 . . . xn y) z → f ′ x1 . . . xn (append y z) (8.5)

The validity of this transformation can be shown with the techniques of [BD77]. 2

89See [BW88] for details on functional programs and lists.

8 COMPARING THE CONSTRUCTION 107

Example 8.3 (Ackermann function). The Ackermann function can be computed by
the following functional program.

ack [] y = [] : y
ack ([] : x) [] = ack x [[]]
ack ([] : x) ([] : y) = ack x (ack ([] : x) y)

This program script might seem rather awkward, but we needed to represent the natural
numbers using a list data type in order for Wadler’s transformation to be applicable.
Intuitively, we use list of empty lists, where the number of empty lists encodes the natural
number.

It is known that the Ackermann function is not primitive recursive 90, and thus
cannot be computed by any modular tree transducer due to a result in [EV91]. Adding a
concatenation to the program like

douback x y = append (ack x y) (ack x y)

with the usual equations for append and the list constructors. The function douback
cannot be primitive recursive, else ack would be primitive recursive as well. Consequently
Construction 4.5 or any construction which relies on modular tree transducers cannot be
applied, but Wadler’s transformation yields

append (append (ack x y) (ack x y)) z
(8.3)→ append (ack x y) (append (ack x y) z)
(8.4)→ append (ack x y) (ack′ x y z)
(8.4)→ ack′ x y (ack′ x y z),

thus douback′xyz = ack′xy (ack′xyz) with initial expression doubackxy = douback′xy []
and
ack′ [] y z = [] : (append y z)
ack′ ([] : x) [] z = ack′ x [[]] z
ack′ ([] : x) ([] : y) z = ack′ x (ack ([] : x) y) z.

The original function symbols still occur; as predicted by Wadler’s characterization 91;
and the efficiency gain is minimal, but this example should only highlight the general
incomparability. 2

Example 8.4 (Inability to cope with trees). Wadler’s transformation, as such, is not ap-
plicable to functions with result types (essentially) different from lists. Thus Example 5.4,
though admissable for Construction 4.5, is not appropriate for Wadler’s Transformation
8.2.

Hence by means of examples we have shown the general incomparability of the two
constructions. Nevertheless, we want to consider both techniques on programs to which
both are applicable. We immediately restrict ourselves to Construction 4.5, since the

90Gunter Dötzel. A function to end all functions. Algorithm: Recreational Programming 2.4, 16-17,
October 1991.

91This is essentially different to the construction presented in the previous section, where the old function
symbols are completely eliminated.

108 8.2 Comparison to Wadler’s transformation

extended Construction 6.22 computes an essentially different output. Thus, we demand
that the program specifies a restricted 2-modular tree transducer (a prerequisite of Con-
struction 4.5) and, furthermore, the output signature ∆ should obey ∆ = ∆(1) ∪∆(0) and
card(∆(0)) = 1 (data structure should be list-like; a restriction of Construction 8.2).

Lemma 8.5 (Equivalence of Constructions 4.5 and 8.2). Let

M = (F,m,∆, e, R) ∈ ModTT(TOP,SUB)

with substitution variables Π. Additionally, we require ∆ = ∆(1)∪∆(0) and card(∆(0)) = 1.
Then Constructions 4.5 and 8.2 produce equivalent results.

Proof. Obviously the function symbol signature 92 and the initial expression coincide. Let
→ be the reduction relation induced by the rewrite rules of Construction 8.2. Hence the
remaining proof needs to establish the equality

transk(rhsM (f, δ), ξ1) = nf→(append rhsM (f, δ) ξ1)

for each (f (δ x1 . . . xk) = rhsM (f, δ)) ∈ R with k ∈ N, f ∈ m−1(1), δ ∈ ∆(k) and ξ1 ∈
RHS(m−1(1),∆, Xk, Y1). We prove the statement via structural induction on rhsM (f, δ).

