
Technische Universität Dresden

Fakultät Informatik

Bakkalaureatsarbeit
Bachelor Thesis

von / by

Andreas Maletti

zum Thema / on the topic

�E�ciency analysis for the elimination

of intermediate results in functional

programs by compositions of

attributed tree transducers�

Betreuender Hochschullehrer: Prof. Dr.�Ing. habil. Heiko Vogler
Betreuer: Dr. Armin Kühnemann

Institut: Theoretische Informatik
Professur: Grundlagen der Programmierung

Begonnen am: 02.04.2001
Eingereicht am: 31.07.2001

ii

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Bakkalaureatsarbeit selbstständig und
nur unter Zuhilfenahme der angegebenen Literatur verfasst habe.

Bannewitz, den 9. Oktober 2006
. .

Andreas Maletti

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Mathematical Foundations . 5

2.2 Basics of formal language theory . 6

2.3 Macro tree transducers . 8

2.4 Attributed tree transducers . 11

3 Incorporate attributed tree transducers 17

3.1 The construction . 17

3.2 Establishing a new derivation relation 20

3.3 E�ciency considerations . 23

4 Compose attributed tree transducers 29

4.1 The construction . 29

4.2 E�ciency considerations . 33

5 Back to macro tree transducers 39

5.1 The construction . 39

5.2 E�ciency considerations . 41

5.3 Putting the pieces together . 44

6 Conclusions 47

6.1 Future work . 47

iii

iv CONTENTS

Chapter 1

Introduction

Compositions of existing functions, i.e. the result of one function call is passed as a
parameter to some other function, represent a clear, modular style of de�ning new
functions. That is why function compositions are quite ubiquitous in functional
programming. The functional programming language Haskell (cf. [Tho99]), for
example, even introduces a special operator (.) denoting function composition and
also implements many standard library functions as a composition of others. On
the one hand side this style provides developers with an e�cient way of reusing
existing functionality, but on the other hand side the composition might also in-
troduce ine�ciencies. These ine�ciencies include construction and/or destruction
of structured intermediate result objects as well as possibly ine�cient computation
(e.g. unnecessary tree traversals).

Several techniques are known to avoid the actual representation of intermediate
results by transforming the function de�nitions [BD77, Mal89, GLP93], including
composition results of tree transducer theory. In this thesis we consider a series of
transformations proposed independently by [Küh98, CDPR99] based on attributed
tree transducers [Fül81] applicable to restricted functional programs. Speci�cally we
investigate the time-behaviour of the transformation result compared to the original
sequential composition and we are aimed towards identifying classes of functional
programs, where the transformation result outperforms the original sequential com-
position independent of the actual input.

Within this thesis we will use the unweighted number of reduction steps needed to
compute the �nal result using a call-by-need evaluation strategy as our performance
measure. This e�ciency measure is very easy to determine and was also applied in
[Höf99, Bor97], but in [Bor97] other performance measures were discussed as well.

To elucidate the involved ine�ciencies, we consider the following program written
in Haskell.

revnot :: [Bool] -> [Bool]

revnot = reverse.(map not)

The function named revnot �rstly negates every element of a list consisting of
booleans and then reverses this list. This is stated in an obvious way by using a
function composition of (map not) and reverse. So we e�ectively reused existing
functionality, namely the functions reverse, map and not, making the program
easier to understand, easier to validate and easy to maintain.

Contrasting these advantages are the ine�ciencies experienced when computing

1

2 CHAPTER 1. INTRODUCTION

with the above function de�nition. Firstly if we use lazy evaluation, then every
constructor created (as output) by the function (map not) is immediately consumed
by the function reverse, which results in unnecessary construction / destruction
operations. Furthermore the list is iterated (traversed) twice, the �rst iteration
creates the list containing the negated elements and the second iteration reverses
the result list.

In order to apply our considered series of transformations, we necessarily need
implementation details of the functions reverse and (map not) called ex in the
following. Using the de�nitions of the functions, we (and a compiler as well) can
determine, whether the transformations are applicable, and furthermore can also
transform the de�nitions.

ex :: [Bool] -> [Bool]

ex [] = []

ex (x:xs) = not x : ex xs

reverse :: [Bool] -> [Bool]

reverse xs = let reverse' [] y = y

reverse' (x:xs) y = reverse' xs (x:y)

in

reverse' xs []

Both functions are primitive recursive and without going into detail at this stage, the
proposed transformations are indeed applicable to this example yielding a function
de�nition like (we modi�ed the original result of the construction in order to improve
readability):

revnot2 :: [Bool] -> [Bool]

revnot2 xs = let revnot2' [] y = y

revnot2' (x:xs) y = revnot2' xs (not x:y)

in

revnot2' xs []

It is easy to see that both functions (revnot and revnot2) are equivalent. The lat-
ter function avoids the construction/destruction of intermediate results completely,
but the question remains which function performs better according to our perfor-
mance measure (reduction steps). In this case it is obvious, that the latter function
de�nition outperforms the original one, since it only iterates the list once. In general
the problem cannot be decided that easily, so our aim is to �nd syntactic classes
of functional programs for which the decision can be drawn. Given that we have
such a decision procedure, a compiler could automatically opt for the more e�cient
function de�nition enabling the developer to stick to the readable, modular style of
programming.

We omitted the exact requirements for the considered transformations to be applica-
ble. First of all we only consider primitive-recursive functions, which we can model
using macro tree transducers [EV85]. Furthermore we disallow multiple calls of the
same function on the same subtree. This requirement is called weakly single-use
and given a weakly single-use macro tree transducer, we can construct an equiva-
lent attributed tree transducer (e.g. [Küh00a]), which de�nes the same function.
Furthermore if the �rst macro tree transducer is linear in context parameters, then
we can compose the gained attributed tree transducers using a composition result
of [Gie88]. The result of the composition is an attributed tree transducer, which
de�nes the same function as the sequential composition of the original function

3

de�nitions. This attributed tree transducer can then be transformed back into a
macro tree transducer using a transformation based on [FZ82] yielding a functional
program.

The following illustration outlines the structure of this thesis. In addition it gives
an overview of the series of transformations. The labels MAC, MACwsu, MACsu,
ATT and ATTsu shall denote the classes of all translations de�nable by arbitrary
macro tree transducers, weakly single-use macro tree transducers, single-use macro
tree transducers, arbitrary attributed tree transducers and single-use attributed
tree transducers, respectively. Furthermore the symbol ; denotes the sequential
composition (of tree transduction classes) and the arrows indicate transformations.

MACsu ; MACwsu

Chapter 3
? ?

ATTsu ATT;

@
@

@R

�
�

�	
Chapter 4

ATT

?
Chapter 5

MAC

This thesis is divided into six chapters. Chapter two presents the basic notations as
well as an introduction to tree transducer theory. In chapter three we �rstly state
the construction which transforms a weakly single-use macro tree transducer into
an attributed tree transducer, and secondly we relate the e�ciencies of the origi-
nal macro tree transducer and the newly created attributed tree transducer. The
next chapter introduces the construction needed to compose a single-use attributed
tree transducer and an attributed tree transducer along with an e�ciency relation
between the original attributed tree transducers and the resulting attributed tree
transducer. In chapter �ve we present the construction translating an attributed
tree transducer back into a macro tree transducer as well as e�ciency considera-
tions. Finally in the last chapter we summarize the individual results gained in the
previous chapters and outline future work in this �eld of study.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminaries

2.1 Mathematical Foundations

The set of natural numbers including 0 is designated by N in the following and
N+ = N \ {0} shall denote the set of all positive integers. For arbitrary n ∈ N
let [n] = {x | x ≤ n , x ∈ N+ } = {1, . . . , n} be the subset of N+, which contains
all positive integers smaller than n along with n itself. Therefore [0] = ∅, where ∅
represents the empty set.

The number of elements of a �nite set S is denoted |S| ∈ N and there is only one
set S = ∅ with |S| = 0. We will use the subset relation S1 ⊆ S2 between sets S1 and
S2 to state that every element of S1 is also an element of S2 and the strict subset
relation S1 ⊂ S2 to represent the fact, that S1 ⊆ S2 and S1 6= S2. Furthermore we
de�ne P(S) to be the powerset of an arbitrary set S (i.e. P(S) = {X |X ⊆ S }).

Let n ∈ N and S1, . . . , Sn be arbitrary non-empty sets, then S1 × · · · × Sn =
{ (x1, . . . , xn) | x1 ∈ S1, . . . , xn ∈ Sn } represents the n-fold cartesian product. El-
ements of such products are called n-tuples and pairs, quintuples in particular are
2-tuples, 5-tuples, respectively. We use the notation Sn with n ∈ N , instead of the
n-fold cartesian product of some non-empty set S with itself. Therefore S0 = ∅ and
S1 = S.

A binary relation →⊆ S2 over a set S is a subset of S2. We often prefer the in�x
notation a → b contrasting the pre�x notation → (a, b). Let →0 be the identity
relation over S, then →n+1= { (a, c) | a ∈ S , c ∈ S , (∃b ∈ S) [a → b ∧ b →n c] }
is the (n + 1)-fold composition of relation → for arbitrary n ∈ N . Furthermore
the transitive, respectively the re�exive and transitive, closure of → is denoted
→+=

⋃
n∈N+

(→n), respectively →∗=
⋃

n∈N

(
→n

)
.

Let → be a binary relation over a set S. A sequence of the form t0 → t1 → . . .→ tn
with n ∈ N and t0, . . . , tn ∈ S is called reduction, if for every i ∈ [n] it holds that
ti−1 → ti. The (derivation) relation→ is called terminating, if and only if there does
not exist an in�nite reduction, and → is called con�uent, if and only if whenever
t →∗ t1 and t →∗ t2 with t, t1, t2 ∈ S, then there also exists a t′ ∈ S with t1 →∗ t′

and t2 →∗ t′. Let → be terminating and con�uent, then for every element t ∈ S
there exists a unique normal form t′ ∈ S (i.e. t →∗ t′ and there does not exist a
t′′ ∈ S, such that t′ → t′′), which we will denote nf→(t).