• Induction base:

– Let Π1 = rhsM (f, δ) ∈ Π, then

transk(Π1, ξ1)
(4.1)
= ξ1 = nf→(ξ1)

(8.1)
= nf→(append Π1 ξ1).

– Let (f ′ x) = rhsM (f, δ) for some f ′ ∈ m−1(1) and x ∈ Xk, then

transk((f ′ x), ξ1)
(4.2)
= (f ′ x ξ1) = nf→(f ′ x ξ1)

(8.5)
= nf→(append (f x) ξ1).

• Induction step:

– Let (δ′ t1) = rhsM (f, δ) with δ′ ∈ ∆(1) and t1 ∈ RHSm−1(1),m−1(2),∆(Xk, ∅), then
by induction hypothesis

transk(t1, ξ1) = nf→(append t1 ξ1).

We conclude

transk((δ′ t1), ξ1)
(4.3)
= (δ′ transk(t1, ξ1))

I.H.= (δ′ nf→(append t1 ξ1)
(8.2)
= nf→(append (δ′ t1) ξ1).

– Let (sub1 t t1) = rhsM (f, δ) with t, t1 ∈ RHSm−1(1),m−1(2),∆(Xk, ∅) and sub1 ∈
m−1(2)(2), then by induction hypothesis

transk(t1, ξ1) = nf→(append t1 ξ1)
92The function symbols’ names are different, but by the use of consistent renaming syntactic equivalence

can be achieved.

8 COMPARING THE CONSTRUCTION 109

and also

transk(t,nf→(append t1 ξ1)) = nf→(append t nf→(append t1 ξ1)).

We conclude

transk((sub1 t t1), ξ1)
(4.4)
= transk(t, transk(t1, ξ1))

I.H.= transk(t,nf→(append t1 ξ1))
I.H.= nf→(append t nf→(append t1 ξ1))

= nf→(append t (append t1 ξ1))
(8.3)
= nf→(append (append t t1) ξ1) = nf→(append (sub1 t t1) ξ1).

As already stated in [Wad87] the rewrite rule (8.5) is strictly speaking not necessary, but
assures confluency of →. Thus, the statement is proven.

We will illustrate this equivalence on Example 5.3, which fulfills the required restric-
tions of Lemma 8.5.

Example 8.6 (Example 5.3 and Construction 8.2). Immediate by Construction 8.2 we
get the following equations 93

fib Z y1 = add (S Z) y1

fib (S x1) y1 = add (add (fib′ x1) (fib x1)) y1

fib′ Z y1 = add Z y1

fib′ (S x1) y1 = add (fib x1) y1.

and the original equations for add, which will remain unchanged. Applying rewriting
(without renaming the function symbols) according to → of Construction 8.2 we get

add (S Z) y1
(8.2)→ S (add Z y1)

(8.1)→ S y1

add (add (fib′ x1) (fib x1)) y1
(8.3)→ add (fib′ x1) (add (fib x1) y1)
(8.4)→ add (fib′ x1) (fib x1 y1)

(8.4)→ fib′ x1 (fib x1 y1)

add Z y1
(8.1)→ y1

add (fib x1) y1
(8.4)→ fib x1 y1

and thereby the final equations are

fib Z y1 = S y1

fib (S x1) y1 = fib′ x1 (fib x1 y1)

fib′ Z y1 = y1

fib′ (S x1) y1 = fib x1 y1.

Obviously the equations are exactly those of M ′
fib. 2

Currently, we cannot handle arbitrary context parameter use in the first module of the
modular tree transducer in Construction 6.22 or 4.5, but Wadler’s transformation 8.2 is

93Here add = append, (S u) = [] : u and Z = []. Thereby, we again gain the representation already used
in Example 8.3.

110 8.2 Comparison to Wadler’s transformation

able to tackle such modular tree transducers, e.g. the 2-modular tree transducer consisting
of modules 2 and 3 of Example 3.4. Additionally, Wadler’s note [Wad87] provides an
efficiency analysis based on the notion of creativity. According to his definition all the
function symbols of module 1 (the top-down tree transducer module in our restricted
setting of Lemma 8.5) would necessarily be creative.