We will also make use of the short-hands Xn and Yn for every n ∈ N to repre-
sent the sets Xn = {xi | i ∈ [n] } = {x1, . . . , xn} and Yn = { yi | i ∈ [n] }, so

5

6 CHAPTER 2. PRELIMINARIES

consequently |Xn| = n. In case S is a non-empty, �nite set, then maxR(S) ∈ S,
respectively minR(S) ∈ S, shall return the maximal, respectively minimal, element
of S according to the total ordering relation (re�exive, transitive, antisymmetric,
linear) R over S, i.e. for every x ∈ S: R

(
x,maxR(S)

)
, respectively for every x ∈ S:

R
(
minR(S), x

)
. Especially in case of S ⊂ N being a non-empty, �nite subset of the

natural numbers, then we will use maxS = max≤(S) and minS = min≤(S).

2.2 Basics of formal language theory

A �nite set of symbols is called alphabet. Let Σ be an arbitrary alphabet, then a
�nite sequence s1 . . . sm of symbols, where m ∈ N+ and s1, . . . , sm ∈ Σ, is a word
over Σ. The set of all such words over an alphabet Σ is designated Σ+ and the
associative binary operator · denoting concatenation of words shall be de�ned over
elements of Σ∗ = Σ+ ∪ {ε} using the neutral element ε /∈ Σ. To simplify notation
we omit unnecessary parentheses and we will usually write w1w2 instead of w1 ·w2.
The n-fold concatenation of some word w ∈ Σ∗ shall be denoted by wn for n ∈ N ,
such that consequently w0 = ε.

The associative binary set concatenation operator ◦ performs concatenation over
non-empty alphabets of words as follows L1◦L2 = {w1w2|w1 ∈ L1, w2 ∈ L2 }, where
the sets L1, L2 ⊆ Σ∗ are subsets of Σ∗. Let Σn denote the n-fold concatenation of
Σ with itself for every n ∈ N , where Σ0 = {ε} is the set containing only the neutral
element and consequently Σ∗ =

⋃
n∈N (Σn) and Σ+ =

⋃
n∈N+

(Σn).

A language L ⊆ Σ∗ over some alphabet Σ is an arbitrary subset of all words (in-
cluding ε) over Σ. In particular the neutral element ε is called empty word. Let
|w| ∈ N denote the length of a word w (the underlying alphabet must be deducable
from the context), such that |ε| = 0.

2.2.1 De�nition (ranked alphabet)
Let Γ be an alphabet and in addition let rank : Γ → N be a total function, which
associates a rank (arity) to a given symbol of Γ. A set

Σ = {σ(rank(σ)) | σ ∈ Γ }

is then called ranked alphabet. For a ranked alphabet Σ we will use the notation
rankΣ to designate the corresponding rank-function and we de�ne the restriction
Σ(n) of a ranked alphabet Σ to n-ary symbols (symbols with rank n) for every n ∈ N
to be

Σ(n) = {σ | σ(n) ∈ Σ }.
Given a ranked alphabet Σ, the underlying alphabet will be denoted Σ =

⋃
n∈N Σ(n).

We de�ne the set TΣ(Y) ⊆ (Σ ∪ Y ∪ {(,)})∗ of all terms build of constructors
(symbols) of the ranked alphabet Σ possibly indexed with elements of the set Y to
be the smallest set T such that

• Y ⊆ T and

• for every n ∈ N , σ ∈ Σ(n) and t1, . . . , tn ∈ T also (σ t1 . . . tn) ∈ T , where the
term ti , i ∈ [n] is called i-th successor of (σ t1 . . . tn).

We also introduce the shorthand TΣ = TΣ(∅) and for the sake of simplicity we will
write α instead (α), if α ∈ Σ(0) and we will omit unnecessary parentheses, especially
in case of monadic alphabets Σ (Σ = Σ(0) ∪ Σ(1)).

2.2. BASICS OF FORMAL LANGUAGE THEORY 7

Let TΣ(Y) be a set of terms (deducible from the context) as de�ned above, an
element t ∈ TΣ(Y) and in addition a symbol α ∈ (Σ∪Y), then |t|α shall denote the
number of occurrences of α in t. So for every β ∈ (Σ ∪ Y) and t1, . . . , tn ∈ TΣ(Y)

|β t1 . . . tn|α =
∑
i∈[n]

|ti|α +

{
1 , if α = β

0 , else
, where n =

{
0 , if β ∈ Y
rankΣ(β) , otherwise

.

The set of all paths Paths is de�ned as Paths = P({ε} ∪ N ◦ ({.} ◦N)∗). Further-
more we de�ne the following functions and notations:

1. paths(t) computes the set of all paths of a tree t ∈ TΣ(Y).

paths : TΣ(Y) → Paths
paths′ : TΣ(Y) → (Paths \ {ε})

For every n ∈ N , σ ∈ Σ(n) , y ∈ Y and t1, . . . , tn ∈ TΣ(Y)

paths′(y) = ∅
paths′(σ t1 . . . tn) = [n] ∪

(
[n] ◦ {.} ◦ paths′(tj)

)
and �nally paths(t) = paths′(t) ∪ {ε} for every t ∈ TΣ(Y).

2. labelt(p) shall compute the label at the node reachable by path p ∈ paths(t)
in the tree t ∈ TΣ(Y).

labelt : paths(t) → (Σ ∪ Y)

For every n ∈ N , σ ∈ Σ(n) , y ∈ Y and t1, . . . , tn ∈ TΣ(Y)

label(σ t1...tn)(p) =


σ , if p = ε

labeltp
(ε) , if p ∈ [n]

labeltj (p
′) , if p = j.p′ with j ∈ [n]

labely(ε) = y

3. t[x/y] with t, x, y ∈ TΣ(Y) denotes the substitution of each and every occur-
rence of x by y in t.

Let F and Π be sets, then we de�ne the set FunF,Π of all attribute instances over
attributes of F and paths of Π to be

FunF,Π = { 〈f, π〉 | f ∈ F , π ∈ Π }.

8 CHAPTER 2. PRELIMINARIES

2.3 Macro tree transducers

Within this section we will de�ne macro tree transducers [EV85], which we use
to represent functional programs. Therefore we �rstly de�ne the apparatus macro
tree transducer, then associate formal semantics and �nally introduce syntactic
properties. The �rst two de�nitions establishing the set of right hand sides and the
components of a macro tree transducer are taken out of [Voi01].

2.3.1 De�nition (right hand sides)
Let k, n ∈ N be natural numbers and F,∆ be ranked alphabets. Then the set
RHS∆,F,k,n of right hand sides over function symbols of F and output symbols
of ∆ indexed with recursion variables x1, . . . , xk and context parameters y1, . . . , yn

is de�ned to be the smallest set RHS ⊆ T∆∪F (Yn ∪Xk) such that

• Yn ⊆ RHS,

• for every r ∈ N , δ ∈ ∆(r) and %1, . . . , %r ∈ RHS it holds that (δ %1 . . . %r) ∈
RHS and

• for every r ∈ N , f ∈ F (r+1) , x ∈ Xk and %1, . . . , %r ∈ RHS it holds that
(f x %1 . . . %r) ∈ RHS.

2

Having de�ned the shape of the right hand sides, we can now give a compact
de�nition of the apparatus macro tree transducer.

2.3.2 De�nition (macro tree transducer)
A macro tree transducer M is a quintuple M = (Σ,∆, F, e, R), where

• Σ is a ranked alphabet of input symbols with Σ(0) 6= ∅,

• ∆ is a ranked alphabet of output symbols with ∆(0) 6= ∅,

• F is a ranked alphabet of function symbols with F ∩(Σ∪∆) = ∅ and F (0) = ∅,

• e ∈ RHS∆,F,1,0 is an initial expression and

• R is a non-empty, �nite set of rules of the form f (σ x1 . . . xk) y1 . . . yn =
rhsM,σ,f with k, n ∈ N , σ ∈ Σ(k) , f ∈ F (n) and rhsM,σ,f ∈ RHS∆,F,k,n,
such that there is exactly one rule for every combination of f and σ.

2

We will try to illustrate the above de�nitions by stating an example.

2.3.3 Example (reverse for lists)
We de�ne the macro tree transducer Mrev = (Σ,Σ, {rev(2)}, (rev x1N), R) with

Σ = {A(1), B(1), N (0)} and

R = { rev (Ax1) y1 = rev x1 (Ay1) ,
rev (B x1) y1 = rev x1 (B y1) ,
rev N y1 = y1 }.

2

2.3. MACRO TREE TRANSDUCERS 9

Intuitively the above stated macro tree transducer reverses an input list consisting
of As, Bs and the end delimiter N by accumulating the list in the context parameter
y1. To associate formal semantics to our macro tree transducers, we will de�ne the
set of sentential forms and afterwards a derivation relation.

2.3.4 De�nition (sentential forms)
Let Σ,∆ and F be ranked alphabets. The set SFΣ,∆,F of sentential forms over Σ,∆
and F is de�ned to be the smallest subset SF ⊆ TΣ∪∆∪F , such that

• for every k ∈ N , δ ∈ ∆(k) and t1, . . . , tk ∈ SF it holds that (δ t1 . . . tk) ∈ SF
and

• for every n ∈ N , f ∈ F (n+1) , e ∈ TΣ and t1, . . . , tn ∈ SF it holds that
(f e t1 . . . tn) ∈ SF .

2

The following de�nition of a derivation relation for macro tree transducers is taken
out of [Höf99], where it was also shown that this derivation relation represents a
call-by-name (leftmost-outermost) derivation relation.

2.3.5 De�nition (call-by-name derivation relation)
Let M = (Σ,∆, F, e, R) be a macro tree transducer. Then the derivation relation of
M denoted ⇒M is the smallest binary relation ⇒ over SFΣ,∆,F , such that

• for every k, n ∈ N , σ ∈ Σ(k) , f ∈ F (n+1) , e1, . . . , ek ∈ TΣ and t1, . . . , tn ∈
SFΣ,∆,F with

(
f (σ x1 . . . xk) y1 . . . yn = %

)
∈ R holds(

f (σ e1 . . . ek) t1 . . . tn
)
⇒ %[x1/e1, . . . , xk/ek , y1/t1, . . . , yn/tn]

• and for every k ∈ N , σ ∈ Σ(k) , i ∈ [k] , t1, . . . , ti−1 ∈ T∆ and t′i, ti, . . . , tk ∈
SFΣ,∆,F with ti ⇒ t′i holds

(σ t1 . . . ti . . . tk) ⇒ (σ t1 . . . ti−1 t
′
i ti+1 . . . tk).

2

In [EV85] it was shown that the non-deterministic derivation relation for macro
tree transducers is terminating and con�uent, consequently the derivation relation
⇒M is also terminating and con�uent. The following example shall illustrate the
reduction process with the derivation relation de�ned above.