Following the argumentation of [Wad87], Construction 8.2 as well as Construction
4.5 by Lemma 8.5, will successfully eliminate all append-calls (i.e. turn the 2-modular
tree transducer into a macro tree transducer) and, furthermore, will be non-deteriorating
with respect to efficiency. Thus, we can already classify Examples 4.2 and 5.3, which
suggests that the result of Construction 4.5 is always at least as efficient as its input
with respect to the number of derivation steps of a call-by-name derivation relation (i.e.
leftmost outermost reduction strategy or normal order reduction), since the imposed re-
strictions in Lemma 8.5 effectively outrule variable sharing and, thereby, degenerate call-
by-need to call-by-name. In fact the generalization, that the construction is efficiency
non-deteriorating with respect to a call-by-name derivation relation, is valid, although we
will not formally prove it 94.

94The proof is very similar to the proof of Lemma 4.14 with additional effort to show that the resulting
redex, if any, will be leftmost outermost. The key change is then reflected in the last sentence of the
lemma, where κ ⇒card(P)

M′ κ′ turns into κ ⇒M′ κ′, thus card(P) = 1. With that additional condition the
transM -mapping (as given there) will be surjective on the sentential forms of the derivation closures.

9 THE IMPLEMENTATION 111

9 The implementation

The constructions of the thesis have been implemented in the Haskell+ system [Les99,
HVM+01]. The first subsection will explain the installation of the system on a particu-
lar architecture, which meets certain preconditions also mentioned there. Thereafter, the
essential markups of Haskell+ are briefly introduced and example runs of the implemen-
tation are provided.

9.1 Installation

Please find the source code of the system on the enclosed disk. To install the system,
please copy all files to a designated folder. If you have an installed Haskell interpreter
(e.g. Hugs 95 or GHCi 96), then simply interpret the file “Main.hs” 97. In case a Haskell
compilation system (e.g. GHC) is installed on your machine, invoke the compiler to create
an executable of the provided system. Please consult your compiler manual, in order to
find out how this is achieved. E.g. the invocation of the GHC 5 looks as follows:

ghc --make Main.hs

9.2 Running the system

Upon startup the system presents the following main interface 98.

*** Programs of the Haskell+ group ***

| 35|227|231| 55|107| 59|115| 47|255|547|...
|---|---|---|---|---|---|---|---|---|---|

1 : hptree | x | x | x | x | x | x | x | x | x | x |
2 : is_typ | x | x | x | x | x | x | x | x | x | x |
4 : ATT -> MAC | | | x | | | | | | | |
8 : MAC o TOP -> MAC | | | | | x | | | | | |
12 : Deforestation | | | | | | | | x | | |...

...
256 : hptrans | | | | | | | | | | |...
512 : MAC -> TOP o YIELD | | | | | | | | | | x |
516 : nc-MAC o wsu-MAC -> MAC | | | | | | | | | | |

1024 : exportMacs | | | | | | | | | | |
2048 : to Haskell | | | | | | | | | | |...

-1 : Enter modular tree transducer section

Enter a number (0=end):

The constructions of this thesis are grouped in the modular tree transducer section. En-
tering -1 at the prompt, yields the submenu to follow.

95See <http://www.haskell.org/hugs>
96See <http://www.haskell.org/ghc>
97Refer to the user manual of your interpreter for details on how to invoke the interpreter and how to

interpret source files.
98Some parts of the tabular are omitted.

112 9.2 Running the system

*** Programs of the modular tree transducer section ***

1 : Recognize modular tree transducer
2 : Check for top-down tree transducer module
3 : Check for substitution module
4 : Check for non-copying module
--
10 : Apply accumulation technique
11 : Apply accumulation technique (fully automatic)

Enter a number (0=back):

1 Given a Haskell+ input file and the function symbol occuring in the initial
expression, try to recognize a modular tree transducer (cf. Definition 3.3), where
this function symbol occurs in the first module. The output is either a list of
function symbols partitioned into modules or the message that no modular tree
transducer with this function symbol was found.