2.3.6 Example (reduction using Mrev)
In this example we will reduce the input tree t = A(B(BN)) = ABBN using the
macro tree transducer Mrev de�ned in Example 2.3.3.

rev (ABBN) N
⇒Mrev

rev (BBN) (AN)
⇒Mrev rev (BN) (BAN)
⇒Mrev rev N (BBAN)
⇒Mrev

BBAN

2

10 CHAPTER 2. PRELIMINARIES

The sentential form (BBAN) ∈ T∆ is the normal form. This result represents
the reversed input list and we observe that the reduction process involved four
reduction steps in total. Having de�ned the derivation relation, we can �nally
associate semantics to macro tree transducers. A macro tree transducer de�nes a
translation (a total mapping) of an input tree to an output tree.

2.3.7 De�nition (induced translation)
Let M = (Σ,∆, F, e, R) be a macro tree transducer. The translation induced by M ,
denoted τ(M) ⊆ TΣ × T∆, is de�ned to be

τ(M) = { (tΣ, t∆) | tΣ ∈ TΣ , t∆ ∈ T∆ , t∆ = nf⇒M
(e [x1/tΣ]) }.

2

Occasionally we will interpret this relation as a mapping, e.g. τ(M)(tΣ) = t∆.

2.3.8 Example (induced translation of Mrev)
Let Mrev be the macro tree transducer which was de�ned in Example 2.3.3. The
translation induced by Mrev is

τ(Mrev) = { (wN,wRN) | wN ∈ TΣ },

where wR denotes the reversed word (i.e. (ABB)R = BBA). 2

In the following macro tree transducers are considered equivalent, if and only if
their induced translations are equal. In addition we introduce the class MAC of
all translations computable by macro tree transducers. As preceeded our series of
transformations is only applicable to certain subclasses of macro tree transducers.
These subclasses as well as some other important syntactic restrictions are de�ned
below.

2.3.9 De�nition (weakly single-use macro tree transducer)
Let M = (Σ,∆, F, e, R) be a macro tree transducer. If and only if for every input
symbol σ ∈ Σ , i ∈ [rankΣ(σ)] and f ∈ F , a call like (f xi . . .) occurs in a right hand
side of at most one rule at σ, and there and additionally also in e only one such
call, then the macro tree transducer M is called weakly single-use. The class of all
translations computable by weakly single-use macro tree transducers will be denoted
MACwsu. 2

2.3.10 De�nition (at least single-use macro tree transducer)
Let M = (Σ,∆, F, e, R) be a macro tree transducer. If and only if for every input
symbol σ ∈ Σ , i ∈ [rankΣ(σ)] and f ∈ F , a call like (f xi . . .) occurs in a right hand
side of at least one rule at σ and a call like (f x1 . . .) occurs in e at least once as
well, then the macro tree transducer M is called at least single-use. The class of all
translations computable by at least single-use macro tree transducers will be denoted
MAClsu. 2

2.3.11 De�nition (syntactic single-use macro tree transducer)
LetM = (Σ,∆, F, e, R) be a macro tree transducer. M is called syntactic single-use,
if and only if M is both weakly single-use and at least single-use. We identify the
class of all translations computable by syntactic single-use macro tree transducers
by MACssu. 2

The above de�nitions intuitively state that all suitable calls like (f xi . . .) appear
at most once in the case of weakly single-use, or at least once in the case of at least

2.4. ATTRIBUTED TREE TRANSDUCERS 11

single-use in all right hand sides at an input symbol σ. The same restriction is also
imposed on the initial expression. The de�nition of syntactic single-use, adapted
from [Gie88], is the combination of both at least single-use and weakly single-use.

2.3.12 De�nition (non-copying, preserving, non-deleting)
Let M = (Σ,∆, F, e, R) be a macro tree transducer. If and only if for every input
symbol σ ∈ Σ, every function symbol f ∈ F and every context parameter yi with
i ∈ [rankF (f)]

|rhsM,σ,f |yi


≤ 1
= 1
≥ 1

then M is called


non-copying (in context parameters)

preserving in context parameters

non-deleting in context parameters

.

The classes of all translations computable by non-copying, preserving in context pa-
rameters and non-deleting in context parameters macro tree transducers are denoted
MACnc, MACprc and MACndc, respectively. 2

Similarly this represents the fact that every context parameter occurs at most once
(for non-copying) or at least once (for non-deleting in context parameters) in every
right hand side. Taking the properties weakly single-use and non-copying together,
we gain the property single-use.

2.3.13 De�nition (single-use macro tree transducer)
A macro tree transducer M is called single-use, if and only if M is both non-
copying and weakly single-use. Furthermore we identify the class of all translations
computable by single-use macro tree transducers by MACsu. 2

If we reconsider our running example, it is easy to see thatMrev is in fact a syntactic
single-use and preserving in context parameters macro tree transducer, hence it is
also single-use.

Finally we will also introduce the concept of top-down tree transducers, which
are macro tree transducers without context parameters. Consequently all function
symbols are unary. We will use TOP, TOPwsu, TOPssu and TOPlsu to identify the
corresponding classes of translations.

2.4 Attributed tree transducers

In this section we will de�ne attributed tree transducers, which were introduced
in [Fül81]. The de�nitions are mostly taken out of [Küh00a], but they are slightly
adapted to use established notations of the �eld of attribute grammars (cf. [KV97]).
We �rstly de�ne inner an outer attribute occurrences.

2.4.1 De�nition (Inner and outer attribute occurrences)
We de�ne the functions inS,I and outS,I both typed N → P(FunS∪I,N), that return
the alphabets of inner and outer attribute occurrences according to alphabets S and
I of synthesized and inherited attributes as

inS,I(k) = FunS,{0} ∪ FunI,[k]

outS,I(k) = FunI,{0} ∪ FunS,[k].

2

12 CHAPTER 2. PRELIMINARIES

With the above de�nition we can now de�ne the syntax of attributed tree trans-
ducers. We will also de�ne some shorthands for attributed tree transducers. It will
always be clear from the context to which attributed tree transducer these short-
hands refer. Occasionally we will also decorate these shorthands with subscripts to
express that they refer to the attributed tree transducer with the same subscript.

2.4.2 De�nition (attributed tree transducer)
A attributed tree transducer M is a 7-tuple M = (Σ,∆, S, I, ŝ, σ̂, R), where

• Σ is a ranked alphabet of input symbols with Σ(0) 6= ∅,

• ∆ is a ranked alphabet of output symbols with ∆(0) 6= ∅,

• S is an alphabet of synthesized attributes,

• I is an alphabet of inherited attributes,

• ŝ /∈ S is a distinguished synthesized attribute called initial synthesized at-
tribute,

• σ̂ /∈ (Σ ∪∆) is a distinguished unary input symbol called root symbol,

• Σ+ = Σ ∪ {σ̂(1)} , S+ = S ∪ {ŝ} , F = S ∪ I , F+ = S+ ∪ I,

• we de�ne the functions inM and outM both typed Σ+ → P(FunF+,N) to be

inM (σ) =

{
in{bs},I(1) , if σ = σ̂

inS,I(n) , otherwise
outM (σ) =

{
outS,∅(1) , if σ = σ̂

outS,I(n) , otherwise

• R = (rhsM,σ |σ ∈ Σ+) is a non-empty, �nite family of right hand side func-
tions, where for every σ ∈ Σ+ the function rhsM,σ is a total function of the
type

inM (σ) → T∆

(
outM (σ)

)
.

2

To counteract misunderstandings we assume, that I , S+ , Σ+∪∆ andN are pairwise
disjoint. The following example shall illustrate, how an attributed tree transducer
is de�ned.

2.4.3 Example (reverse for lists)
We de�ne the attributed tree transducer Ma−rev to be

Ma−rev = (Σ,Σ, {rev}, {i}, ŝ, σ̂, {rhsM,bσ, rhsM,A, rhsM,B , rhsM,N})

with Σ = {A(1), B(1), N (0)} and

rhsM,bσ(〈ŝ, 0〉) = 〈rev, 1〉 rhsM,A(〈rev, 0〉) = 〈rev, 1〉
rhsM,bσ(〈i, 1〉) = N rhsM,A(〈i, 1〉) = A 〈i, 0〉
rhsM,N (〈rev, 0〉) = 〈i, 0〉 rhsM,B(〈rev, 0〉) = 〈rev, 1〉

rhsM,B(〈i, 1〉) = B 〈i, 0〉.

2

2.4. ATTRIBUTED TREE TRANSDUCERS 13

Since attributed tree transducers are just special attribute grammars and attribute
grammars can be circular (cf. [KV97]), attributed tree transducers can be circular
as well. With the help of the following de�nitions we will exclude circular attributed
tree transducers.

2.4.4 De�nition (direct dependency relation)
Let M be an attributed tree transducer and furthermore let σ ∈ Σ+. The direct
dependency relation →M,σ⊆ inM (σ) × outM (σ) is the smallest relation such that
for every ξ ∈ inM (σ) and every χ ∈ outM (σ) the relation ξ →M,σ χ holds, if
|rhsM,σ(ξ)|χ ≥ 1. This relation is extended to attribute instances in a tree t ∈ TΣ

in the obvious way yielding the direct dependency relation →M,t of the tree t. 2

2.4.5 De�nition (circular attributed tree transducer)
An attributed tree transducer M = (Σ,∆, S, I, ŝ, σ̂, R) is called circular, if and only
if there exists an input tree t = (σ̂ t′) with t′ ∈ TΣ and an attribute instance χ ∈
FunF,paths(t) such that χ→+

M,t χ. 2

In the following we will always assume non-circular attributed tree transducers,
when speaking about attributed tree transducers. Again we will associate semantics
to our (non-circular) attributed tree transducers by stating a derivation relation.

2.4.6 De�nition (path relabeling)
Let M = (Σ,∆, S, I, ŝ, σ̂, R) be an attributed tree transducer and furthermore let
m = max{ rankΣ(σ) | σ ∈ Σ }. For every p ∈ Paths the function relabelM,p typed

relabelM,p : T∆

(
outS,I(m)

)
→ T∆

(
FunF,Paths

)
shall return the sentential form corresponding to a given right hand side. Therefore
the function replaces all attribute occurrences by attribute instances using path p.
For every j, k ∈ N , σ ∈ Σ(k) , f ∈ F and t1, . . . , tn ∈ T∆

(
outS,I(m)

)
we de�ne

relabelM,p to be

relabelM,p

(
σ t1 . . . tn

)
= σ

(
relabelM,p(t1) . . . relabelM,p(tn)

)
relabelM,p

(
〈f, j〉

)
=


〈f, p〉 if j = 0
〈f, j〉 if p = ε , j 6= 0
〈f, p.j〉 if p 6= ε , j 6= 0

2

2.4.7 De�nition (call-by-name derivation relation)
Let M = (Σ,∆, S, I, ŝ, σ̂, R) be an attributed tree transducer and in addition let
t ∈ TΣ+ be an input tree. The derivation relation of M according to the in-
put tree t is the following binary relation ⇒M,t⊆ T 2

∆(FunF+,paths(t)). For ev-
ery t1, t2 ∈ T∆(FunF+,paths(t)) the sentential form t1 can be reduced to t2, i.e.
t1 ⇒M,t t2, if and only if there exists j ∈ N , σ ∈ Σ+ , f ∈ F+ , p

′ ∈ paths(t) and
t′ ∈ T∆∪{u(0)}(FunF+,paths(t)) with u /∈ (F ∪∆ ∪ Paths) such that

• |t′|u = 1, labelt(p′) = σ, 〈f, j〉 ∈ inM (σ),

• p =


p′ if j = 0
j if j 6= 0 , p′ = ε

p′.j otherwise

,

• t1 = t′
[
u/〈f, p〉

]
and

14 CHAPTER 2. PRELIMINARIES

• t2 = t′
[
u/relabelM,p

(
rhsM,σ(〈f, j〉)

)]
.

A redex is such an occurrence of a term 〈f, p〉. 2

The following example illustrates the application of the derivation relation and the
process of computing a normal form using an attributed tree transducer.

2.4.8 Example (reduction using Ma−rev)
Let M = Ma−rev be the attributed tree transducer which is de�ned in Example
2.4.3 and furthermore let t = σ̂ (A (B (BN))).

〈ŝ, ε〉
⇒M,t 〈rev, 1〉
⇒M,t 〈rev, 1.1〉
⇒M,t 〈rev, 1.1.1〉
⇒M,t 〈rev, 1.1.1.1〉
⇒M,t 〈i, 1.1.1.1〉
⇒M,t B 〈i, 1.1.1〉
⇒M,t BB 〈i, 1.1〉)
⇒M,t BBA 〈i, 1〉))
⇒M,t BBAN

2

Finally we associate translation semantics to a given attributed tree transducer.

2.4.9 De�nition (induced translation)
Let M = (Σ,∆, S, I, ŝ, σ̂, R) be an attributed tree transducer. The translation in-
duced by M , denoted τ(M), is de�ned to be

τ(M) = { (tΣ, t∆) | tΣ ∈ TΣ , t∆ ∈ T∆ , t∆ = nf⇒M,(bσ tΣ)(〈ŝ, ε〉) }.

2

Note that the translation is independend of the chosen root symbol, since it is
only used as an auxillary device. In the following attributed tree transducers are
considered equivalent, if and only if their induced translations are equal. In addi-
tion we introduce the class ATT of all translations computable by attributed tree
transducers.

2.4.10 De�nition (single-use, syntactic single-use, at least single-use)
Let M = (Σ,∆, S, I, ŝ, σ̂, R) be an attributed tree transducer. If and only if for every
input symbol σ ∈ Σ+ and every outer attribute occurrence χ ∈ outM (σ)

∑
ξ∈inM (σ)

|rhsM,σ(ξ)|χ


≤ 1
= 1
≥ 1

then M is called


single-use

syntactic single-use

at least single-use

.

The classes of all translations computable by single-use, syntactic single-use and at
least single-use attributed tree transducers are denoted ATTsu, ATTssu and ATTlsu,
respectively. 2

2.4. ATTRIBUTED TREE TRANSDUCERS 15

The above de�nition intuitively states that every outer attribute occurrence appears
at most once (in the case of single-use) or at least once (in the case of at least
single-use) in all right hand sides of every right hand side function. The de�nition
of syntactic single-use, taken out of [Gie88], is the combination of both at least
single-use and single-use.

2.4.11 De�nition (weakly single-use attributed tree transducer)
Let M = (Σ,∆, S, I, ŝ, σ̂, R) be an attributed tree transducer. If and only if for
every input symbol σ ∈ Σ+ and every outer synthesized attribute occurrence χ ∈(
outM (σ) ∩ FunS+,N+

) ∑
ξ∈inM (σ)

|rhsM,σ(ξ)|χ ≤ 1

then M is called weakly single-use. The class of all translations computable by
weakly single-use attributed tree transducers is denoted ATTwsu. 2

If we reconsider our running example, it is easy to see that Ma−rev is in fact a
syntactic single-use attributed tree transducer, hence it is also single-use, weakly
single-use and at least single-use.

2.4.12 De�nition (translation composition)
Let τ1 and τ2 be translations. Then the sequential composition τ1; τ2 is de�ned to be

τ1; τ2 = { (t1, t2) | (t1, t′) ∈ τ1 , (t′, t2) ∈ τ2 }.

The sequential composition of two suitable tree transducers shall express the sequen-
tial composition of their induced translations. The sequential composition is also
extended to classes of translations in the obvious way.

Whenever we compose two translations, tree transducers or classes of tree trans-
ductions, then we will always assume that they are suitable, i.e. that their typing
allows composition.

A thorough introduction to tree transducer theory can be found in [FV98].

16 CHAPTER 2. PRELIMINARIES

Chapter 3

Incorporate attributed tree

transducers

The �rst step in our series of transformations is the construction of an equiva-
lent attributed tree transducer given a macro tree transducer (functional program).
Since ATT ⊂ MAC, this is not possible in general, but for several subclasses it was
shown that an equivalent attributed tree transducer can be constructed. Speci�-
cally we will consider weakly single-use macro tree transducers, because for them
an equivalent attributed tree transducer can be constructed (MACwsu ⊆ ATT).

The �rst section introduces the construction and provides an example of its appli-
cation. In addition we also present an import lemma, which establishes a relation
between properties of the original macro tree transducer and properties of the gained
attributed tree transducer. The following section will establish a new derivation re-
lation for attributed tree transducers, modelling a call-by-need evaluation strategy
more closely. Finally in the last section we will investigate the e�ciency relation
between the original macro tree transducer and the newly created attributed tree
transducer.

3.1 The construction

In this section we will state the construction taken from [Küh00a]. It transforms
a weakly single-use macro tree transducer into an equivalent attributed tree trans-
ducer (tree transducers are considered equivalent, if their induced translations are
equal).

3.1.1 Construction (MACwsu ⊆ ATT)
Let M = (Σ,∆, F, e, R) be a weakly single-use macro tree transducer and further-

more let α ∈ ∆(0) be arbitrary. We then construct an attributed tree transducer
M ′ = (Σ,∆, S, I, ŝ, σ̂, R′) with arbitrary σ̂ and ŝ, such that τ(M ′) = τ(M), as
follows:

• S = F

• I = { yf,l | f ∈ F , l ∈ [rankF (f)− 1] }

• R′ = (rhsM ′,σ | σ ∈ Σ+)

17

18 CHAPTER 3. INCORPORATE ATTRIBUTED TREE TRANSDUCERS

Let m = max{ rankΣ(σ) | σ ∈ Σ+ } be the maximum arity of the input symbols,

then we de�ne the functions topf and decf for every n ∈ N and f ∈ F (n+1) to be:

topf : RHS∆,F,m,n → T∆(outS,I(m))
decf : RHS∆,F,m,n → P(inS,I(m)× T∆(outS,I(m)))

• for every l ∈ [n]
topf (yl) = 〈yf,l, 0〉
decf (yl) = ∅

• for every k ∈ N , δ ∈ ∆(k) and %1, . . . , %k ∈ RHS∆,F,m,n

topf (δ %1 . . . %k) = δ
(
topf (%1)

)
. . .

(
topf (%k)

)
decf (δ %1 . . . %k) =

⋃
i∈[n] decf (%i)

• for every r ∈ N , g ∈ F (r) , j ∈ [m] and %1, . . . , %r ∈ RHS∆,F,m,n

topf (g xj %1 . . . %r) = 〈g, j〉
decf (g xj %1 . . . %r) =

⋃
i∈[r] decf (%i) ∪ {

(
〈yg,l, j〉, topf (%l)

)
| l ∈ [r] }

Using the two previously de�ned functions, we can now construct the right hand
side functions rhsM ′,σ by stating that for every σ ∈ Σ and ξ ∈ inM (σ)

rhsM ′,σ(ξ) =


topf (rhsM,σ,f) , if ξ = 〈f, 0〉 with f ∈ S
% , if (ξ, %) ∈

⋃
f∈S decf (rhsM,σ,f)

α , otherwise

.

The right hand side function rhsM ′,bσ is de�ned for every ξ ∈ inM (σ̂) by stating
that

rhsM ′,bσ(ξ) =


topf (e) , if ξ = 〈ŝ, 0〉
% , if (ξ, %) ∈ decf (e) for arbitrary f
α , otherwise

.

2

3.1.2 Example (transform Mrev)
Mrev of Example 2.3.3 is a weakly single-use macro tree transducer as we have seen
and therefore we can apply Construction 3.1.1 to gain the following attributed tree
transducer, which induces the same translation.

M ′ = (Σ,Σ, {rev}, {yrev,1}, ŝ, σ̂, (rhsM ′,bσ, rhsM ′,A, rhsM ′,B , rhsM ′,N))

where Σ = {A(1), B(1), N (0)} and the right hand side functions are de�ned by

rhsM ′,bσ(〈ŝ, 0〉) = 〈rev, 1〉 rhsM ′,A(〈rev, 0〉) = 〈rev, 1〉
rhsM ′,bσ(〈yrev,1, 1〉) = N rhsM ′,A(〈yrev,1, 1〉) = A 〈yrev,1, 0〉
rhsM ′,N (〈rev, 0〉) = 〈yrev,1, 0〉 rhsM ′,B(〈rev, 0〉) = 〈rev, 1〉

rhsM ′,B(〈yrev,1, 1〉) = B 〈yrev,1, 0〉.

2

We clearly see that this attributed tree transducer M ′ is almost syntactically equal
to the attributed tree transducerMa−rev of Example 2.4.3. By consistent renaming
of the attributes we could gain syntactic equivalence. Therefore we can conclude
that Ma−rev computes the same translation as Mrev.