2 Given a Haskell+ input file and a list of function symbols, detect whether the
macro tree transducer module containing those function symbols is a top-down
tree transducer module (cf. Definition 3.5). The output is either affirmative or
rejecting.

3 Given a Haskell+ input file and a list of function symbols, detect whether the
macro tree transducer module containing those function symbols is a substitu-
tion module (cf. Definition 4.1) 99. The output either confirms that the specified
module is a substitution module by outputting the substitution variables or re-
jects.

4 Given a Haskell+ input file and a list of function symbols, detect whether the
macro tree transducer module containing those function symbols is non-copying
(cf. Definition 6.6). The output is either affirmative or rejecting.

In general, if the supplied information is incorrect, then the behavior of the functions is
unspecified, in particular, if the supplied function symbols do not constitute a valid macro
tree transducer module. Next we present an example Haskell+ input file and introduce
the important markups.

begindata List
data List = A List | B List | N

enddata

beginmag Rev
input List
syn rev :: List -> List

rev N = N
rev (A x) = app (rev x) (A N)
rev (B x) = app (rev x) (B N)

endmag

beginmag App
input List
syn app :: List -> List -> List

9 THE IMPLEMENTATION 113

app N y = y
app (A x) y = A (app x y)
app (B x) y = B (app x y)

endmag

This input file implements the modular tree transducerMrev of Example 4.2. Syntactically,
the block inside the delimiters begindata and enddata, hereafter refer to as data-block,
defines algebraic data structures in the syntax of regular Haskell. This corresponds to
the specification of the ranked alphabet. The keywords beginmag and endmag delimit a
macro attribute grammar [AJKV98] also called mag-block, which we will use to define
macro tree transducer modules. Note that each block (data-blocks and mag-blocks) is
named. Several mag-blocks may form one macro tree transducer module, but one mag-
block is never split into several macro tree transducer modules of the same modular tree
transducer. The input keyword is followed by the data-block which defines the ranked
alphabet. Thereafter, the type of each function symbols is given in standard Haskell
syntax prefixed by the keyword syn. Finally, the equations are stated in the syntax of the
definition of modular tree transducers in Definition 3.3.

We will demonstrate the options on this example. First, we want the system to rec-
ognize the modular tree transducer Mrev

100 of Example 4.2 in the above script. Conse-
quently, we select option 1 in the modular tree transducer section and proceed by inputting
the file name of the input file (its suffix is usually .hp) and inputting rev as the function
symbol occurring in the initial expression of Mrev. The dialogue is displayed below.

Enter the file name of the Haskell+ source code (without .hp): rev
Enter the name of the function in the initial expression (outermost): rev

The system answers:

Modular tree transducer:
Module 1 : ["rev"]
Module 2 : ["app"]

This is the partition of function symbols into modules. With this information at hand,
we check whether Construction 4.5 is applicable by first selecting option 2, supplying the
input file name and the function symbols of the first module, thereafter selecting option
3 and, finally supplying the input file name again along with the function symbols of the
second module. Below the important part of the interaction is displayed.

Enter a number (0=back): 2

Enter the file name of the Haskell+ source code (without .hp): rev
Enter the modules’ functions in quotes separated by colons: "rev"

Module is a top-down tree transducer module.

...

Enter a number (0=back): 3

Enter the file name of the Haskell+ source code (without .hp): rev

100Henceforth, we will not distinguish between the syntactic specification of a modular tree transducer
according to Definition 3.3 and the specification using the Haskell+ syntax.

114 9.2 Running the system

Enter the modules’ functions in quotes separated by colons: "app"

Module is a substitution module with substitution variables ["N"]

We will now apply Construction 4.5 to Mrev of Example 4.2 (strictly speaking to the
Haskell+ input file above, which specifies Mrev) to gain M ′

rev of Example 5.2. Therefore
we select option 10 in the modular tree transducer section, supply the input file name, the
function symbol occurring in the initial expression, the function symbols of the modules
and the substitution variables. Finally, we output the result on stdout (standard output,
usually the screen) by pressing Return.

Enter a number (0=back): 10

Enter the file name of the Haskell+ source code (without .hp): rev
Enter the name of the function in the initial expression (outermost): rev
Enter the first modules’ functions in quotes separated by colons: "rev"
Enter the substitution modules’ functions in quotes separated by colons: "app"
Enter the substitution variables in quotes separated by colons: "N"

Enter the Haskell+ output file name (without .hp, Return=stdout):

...
{-# RULES "COMPOSITION" forall u.

rev u = rev_ u N
#-}
beginmag Acc_rev
input List
syn rev_ :: List -> List -> List
rev_ (A x1) y1 = rev_ x1 (A y1)
rev_ (B x1) y1 = rev_ x1 (B y1)
rev_ N y1 = y1

endmag

The left-out part in the dialogue above is the original program, which is outputted together
with the new mag-block. In the comment above the mag-block, information on how to
replace the initial expression is supplied. Altogether, we note that the result is M ′

rev of
Example 5.2. Since the whole procedure is rather annoying, we added an option, namely
option 11, which given an input file name and the function symbol occurring in the initial
expression, applies Construction 4.5 automatically, if applicable. The program is not
altered, if at some stage a precondition is not fulfilled.

The stated instructions also apply for Construction 6.22, since ultimately Construction
6.22 is employed to compute the resulting mag-block 101. To check the preconditions of
the extended construction, a test for non-copying modules was added. We illustrate this
on Musa.

Enter a number (0=back): 4

Enter the file name of the Haskell+ source code (without .hp): usa
Enter the modules’ functions in quotes separated by colons: "coll"

Module is non-copying.

101Construction 4.5 is subsumed by Construction 6.22

9 THE IMPLEMENTATION 115

...
Enter a number (0=back): 11

Enter the file name of the Haskell+ source code (without .hp): usa
Enter the name of the function in the initial expression (outermost): coll

Enter the Haskell+ output file name (without .hp, Return=stdout):

begindata Stripes
data Str = Z | B Str | W Str | R Str

enddata

beginmag Coll [Mac,Mat,Su,Swp,Wp,Wsu,Xlin,Xnd,Ylin,Ynd]
input Stripes
syn coll :: Str -> Str -> Str
coll Z y = y
coll (B x) y = app y (coll x Z)
coll (R x) y = R (coll x y)
coll (W x) y = coll x (W y)

endmag

beginmag App [Mac,Mat,Su,Swp,Tl,Wp,Wsu,Xlin,Xnd,Ylin,Ynd]
input Stripes
syn app :: Str -> Str -> Str
app Z y = y
app (B x) y = B (app x y)
app (R x) y = R (app x y)
app (W x) y = W (app x y)

endmag

{-# RULES "COMPOSITION" forall u y1.
coll u y1 = coll_ u (app y1 (par_1coll_1 u Z Z)) Z

#-}
beginmag Acc_coll
input Stripes
syn coll_ :: Str -> Str -> Str -> Str
syn par_1coll_1 :: Str -> Str -> Str -> Str
coll_ Z y1 y2 = y1
coll_ (B x1) y1 y2 = y1
coll_ (R x1) y1 y2 = R (coll_ x1 y1 y2)
coll_ (W x1) y1 y2 = coll_ x1 (W y1) y2
par_1coll_1 Z y1 y2 = y2
par_1coll_1 (B x1) y1 y2 = coll_ x1 (par_1coll_1 x1 Z y2) y2
par_1coll_1 (R x1) y1 y2 = par_1coll_1 x1 Z y2
par_1coll_1 (W x1) y1 y2 = par_1coll_1 x1 Z y2

endmag

Finally, we want to illustrate the use of the refined constructions. Therefore, we input
11, load an input file containing Mdoub

102 and supply doub as the function symbol in the
initial expression.

102The input program is contained in the output program.