3.1. THE CONSTRUCTION 19

In the following we will try to �nd su�cient restrictions of the original macro tree
transducer M such that the attributed tree transducers M ′ gained by Construction
3.1.1 has a particular property. The �rst two results were already shown in [Küh00a]
and are just stated for completeness.

MACwsu ⊆ ATTwsu (3.1)

MACsu ⊆ ATTsu (3.2)

MACssu ∩MACndc ⊆ ATTlsu (3.3)

MACssu ∩MACprc ⊆ ATTssu (3.4)

3.1.3 Lemma (statement 3.3)
Let M = (Σ,∆, F, e, R) be macro tree transducer, which is syntactic single-use and
non-deleting in context parameters, and letM ′ = (Σ,∆, S, I, ŝ, σ̂, R′) be the resulting
attributed tree transducer of Construction 3.1.1 applied to M . Then M ′ is at least
single-use.

Proof: Let σ ∈ Σ be an arbitrary input symbol. M ′ is at least single-use, if we
can prove that for every χ ∈ outM ′(σ) the condition∑

ξ∈inM (σ)

|rhsM,σ(ξ)|χ ≥ 1

holds. Since outM ′(σ) = FunI,{0} ∪ FunS,[rankΣ(σ)] we prove the lemma in two
stages. In the �rst half of the proof, we will show that the property holds for
outer inherited attribute occurrences and in the second part we will consider the
remaining outer synthesized attribute occurrences.

• Let yf,l ∈ I be an arbitrary inherited attribute. Then 〈yf,l, 0〉 ∈ outM ′(σ).
Such an occurrence can only be created by the topf function, if the context
parameter yl is met. This necessarily happens, since M is non-deleting in
context parameters and therefore |rhsM,σ,f |yl

≥ 1.

• Let f ∈ S and j ∈ [rankΣ(σ)] be arbitrary. Then 〈f, j〉 ∈ outM ′(σ) and
such an occurrence can only be created by some topg function with g ∈ S, if
the right hand side rhsM,σ,g contains a call like (f xj . . .). We can conclude
that such a g must exist, since M is syntactic single-use and hence a call like
(f xj . . .) occurs in exactly one right hand side.

The very same kind of reasoning can be applied for the input symbol σ̂, where the
�rst half is trivial since there are no outer inherited attributes. So we have proven
the result for arbitrary σ ∈ Σ+ and therefore completed the proof. 2

3.1.4 Lemma (statement 3.4)

MACssu ∩MACprc ⊆ ATTssu

Proof: Since ATTssu = ATTlsu∩ ATTsu, we simply combine the results (3.2) and
(3.3).

MACsu ∩MACssu ∩MACndc ⊆ ATTlsu ∩ATTsu

MACwsu ∩MACnc ∩MACssu ∩MACndc ⊆ ATTssu by Def. 2.3.13
MACssu ∩MACprc ⊆ ATTssu by Def. 2.3.12

2

20 CHAPTER 3. INCORPORATE ATTRIBUTED TREE TRANSDUCERS

3.2 Establishing a new derivation relation

Since the aim of this thesis is to establish an e�ciency relation between functional
programs using the call-by-need evaluation strategy, we will characterize a call-by-
need evaluation strategy in the following and then we will adjust the derivation
relations of De�nitions 2.3.5 and 2.4.7 to partially modell a derivation enforcing the
call-by-need evaluation strategy.

The call-by-need evaluation strategy is used in lazy functional programming lan-
guages (e.g. Haskell as a prominent member) and therefore shall be used for macro
tree transducers as well. Basically a call-by-need evaluation strategy is just a better
call-by-name (OI, outermost, normal order) evaluation strategy, since the call-by-
need strategy only corrects a de�ciency which might occur when parameter posi-
tions are copied while reducing using the call-by-name strategy. A comprehensive
introduction into evaluation strategies can be found, for example, in [BW88].

The following two properties characterize a call-by-need derivation relation:

• Whenever nested redeces occur in some sentential form, then some outermost
redex (i.e. a redex which is not contained in some other redex) is reduced �rst.
Imposing this restriction yields two major advantages, �rstly if a normal-form
exists it will be reached after �nitely many reduction steps and secondly only
redeces which actually contribute to the �nal result (normal form) will be
reduced. Basically this characterizes the call-by-name evaluation strategy
and the derivation relations of De�nition 2.3.5 and De�nition 2.4.7 already
implement this property, since De�nition 2.3.5 explicitly states it in the second
item and in case of attributed tree transducers (De�nition 2.4.7) nested redeces
cannot appear.

• In addition common subtrees appearing at parameter positions (either input
trees at recursion arguments or output trees at context parameters) are shared
via references, such that the above mentioned subtrees are not copied and
separately reduced. Consequently only de�ciencies resulting out of copying
context parameters might actually occur in the stated derivation relations,
since the input trees do not contain redeces.

3.2.1 Example (copying macro tree transducer)
We de�ne a macro tree transducer M by stating:

M = ({σ(2), α(0)}, {σ(2), α(0)}, {f (2), g(1)},
(
f x1 (g x1)

)
, R)

and

R = { f (σ x1 x2) y1 = σ (f x1 y1) (f x2 y1),
f α y1 = y1,

g (σ x1 x2) = σ (g x1) (g x2),
g α = α } .

Obviously the right hand side σ (f x1 y1) (f x2 y1) contains two occurrences of the
context parameter y1. Consequently the macro tree transducer M is copying (not
non-copying). Nevertheless the macro tree transducer M has many bene�cial prop-
erties, namely M is syntactic single-use and non-deleting in context parameters.

We will outline two possible computations of the normal form, one of them using
the introduced derivation relation and the other one using a call-by-need evaluation
strategy. Therefore we will (in both cases) use the input tree t = (σ αα).

3.2. ESTABLISHING A NEW DERIVATION RELATION 21

call-by-name evaluation: (nine reduction steps in total)

f(σ αα)
(
g (σ αα)

)
⇒M σ

(
f α

(
g (σ αα)

)) (
f α

(
g (σ αα)

))
⇒M σ

(
g (σ αα)

) (
f α

(
g (σ αα)

))
⇒M σ

(
σ (g α) (g α)

) (
f α

(
g (σ αα)

))
⇒M σ

(
σ α (g α)

) (
f α

(
g (σ αα)

))
⇒M σ

(
σ αα

) (
f α

(
g (σ αα)

))
⇒M σ

(
σ αα

) (
g (σ αα)

)
⇒M σ

(
σ αα

) (
σ (g α) (g α)

)
⇒M σ

(
σ αα

) (
σ α (g α)

)
⇒M σ (σ αα) (σ αα)

In the following reduction associated output trees (referenced output trees) are
underlined in order to illustrate the reduction process.

call-by-need evaluation: (six reduction steps in total)

f(σ αα)
(
g (σ αα)

)
e⇒ σ

(
f α

(
g (σ αα)

)) (
f α

(
g (σ αα)

))
e⇒ σ

(
g (σ αα)

) (
f α

(
g (σ αα)

))
e⇒ σ

(
g (σ αα)

) (
g (σ αα)

)
e⇒ σ

(
σ (g α) (g α)

) (
σ (g α) (g α)

)
e⇒ σ

(
σ α (g α)

) (
σ α (g α)

)
e⇒ σ (σ αα) (σ αα)

So the call-by-need evaluation strategy avoids unnecessary reductions, which result
out of copying a nested redex. 2

3.2.2 De�nition (call-by-need derivation relation)
Let M be a macro tree transducer. In the following we will denote the outlined

call-by-need derivation relation of M by
e⇒M . 2

Copying of context parameters might result in a major de�ciency as we have seen,
since the copied trees usually contain redeces. Of course those redeces will be copied
as well, which will result in several reductions of the same subterm.

Since we want to perform an e�ciency analysis using macro tree transducers at the
level of attributed tree transducers, we must ascertain, that the e�ciency measure
we apply is comparable, such that the e�ciency of the attributed tree transducer can
somehow be related to the e�ciency of the original program (macro tree transducer).
The main di�erence (seen from the perspective of an attributed tree transducer)
is the explicit handling of context parameters using inherited attributes and the
absence of nested redeces.

In the following we present a new derivation relation especially for attributed tree
transducers, which �to some extend� models a call-by-need evaluation strategy.

22 CHAPTER 3. INCORPORATE ATTRIBUTED TREE TRANSDUCERS

3.2.3 De�nition (derivation relation)
Let M = (Σ,∆, S, I, ŝ, σ̂, R) be an attributed tree transducer and in addition let
t = (σ̂ t′) with t′ ∈ TΣ be an input tree. Then we de�ne the derivation relation
e⇒M,t of M according to the input tree t to be the following binary relation

e⇒M,t ⊂ T 2
∆(FunF+,paths(t))

such that for every t1, t2 ∈ T∆(FunF+,paths(t)) the relation t1
e⇒ t2 holds, if and only

if there exists j, k ∈ N and σ ∈ Σ(k)
+ , f ∈ F+ and p′ ∈ paths(t) with labelt(p′) = σ

such that

• for synthesized attributes f ∈ S+, p = p′ and j = 0,

• for inherited attributes f ∈ I, p =

{
j , if p′ = ε

p′.j , otherwise

and in both cases we observe that for every attribute instance χ with χ →+
M,t 〈f, p〉

the number of occurrences in the sentential form t1 is exactly zero (|t1|χ = 0) and

t2 = t1

[
〈f, p〉 / relabelM,p′

(
rhsM,σ(〈f, j〉)

)]
.

2

So basically we search for permissible redeces as we did in the derivation relation
de�ned in De�nition 2.4.7. In addition we only reduce an attribute instance 〈f, p〉,
if there is no dependent attribute instance χ present in the sentential form t1. The
use of references is modelled by globally substituting the current attribute instance,
e�ectively reducing all occurrences of attribute instances 〈f, p〉 in parallel. In the
following we will provide an essential lemma, which we will use later on. An example
illustrating the above de�nition will be provided after the next lemma.

3.2.4 Proposition (termination and con�uency)
Let M be an attributed tree transducer. It is easy to see that the above de�ned
derivation relation is indeed terminating and con�uent. Furthermore let s be a
sentential form and t be an input tree. Then both derivation relations compute the
same normal form nf e⇒M,t

(s) = nf⇒M,t
(s). 2

3.2.5 Lemma (single attribute instance derivation)
The derivation relation de�ned in De�nition 3.2.3 reduces each attribute instance
at most once.