116 9.2 Running the system

Enter a number (0=back): 11

Enter the file name of the Haskell+ source code (without .hp): doub
Enter the name of the function in the initial expression (outermost): doub

Program is possibly deteriorating efficiency,
output non-deteriorating Haskell code [Y/n]:

Enter the Haskell+ output file name (without .hp, Return=stdout):

begindata Tree
data Tree = Sigma Tree Tree | Alpha

enddata

beginmag Doub [Att,Mac,Mat,Prod,Su,Swp,Tl,Top,Wp,Wsu,Xlin,Xnd,Ylin,Ynd]
input Tree
syn doub :: Tree -> Tree
doub Alpha = Alpha
doub (Sigma x1 x2) = sub (Sigma Alpha Alpha) (Sigma (doub x1) (doub x2))

endmag

beginmag Sub [Mac,Mat,Swp,Tl,Wp,Wsu,Xlin,Xnd,Ynd]
input Tree
syn sub :: Tree -> Tree -> Tree
sub Alpha y1 = y1
sub (Sigma x1 x2) y1 = Sigma (sub x1 y1) (sub x2 y1)

endmag

{-# RULES "COMPOSITION" forall u.
doub u = doub_ u Alpha

#-}
doub_ :: Tree -> Tree -> Tree
doub_ (Sigma x1 x2) y1 = Sigma z1AT1_1 z1AT1_1

where z1AT1_1 = Sigma (doub_ x1 y1) (doub_ x2 y1)
doub_ (Alpha) y1 = y1

Note that the system detected the possibility of a degradation of efficiency which can be
avoided by introducing where-clauses. Accordingly, the system asks the user, whether the
system shall introduce the where-clauses (thus return Haskell code) 103. The resulting
Haskell code fragment is also displayed above and, if we would have stored the resulting
Haskell+ code in a file, then a transformation accessible from the main menu would
have allowed us the translation of output into a Haskell program, which could then be
executed.

103The default value for this question is yes, so there is no need to supply a value in our case.

10 CONCLUSIONS 117

10 Conclusions

10.1 Future work

Since modular tree transducers exactly cover the class of primitive recursive tree functions,
it would be worthwhile to study different constructions on modular tree transducers along
with their efficiency impact.

In this thesis we extended the basic construction of [KGK01] to non-copying macro
tree transducer modules as the first module. However, one could also try to lift or relax
the restrictions on the second module. We can imagine relabelling modules, for example.
Along with those extended constructions their efficiency impact has to be studied.

Even for the presented extended construction, further efficiency considerations could
be enlightening. Especially, the results of [Voi02] should successfully be applied in the
modular tree transducer setting. Eventually, one should also try to better approximate
the efficiency of the output macro tree transducer of Construction 6.15 depending on the
efficiency of its inputs. First approximations can be found in [Voi02].

Another interesting approach to efficiency analysis is the deduction of recurrences
describing the efficiency of a program and, afterwards, try to solve the recurrences or at
least establish relationships between them. A good introduction to efficiency analysis of
functional programs is [San90].

Furthermore, tree series transducers [FV01], which internally capture costs could prove
to be effective in the analysis of composition techniques. Finally, composition techniques
and corresponding efficiency considerations should be lifted to higher order functional
programs.

10.2 Acknowledgements

First of all, I would like to thank Armin Kühnemann for his superior tutelage and guidance.
Moreover, he found the patience to scrutinize pre-final versions of this thesis, which; in
my humble opinion; improved readability considerably. Together with Janis Voigtländer,
he constantly checked the progress of the thesis and made priceless comments on work in
progress.

I would also like to thank Heiko Vogler for spurring me to enter the field of theoretical
computer science. It was not until I attended his lecture “Foundations of Programming”,
that my interest in this field of study was awoken. In further lectures and seminars Prof.
Vogler and his colleagues brought me up the tree concerning formal language theory.