Proof: Given an attributed tree transducer M = (Σ,∆, S, I, ŝ, σ̂, R), an input tree
t = (σ̂ t′) , t′ ∈ TΣ and an attribute instance 〈f, p〉 with f ∈ F+ , p ∈ paths(t)
and |t1|〈f,p〉 ≥ 1, which appears in some sentential form t1 ∈ SF∆,F+,t, then the
attribute instance 〈f, p〉 is only reduced, if

¬
(
∃f ′ ∈ F+

)(
∃p′ ∈ paths(t)

) ((
|t1|〈f ′,p′〉 ≥ 1

)
∧

(
〈f ′, p′〉 →+

M,t 〈f, p〉
))
.

So, reducing the sentential form t1 using the redex 〈f, p〉 to t2 (t1
e⇒M,t t2), subse-

quent reductions cannot introduce the attribute instance 〈f, p〉 to some sentential
form (contradicts the given condition) and furthermore the reduction substitutes
every occurrence of the attribute instance, such that the attribute instance 〈f, p〉
cannot appear in the resulting sentential form (|t2|〈f,p〉 = 0). Thus we successfully
showed, that an attribute instance is never reduced more than once. 2

3.3. EFFICIENCY CONSIDERATIONS 23

3.2.6 Example (single attribute instance derivation)
To illustrate Lemma 3.2.5 and De�nition 3.2.3, we will apply Construction 3.1.1 to
the macro tree transducer M de�ned in Example 3.2.1 to gain the attributed tree
transducer

M ′ = ({σ(2), α(0)}, {σ(2), α(0)}, {f, g}, {yf,1}, ŝ, σ̂, (rhsM ′,bσ, rhsM ′,σ, rhsM ′,α))

with right hand side functions

rhsM ′,bσ(〈ŝ, 0〉) = 〈f, 1〉
rhsM ′,bσ(〈yf,1, 1〉) = 〈g, 1〉
rhsM ′,σ(〈f, 0〉) = σ 〈f, 1〉 〈f, 2〉
rhsM ′,σ(〈g, 0〉) = σ 〈g, 1〉 〈g, 2〉
rhsM ′,σ(〈yf,1, 1〉) = 〈yf,1, 0〉
rhsM ′,σ(〈yf,1, 2〉) = 〈yf,1, 0〉
rhsM ′,α(〈f, 0〉) = 〈yf,1, 0〉
rhsM ′,α(〈g, 0〉) = α.

Again we select t = σ̂(σ αα) as input tree and perform a computation of the normal
form using the new derivation relation.

〈ŝ, ε〉
e⇒M ′,t 〈f, 1〉
e⇒M ′,t σ 〈f, 1.1〉 〈f, 1.2〉
e⇒M ′,t σ 〈yf,1, 1.1〉 〈f, 1.2〉

(∗) e⇒M ′,t σ 〈yf,1, 1〉 〈f, 1.2〉
e⇒M ′,t σ 〈yf,1, 1〉 〈yf,1, 1.2〉

(∗∗) e⇒M ′,t σ 〈yf,1, 1〉 〈yf,1, 1〉
e⇒M ′,t σ 〈g, 1〉 〈g, 1〉
e⇒M ′,t σ

(
σ 〈g, 1.1〉 〈g, 1.2〉

) (
σ 〈g, 1.1〉 〈g, 1.2〉

)
e⇒M ′,t σ

(
σ α 〈g, 1.2〉

) (
σ α 〈g, 1.2〉

)
e⇒M ′,t σ (σ αα) (σ αα)

We clearly see, that in fact every attribute instance is reduced at most once and
that the reference e�ect is achieved by using the global substitution. Nevertheless
the attributed tree transducer M ′ requires more reduction steps (ten in total),
but this is only due to the explicit handling of context parameters. Though the
attribute instance 〈yf,1, 1〉 in the sentential form marked with (∗) seems to be a
suitable redex, the new derivation relation prohibits reduction, since there is still
an attribute instance (namely 〈f, 1.2〉) which depends on it. Finally at (∗∗) this
attribute instance can be reduced and both occurrences of 〈yf,1, 1〉 are reduced in
parallel by global substitution. 2

3.3 E�ciency considerations

Within this section we will try to establish an e�ciency relation between the original
weakly single-use macro tree transducer and the resulting attributed tree transducer
created by Construction 3.1.1, when applied to the macro tree transducer. Therefore
we �rstly de�ne a performance measure, which will simply be the plain number of

24 CHAPTER 3. INCORPORATE ATTRIBUTED TREE TRANSDUCERS

reduction steps, as counted in the previous examples. This measure is particularly
easy to determine, since it only counts function calls / attribute instance reductions.
Of course there are more elaborate measures available, but they tend to be either
highly machine-dependent or hard to determine.

3.3.1 De�nition (number of reduction steps)
Let M be a tree transducer with input ranked alphabet Σ, let t be an input tree and
let⇒ be a derivation relation of that tree transducer. We denote by countM,⇒(t) the
number of reduction steps necessary to compute the normal form using the derivation
relation ⇒ and the input tree t.

• Given an attributed tree transducer M = (Σ,∆, S, I, ŝ, σ̂, R) this number is
de�ned to be n ∈ N , if and only if

〈ŝ, ε〉 ⇒n nf⇒(〈ŝ, ε〉)

• and given a macro tree transducerM = (Σ,∆, F, e, R) the number of reduction
steps is n, if and only if

e[x1/t] ⇒n nf⇒(e[x1/t]).

2

Obviously attributed tree transducers need at least one reduction step, which is
necessary to reduce the initial synthesized attribute instance. In the following this
reduction step is often considered separately.

3.3.2 Lemma (number of reduction steps for attributed tree transducers)
Let M = (Σ,∆, S, I, ŝ, σ̂, R) be an attributed tree transducer, t = (σ̂ t′) with t′ ∈ TΣ

be an input tree and let →M,t be the direct dependency relation of the attributed tree
transducer M between attribute instances of the input tree t.

count
M,

e⇒M,t
= |{ 〈f, p〉 | 〈ŝ, ε〉 →∗

M,t 〈f, p〉 }|

Then the number of reduction steps using the newly established derivation relation
e⇒M,t and input tree t is equal to the number of attribute instances, on which the
distinguished attribute instance 〈ŝ, ε〉 depends.
Proof: Starting with the initial synthesized attribute instance 〈ŝ, ε〉 as the ini-
tial sentential form (according to De�nition 3.3.1), exactly the attribute instances
〈f, p〉 , f ∈ F , p ∈ paths(t) with 〈ŝ, ε〉 →∗

M,t 〈f, p〉 will appear in some sentential
form during the reduction process of 〈ŝ, ε〉 into its normal form nf⇒M,t

(〈ŝ, ε〉). Since
the normal form does not contain attribute instances, every such attribute instance
〈f, p〉 needs to be reduced at least once and according to Lemma 3.2.5 at most once.
Consequently the number of reduction steps is exactly the number of such attribute
instances. 2

3.3.3 Example (reduction for Ma−rev)
In this example we will apply the attributed tree transducerM = Ma−rev of Exam-
ple 2.4.3 to the input tree t = (σ̂ ABBN) and demonstrate a step-wise reduction

3.3. EFFICIENCY CONSIDERATIONS 25

starting with 〈ŝ′, ε〉 using the derivation relation
e⇒M,t.

〈ŝ′, ε〉
e⇒M,t 〈s′, 1〉
e⇒M,t 〈s′, 1.1〉
e⇒M,t 〈s′, 1.1.1〉
e⇒M,t 〈s′, 1.1.1.1〉
e⇒M,t 〈i′, 1.1.1.1〉
e⇒M,t B 〈i′, 1.1.1〉
e⇒M,t BB 〈i′, 1.1〉
e⇒M,t BBA 〈i′, 1〉
e⇒M,t BBAN

2

Within the reduction nine di�erent attribute instances appeared and consequently
(by Lemma 3.3.2) nine steps were necessary to compute the normal form. If we
reconsider Example 3.2.1, then we easily see that the stated Lemma 3.3.2 holds
there as well.

In the following two theorems we �nally relate the number of reduction steps of the
attributed tree transducer to the number of reduction steps of the original macro tree
transducer. The �rst theorem states this for the call-by-name evaluation strategy,
whereas the second theorem considers call-by-need.

3.3.4 Theorem (relating the number of reduction steps (call-by-name))
Let M = (Σ,∆, F, e, R) be a weakly single-use macro tree transducer, let
t ∈ TΣ be an input tree and furthermore let M ′ = (Σ,∆, S, I, ŝ, σ̂, R′) be the
attributed tree transducer resulting from Construction 3.1.1 using M as
input. Then

countM,⇒M
(t) = countM ′,⇒M′,t(t)− ıM ′,⇒M′,t(t)− 1

where ıM ′,⇒M′,t(t) is exactly the number of reduction steps invested (dur-
ing computation of the normal form) to reduce inherited attribute in-
stances of t with M ′.

Proof: Let ⇒=⇒M , ⇒t =⇒M ′,t, ⇒ =⇒M and ⇒t =⇒M
′
,t. In order to

prove this result, we will make extensive use of the property, that the attributed
tree transducer M ′ de�nes the same translation as M . We will exploit the fol-
lowing trick, also mentioned in [Voi01], a second time in Theorem 5.2.1. Firstly
we select an arbitrary output symbol 3(1) /∈ ∆ and de�ne a new macro tree
transducer M = (Σ,∆ ∪ {3(1)}, F, e, R), where the rule-set R contains for every
k, n ∈ N , σ ∈ Σ(k) and f ∈ F (n+1) a rule

f(σ x1 . . . xk) y1 . . . yn = 3 (rhsM,σ,f).

We modify the original rules of M to output the special output symbol 3 and
afterwards behave like the original rules do. Then obviously the number of reduction
steps is

countM,⇒(t) = countM,⇒(t) = |nf⇒(e[x1/t])|3,

since the macro tree transducers M and M e�ectively behave equally just that the
macro tree transducer M outputs the special symbol 3 at every reduction step.