In addition, I want to express my gratitude towards the DAAD (German Academic
Exchange Service) and the NSC (National Science Council) for giving me the opportunity
to study in Taiwan. It was truly an amazing experience, and I would like to thank all
involved making it such. The DAAD also enabled me to study with Prof. Fülöp in
Hungary for a week.

Finally, I feel grateful towards my friends and foremost my family for their constant
support.

118 REFERENCES

References

[AFM+95] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip
Wadler. A call-by-need lambda calculus. In Proceedings of 22nd Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
1995.

[AJKV98] Inge Adamski, Bernd Jokubeit, Armin Kühnemann, and Heiko Vogler. In-
cremental evaluators for ordered macro attribute grammars. Technical report
TUD/FI98/10, Dresden University of Technology, 1998.

[Ave95] Jürgen Avenhaus. Reduktionssysteme - Rechnen und Schließen in gleichungs-
definierten Strukturen. Springer, Heidelberg/Berlin, first edition, 1995.

[Bar84] Hendrik P. Barendregt. The Lambda Calculus - its syntax and semantics,
volume 103 of Studies in Logic and the Foundations of Mathematics. Elsevier
Science, Amsterdam, first revised edition, 1984.

[BD77] Rod M. Burstall and John Darlington. A transformation system for develop-
ing recursive programs. Journal of the ACM, 24(1):44–67, January 1977.

[Bir84] Richard Bird. The promotion and accumulation strategies in transformational
programming. ACM Transactions on Programming Languages and Systems,
6(4):487–504, 1984.

[BKdV+02] Marc Bezem, Jan Willem Klop, Roel de Vrijer, et al. Term Rewriting Systems.
Cambridge University, Amsterdam/Bergen, 2002.

[Blo01] Stefan Blom. Term Graph Rewriting - syntax and semantics. PhD thesis, Uni-
versity of Amsterdam/Institute for Programming research and Algorithmics,
Amsterdam, 2001.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University, Cambridge, first edition, 1998.

[Boi91] Eerke Boiten. The many disguises of accumulation. Technical Report 91-26,
University of Nijmegen, December 1991.

[BS81] Stanley Burris and Hantamantagouda P. Sankappanavar. A Course
in Universal Algebra, volume 78 of Graduate Texts in Mathematics.
Springer, New York, first edition, 1981. Corrected version available at:
http://www.thoralf.uwaterloo.ca/htdocs/ualg.html.

[Bün98] Reinhard Bündgen. Termersetzungssysteme - Theorie, Implementierung, An-
wendung. Lehrbuch. Vieweg, Braunschweig/Wiesbaden, first edition, 1998.

[BvEG+87] Hendrik P. Barendregt, Marko C. J. D. van Eekelen, John R. W. Glauert,
Richard Kennaway, Rinus Plasmeijer, and Ronan Sleep. Term graph rewrit-
ing. In PARLE Parallel Architectures and Languages Europe, Volume II:
Parallel Languages, volume 259 of Lecture Notes in Computer Science, pages
141–158, Eindhoven, The Netherlands, June 1987. Springer.

REFERENCES 119

[BW88] Richard Bird and Philip Wadler. Introduction to Functional Programming.
International Series in Computer Science. Prentice Hall, Hemel Hempstead,
Hertfordshire, first edition, 1988.

[Cla96] David Clark. Term Graph Rewriting and Event Structures. PhD thesis, Im-
perial College, London, 1996.

[Eng75] Joost Engelfriet. Bottom-up and top-down tree transformations - a compari-
son. Mathematical Systems Theory, 9:198–231, 1975.

[Eng80] Joost Engelfriet. Some open questions and recent results on tree transducers
and tree languages, chapter Formal language theory: perspectives and open
problems, pages 241–286. Academic Press, New York, first edition, 1980.

[EV85] Joost Engelfriet and Heiko Vogler. Macro tree transducers. Journal of Com-
puter and System Sciences, 31:71–146, 1985.

[EV91] Joost Engelfriet and Heiko Vogler. Modular tree transducers. Theoretical
Computer Science, 78:267–303, 1991.

[FV98] Zoltán Fülöp and Heiko Vogler. Syntax-directed semantics – Formal models
based on tree transducers. Monographs in Theoretical Computer Science.
Springer, Berlin/Heidelberg, first edition, 1998.

[FV01] Zoltán Fülöp and Heiko Vogler. Tree transducers with costs. available at:
<http://www.orchid.inf.tu-dresden.de/gdp/forschung/publikation.html>,
2001.

[HVM+01] Matthias Höff, Rainer Vater, Andreas Maletti, Armin Kühnemann, and Janis
Voigtländer. Tree transducer based program transformations for Haskell+.
Progress report, Dresden University of Technology, March 2001.

[Jou93] Jean-Pierre Jouannaud. Introduction to rewriting. In Hubert Comon and
Jean-Pierre Jouannaud, editors, Term Rewriting - French Spring School of
Theoretical Computer Science, volume 909 of Lecture Notes in Computer Sci-
ence, pages 1–15, Font Romeux, France, May 1993. Springer.

[KGK01] Armin Kühnemann, Robert Glück, and Kazuhiko Kakehi. Relating accumu-
lative and non-accumulative functional programs. In Rewriting Techniques
and Applications, volume 2051 of Lecture Notes in Computer Science, pages
154–168, Utrecht, The Netherlands, May 2001. Springer.

[Küh97] Armin Kühnemann. Berechnungsstärken von Teilklassen primitiv-rekursiver
Programmschemata. PhD thesis, Dresden University of Technology, 1997.

[Küh98] Armin Kühnemann. Benefits of tree transducers for optimizing functional
programs. In Foundations of Software Technology & Theoretical Computer
Science, volume 1530 of Lecture Notes in Computer Science, pages 146–157,
Chennai (India), 1998. Springer.

[Küh01] Armin Kühnemann. Relating accumulative and non-accumulative functional
programs. Talk, Dresden University of Technology, 2001.

120 REFERENCES

[Les99] Christian Lescher. Entwurf und Implementierung einer Eingabesprache für ein
System zur Erzeugung syntaxgesteuerter Editoren. Student thesis, Dresden
University of Technology, 1999.

[Pot90] Michael D. Potter. Sets: An Introduction. Oxford University, New York, first
edition, 1990.

[Rou70] William C. Rounds. Mapping and grammars on trees. Mathematical Systems
Theory, 4:257–287, 1970.

[San90] David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis,
Imperial College of Science, University of London, September 1990.

[Str71] Raymond Strong. Translating recursion equations into flowcharts. Journal of
Computer and System Sciences, 5:254–285, 1971.

[Tha70] James W. Thatcher. Generalized2 sequential machine maps. Journal of Com-
puter and System Sciences, 4:339–367, 1970.

[Tho99] Simon Thompson. Haskell - the craft of functional programming. International
Computer Science Series. Addison-Wesley, first edition, 1999.

[VK01] Janis Voigtländer and Armin Kühnemann. Composition of functions with
accumulating parameters. Technical report TUD-FI01-08, Dresden University
of Technology, August 2001.

[Voi01] Janis Voigtländer. Composition of restricted macro tree transducers. Master’s
thesis, Dresden University of Technology, Dresden, March 2001.

[Voi02] Janis Voigtländer. Conditions for efficiency improvement by tree transducer
composition. In S. Tison, editor, 13th International Conference on Rewrit-
ing Techniques and Applications, volume 2378 of Lecture Notes in Computer
Science, pages 222–236, Copenhagen, Denmark, July 2002. Springer.

[Wad87] Philip Wadler. The concatenate vanishes. Note, December 1987.

[Wad90] Philip Wadler. Deforestation: transforming programs to eliminate trees. The-
oretical Computer Science, 73:231–248, 1990.

[Wec92] Wolfgang Wechler. Universal Algebra for Computer Scientists, volume 25 of
Monographs on Theoretical Computer Science. Springer, Heidelberg/Berlin,
first edition, 1992.