26 CHAPTER 3. INCORPORATE ATTRIBUTED TREE TRANSDUCERS

The macro tree transducer M is also weakly single-use, since the original macro
tree transducerM is, and therefore we can apply Construction 3.1.1 to M to gain

the attributed tree transducer M
′
= (Σ,∆ ∪ {3(1)}, S, I, ŝ, σ̂, R′), which is only a

slight modi�cation ofM ′ with R
′
= (rhs

′
M

′
,σ |σ ∈ Σ+), such that for every σ ∈ Σ+

and ξ ∈ inM
′(σ) the right hand side function rhs

′
M

′
,σ is de�ned to be

rhs
′
M

′
,σ(ξ) =

{
3

(
rhsM ′,σ(ξ)

)
, if ξ ∈ FunS,{0}

rhsM ′,σ(ξ) , otherwise
.

Again we can conclude that

countM ′,⇒t
(t) = countM

′
,⇒t

(t) and ıM ′,⇒t
(t) = M ′

,⇒t
(t),

where M ′
,⇒t

is exactly the number of reduction steps invested to reduce inherited

attribute instances (during computation of the normal form) using M
′
. Conse-

quently

countM ′,⇒t(t)− ıM ′,⇒t(t) = countM
′
,⇒t

(t)− M ′
,⇒t

(t) = |nf⇒t(〈ŝ, ε〉)|3 + 1

This result is due to the strong resemblance of the attributed tree transducers M ′

and M
′
. They e�ectively exhibit equal behaviour just that the attributed tree

transducer M
′
outputs the special symbol 3 every time a synthesized attribute

instance di�erent from the initial synthesized attribute instance 〈ŝ, ε〉 is reduced.
Since the reduction of the initial synthesized attribute instance 〈ŝ, ε〉 also counts as
one reduction step, we added one.

Due to Construction 3.1.1 the induced translations ofM andM
′
are equal (τ(M) =

τ(M
′
)) and accordingly nf⇒(e[x1/t]) = nf⇒t(〈ŝ, ε〉), so we can conclude

|nf⇒(e[x1/t])|3 = |nf⇒t(〈ŝ, ε〉)|3

and with the previous observations

countM,⇒(t) = countM ′,⇒t
(t)− ıM ′,⇒t

(t)− 1.

3.3.5 Theorem (relating the number of reduction steps (call-by-need))
Let M = (Σ,∆, F, e, R) be a weakly single-use macro tree transducer, let
t ∈ TΣ be an input tree and furthermore let M ′ = (Σ,∆, S, I, ŝ, σ̂, R′) be the
attributed tree transducer resulting from Construction 3.1.1 using M as
input. Then

count
M,

e⇒M
(t) = count

M ′,
e⇒M′,t

(t)− ı
M ′,

e⇒M′,t
(t)− 1

where ı
M ′,

e⇒M′,t
(t) is exactly the number of reduction steps invested (dur-

ing computation of the normal form) to reduce inherited attribute in-
stances of t with M ′.

Proof: First of all, if no context parameter is ever shared in the reduction, then
the derivation relations (

e⇒M and
e⇒M ′,t) behave exactly like their corresponding

call-by-name derivation relations (⇒M and ⇒M ′,t). This only holds, since M ′ is
weakly single-use. Let J ′ be a family consisting of all reduced synthesized attribute
instances (excluding the initial synthesized attribute instance) that appeared during
computation of the normal form nf⇒M′,t(〈ŝ, ε〉) using the call-by-name derivation
relation. Furthermore let J be the family containing exactly the pairs of function
symbols and input subtrees, such that if a redex of the form (f tΣ . . .) with f ∈ F

3.3. EFFICIENCY CONSIDERATIONS 27

and tΣ ∈ TΣ was reduced in the computation of the normal form nf⇒M
(e[x1/t]),

then (f, tΣ) ∈ J . It is easy to see (with the help of Theorem 3.3.4 and Construction
3.1.1) that there is a bijection between those two families, i.e. if 〈s, 1.p〉 ∈ J ′ and t′
is the subtree of t reachable by path p, then the pair (s, t′) ∈ J .

Furthermore we observe that the number of elements of such a family determines
the number of reduction steps. So

|J | = countM,⇒M
(t) |J ′| = countM ′,⇒M′,t(t)− ıM ′,⇒M′,t(t)− 1

Corresponding to J and J ′ let K and K ′ denote the families gained in the very
same way just using the call-by-need derivation relations. Then it is easy to see
that both families K and K ′ are e�ectively the families J and J ′ with duplicates
eliminated. This is due to the fact, that both call-by-need derivation relations
essentially resemble the corresponding call-by-name derivation relation, but avoid
multiple reductions of a redex. Consequently neither K nor K ′ can contain du-
plicates, since M is weakly single-use and therefore duplicates in J are necessarily
shared and K ′ cannot contain duplicates due to Lemma 3.2.5. Together with the
bijection we can conclude that

count
M,

e⇒M
(t) = |K| = |K ′| = count

M ′,
e⇒M′,t

(t)− ı
M ′,

e⇒M′,t
(t)− 1

2

The previous theorem intuitively states that if the macro tree transducerM needs k
reduction steps to compute τ(M)(t) for a given t, then the attributed tree transducer
M ′ also needs k reduction steps to compute τ(M ′)(t), if we disregard the reduction
steps used to reduce inherited attribute instances as well as the reduction step used
to reduce the initial synthesized attribute instance. We will illustrate this result in
the following examples.

3.3.6 Example (Mrev and Ma−rev)
We restate the reduction of the the input tree (σ̂ ABBN) using the attributed tree
transducer M = Ma−rev of Example 2.4.3.

〈ŝ′, ε〉
⇒M ′,t 〈s′, 1〉
⇒M ′,t 〈s′, 1.1〉
⇒M ′,t 〈s′, 1.1.1〉
⇒M ′,t 〈s′, 1.1.1.1〉
⇒M ′,t 〈i′, 1.1.1.1〉

(∗) ⇒M ′,t B 〈i′, 1.1.1〉
(∗) ⇒M ′,t BB 〈i′, 1.1〉)
(∗) ⇒M ′,t BBA 〈i′, 1〉))
(∗) ⇒M ′,t BBAN

Obviously if we do not count the reduction steps invested to reduce inherited at-
tribute instances (the last four, marked with asterisks (∗)), then we gain �ve reduc-
tion steps, which is one more than the original macro tree transducer. (cf. Example
2.3.6) 2

3.3.7 Example (Example 3.2.1 and Example 3.2.6)
In Example 3.2.1 we showed, using the call-by-need evaluation strategy, that six re-
duction steps are necessary for the macro tree transducerM to compute the normal

28 CHAPTER 3. INCORPORATE ATTRIBUTED TREE TRANSDUCERS

form. In Example 3.2.6 we stated the corresponding attributed tree transducer M ′

and also illustrated that the attributed tree transducer actually needed ten reduc-
tion steps. Again the e�ciency relation of Theorem 3.3.5 holds, since exactly three
reduction steps are used to reduce inherited attribute instances. 2

Chapter 4

Compose attributed tree

transducers

In this chapter we will consider the construction for composing a single-use at-
tributed tree transducer and an attributed tree transducer. Therefore we state the
construction in the �rst section along with examples. We will also present su�-
cient properties of the input attributed tree transducers, such that the resulting
attributed tree transducer has a particular property. In the next section we investi-
gate the e�ciency of the composition result related to the e�ciency of the original
attributed tree transducers.

4.1 The construction

The following construction is based on results by [Gan83, Gie88]. We present the
version of [Küh97]. A good introduction can be found in [Küh00a].

4.1.1 Construction (ATTsu ; ATT ⊆ ATT)
Let M1 = (Σ,Ω, S1, I1, ŝ1, σ̂, R1) be a single-use attributed tree transducer and let
M2 = (Ω,∆, S2, I2, ŝ2, σ̂, R2) be an attributed tree transducer. Furthermore let
m = max{ rankΣ+(σ) | σ ∈ Σ+ } and let α ∈ ∆(0) be an arbitrary output symbol of
M2, then we de�ne the attributed tree transducer M ′

2 = (Ω′,∆′, S2, I2, ŝ2, σ̂, R
′
2),

which is able to process right hand sides of the attributed tree transducer M1, to
be:

• Ω′ = Ω ∪ outS1,I1(m)

• ∆′ = ∆ ∪ outS1×S2,I1×S2(m)

• R′2 = (rhsM ′
2,ω | ω ∈ Ω′

+) with right hand side functions such that

� rhsM ′
2,ω = rhsM2,ω for every ω ∈ Ω+ and

� for every f1 ∈ F1 and j ∈ N with 〈f1, j〉 ∈ outS1,I1(m)

rhsM ′
2,〈f1,j〉(ξ) =

{
〈(f1, s2), j〉 , if ξ = 〈s2, 0〉 with s2 ∈ S2

α , otherwise

We can construct the attributed tree transducer M1;2 = (Σ,∆, S, I, (ŝ1, ŝ2), σ̂, R)
with τ(M1;2) = τ(M1); τ(M2) as follows

29

30 CHAPTER 4. COMPOSE ATTRIBUTED TREE TRANSDUCERS

• S = (S1 × S2) ∪ (I1 × I2),

• I = (S1 × I2) ∪ (I1 × S2),

• let I2 = {i1, . . . , ia} , a = |I2|, then for every f ∈ F1 and j ∈ [m] the substi-
tution κf,j is de�ned to be κf,j = [〈i1, ε〉/〈(f, i1), j〉 , . . . , 〈ia, ε〉/〈(f, ia), j〉]
and

• R = (rhsM1;2,σ | σ ∈ Σ+) where

� for every k ∈ N , σ ∈ Σ(k)
+ and 〈f1, j〉 ∈ inM1(σ) with f1 ∈ F1 and j ∈ N

let % = rhsM1,σ(〈f1, j〉), then the right hand side function rhsM1;2,σ is
de�ned as follows

∗ for every s2 ∈ S2

rhsM1;2,σ(〈(f1, s2), j〉) = nf⇒M′
2,%

(〈s2, ε〉)κf1,j

∗ for every p ∈ paths(%) , i2 ∈ I2 , f
′
1 ∈ F1 and j′ ∈ N with 〈f ′1, j′〉 ∈

outM1(σ) and label%(p) = 〈f ′1, j′〉

rhsM1;2,σ(〈(f ′1, i2), j′〉) = nf⇒M′
2,%

(〈i2, p〉)κf1,j

� let % = rhsM1,bσ(〈ŝ1, 0〉), then the right hand side function rhsM1;2,bσ is
de�ned by stating

∗ for every p ∈ paths(σ̂ %) , s′1 ∈ S1 and i2 ∈ I2 with label(bσ %)(p) =
〈s′1, 1〉

rhsM1;2,bσ(〈(s′1, i2), 1〉) = nfM ′
2,(bσ %)(〈i2, p〉)

∗ and

rhsM1;2,bσ(〈(ŝ1, ŝ2), 0〉) = nfM ′
2,(bσ %)(〈ŝ2, ε〉).

• For every k ∈ N , σ ∈ Σ(k)
+ and ξ ∈ inM1;2(σ), if the right hand side function

rhsM1;2,σ is still unde�ned at ξ, then rhsM1;2,σ(ξ) = α.

2

Let M1 be a single-use attributed tree transducer and M2 be an attributed tree
transducer. Then with the help of Construction 4.1.1 we can construct an attributed
tree transducer M1;2, which computes the same translation as the composition of
M1 and M2. The new attributed tree transducer has the advantage of removing
the intermediate result altogether. Therefore the attributed tree transducer M1;2

avoids unnecessary memory allocations / deallocations, which were only needed to
store the intermediate result or parts of it in the original sequential composition.
Nevertheless the attributed tree transducerM1;2 might require more reduction steps
than the sequential execution of the attributed tree transducers M1 and M2. The
following examples shall demonstrate Construction 4.1.1 and the possible e�ects
concerning e�ciency.

4.1.2 Example (Mpalin;Mpalin)
We de�ne the attributed tree transducer Mpalin = (Σ,Σ, {s}, {i}, ŝ, σ̂, R) with Σ =
{A(1), B(1), N (0)} and R = (rhsbσ, rhsA, rhsB , rhsN) where

4.1. THE CONSTRUCTION 31

rhsbσ(〈ŝ, 0〉) = 〈s, 1〉
rhsbσ(〈i, 1〉) = N

rhsA(〈s, 0〉) = A 〈s, 1〉
rhsA(〈i, 1〉) = A 〈i, 0〉
rhsB(〈s, 0〉) = B 〈s, 1〉
rhsB(〈i, 1〉) = B 〈i, 0〉
rhsN (〈s, 0〉) = 〈i, 0〉

The attributed tree transducerMpalin transforms the input list (considered as word)
into a palindrom by appending the reversed list (the reversed word) to the end of
the input word. Since Mpalin is a single-use attributed tree transducer, we can
apply Construction 4.1.1, which yields the attributed tree transducerMpalin;palin =
(Σ,Σ, S, I, (ŝ, ŝ), σ̂, R) with R = (rhsbσ, rhsA, rhsB , rhsN),

S = {(s, s) , (i, i)}, I = {(s, i) , (i, s)}

and

rhsbσ(〈(ŝ, ŝ), 0〉) = 〈(s, s), 1〉
rhsbσ(〈(i, s), 1〉) = 〈(i, i), 1〉
rhsbσ(〈(s, i), 1〉) = N

rhsA(〈(s, s), 0〉) = A 〈(s, s), 1〉
rhsA(〈(i, i), 0〉) = A 〈(i, i), 1〉
rhsA(〈(i, s), 1〉) = A 〈(i, s), 0〉
rhsA(〈(s, i), 1〉) = A 〈(s, i), 0〉
rhsB(〈(s, s), 0〉) = B 〈(s, s), 1〉
rhsB(〈(i, i), 0〉) = B 〈(i, i), 1〉
rhsB(〈(i, s), 1〉) = B 〈(i, s), 0〉
rhsB(〈(s, i), 1〉) = B 〈(s, i), 0〉
rhsN (〈(s, s), 0〉) = 〈(i, s), 0〉
rhsN (〈(i, i), 0〉) = 〈(s, i), 0〉

If we assume that the input list has length n, then the attributed tree transducer
Mpalin needs 2n+ 3 reduction steps to generate the output list of length 2n. If we
reconsider this list as the input of Mpalin, then the number of reduction steps will
be 4n + 3 this time. To sum up, we need 6(n + 1) reduction steps to execute the
sequential composition.

In contrast to that the attributed tree transducer Mpalin;palin applied to the same
input list of length n, only needs 4n + 5 reduction steps and consequently is more
e�cient. This example out of [Bor97] shows, that the composition result might be
more e�cient than the original sequential composition. 2

4.1.3 Example (Ma−rev;Ma−rev;Ma−rev)
The attributed tree transducer Ma−rev de�ned in Example 2.4.3 is single-use and
consequently we can compose it with itself using Construction 4.1.1. This yields an
attributed tree transducer, which computes the identity in a rather long-winded way.
The resulting attributed tree transducer Ma−rev ; a−rev = (Σ,Σ, S, I, (ŝ, ŝ), σ̂, R)
with R = (rhsbσ, rhsA, rhsB , rhsN),

S = {(rev, rev) , (i, i)}, I = {(rev, i) , (i, rev)}

and

32 CHAPTER 4. COMPOSE ATTRIBUTED TREE TRANSDUCERS

rhsbσ(〈(ŝ, ŝ), 0〉) = 〈(rev, rev), 1〉
rhsbσ(〈(i, rev), 1〉) = 〈(i, i), 1〉
rhsbσ(〈(rev, i), 1〉) = N

rhsA(〈(rev, rev), 0〉) = 〈(rev, rev), 1〉
rhsA(〈(i, i), 0〉) = A 〈(i, i), 1〉
rhsA(〈(i, rev), 1〉) = 〈(i, rev), 0〉
rhsA(〈(rev, i), 1〉) = 〈(rev, i), 0〉
rhsB(〈(rev, rev), 0〉) = 〈(rev, rev), 1〉
rhsB(〈(i, i), 0〉) = B 〈(i, i), 1〉
rhsB(〈(i, rev), 1〉) = 〈(i, rev), 0〉
rhsB(〈(rev, i), 1〉) = 〈(rev, i), 0〉
rhsN (〈(rev, rev), 0〉) = 〈(i, rev), 0〉
rhsN (〈(i, i), 0〉) = 〈(rev, i), 0〉

If we again assume that the length of the input list is n, then the attributed tree
transducerMa−rev needs 2n+3 reduction steps to generate the output list of length
n this time. This output list is treated as the input list of another incarnation of
Ma−rev, which then needs again 2n+ 3 reduction steps to compute the �nal result.
To sum up, we need 4n+ 6 reduction steps to execute the sequential composition.

The composition result Ma−rev ; a−rev needs 4n+ 5 reduction steps given an input
list of length n. The composition result is again more e�cient, but this time the
di�erence is only marginal (exactly one reduction step) and applying Construction
4.1.1 to the attributed tree transducers Ma−rev ; a−rev and Ma−rev will yield an
attributed tree transducer Ma−rev;a−rev;a−rev which su�ers from the explosion of
attributes. Then things are reversed, so that the sequential composition needs only
6n + 8 reduction steps, while the composition result needs 8n + 9 reduction steps
to compute the �nal result. These e�ects were also observed in [Bor97]. 2

In [Gan83, Gie88] it was shown that the class of syntactic single-use attributed tree
transducers ATTssu is closed with respect to composition. In [Küh97] this result
was generalized to single-use attributed tree transducers.

ATTsu ; ATTsu ⊆ ATTsu [Küh97]
ATTssu ; ATTlsu ⊆ ATTlsu

ATTssu ; ATTssu ⊆ ATTssu [Gan83, Gie88]

4.1.4 Lemma (ATTssu ; ATTlsu ⊆ ATTlsu)

ATTssu ; ATTlsu ⊆ ATTlsu

Proof sketch: The result is a straightforward generalization of the result presented
in [Gan83]. The very same kind of reasoning that was applied there to show the
composition result, also proves this result. The main di�erence is that for the second
attributed tree transducer a unique right hand side containing a certain attribute
occurrence no longer exists. But since the second attributed tree transducer is at
least single-use there is at least one such right hand side. Consequently the second
part of the proof in [Gan83] cannot be established, yielding that an outer attribute
occurrence might appear several times in all right hand sides at some input symbol,
but at least once. 2

4.2. EFFICIENCY CONSIDERATIONS 33

4.2 E�ciency considerations

Let us assume, that we have two attributed tree transducersM1 andM2 along with
an attributed tree transducer M1;2, which represents the composition of M1 and
M2. Then we want to relate e�ciency (to be precise the number of reduction steps
using a call-by-need derivation relation) of M1 and M2 to the e�ciency of M1;2 and
this relation should be independent of the concrete input tree. Therefore we �rstly
de�ne a helper function, namely a function which computes the size of a given tree.

4.2.1 De�nition (size-function)
Let a set of terms TΣ(Y) be given (deducible from the context). Then the function
size shall compute the size of a term.

size : TΣ(Y) → N

size(t) =
∑

α∈Σ∪Y

|t|α

2

For at least single-use attributed tree transducers computing the number of reduc-
tion steps is particularly easy using the equation below. This is due to the fact that
every attribute instance of a certain input tree is reduced.

4.2.2 Lemma (count
M,

e⇒M,t
(t) for at least single-use attributed tree transducer)

Let M = (Σ,∆, S, I, ŝ, σ̂, R) be an at least single-use attributed tree transducer and
furthermore let t = (σ̂ t′) , t′ ∈ TΣ be an input tree. The number of reduction steps
count

M,
e⇒M,t

(t) can then be computed using the following equation.

count
M,

e⇒M,t
(t) = size(t′)|F |+ 1

Proof: Let σ ∈ Σ+ be arbitrary and let p ∈ paths(t) such that labelt(p) = σ. In
the �rst part, we prove that for every outer attribute occurrence χ ∈ outM (σ) there
exists a s ∈ S such that

〈s, p〉 →+
M,t relabelM,p(χ).

This statement is proven by induction over trees. We will use nullary input symbols
α ∈ Σ(0) as induction basis. In this case the statement simpli�es to

(∀i ∈ I)(∃s ∈ S) 〈s, p〉 →+
M,t 〈i, p〉,

since there are no successors of α. Given the at least single-use requirement we can
conclude that every inherited attribute occurrence 〈i, 0〉 appears at least once in
some right hand side rhsM,α(ψ). Consequently ψ needs to be an inner synthesized
attribute occurrence, since other inner attribute occurrences do not exist. So setting
〈s, p〉 = relabelM,p(ψ) proves the statement immediately.

Having done the induction basis, we will now prove the statement for an arbitrary
σ ∈ Σ+, assuming that the property holds for every successor of σ. Therefore we
select an arbitrary outer attribute occurrence χ, then by the at least single-use
requirement we conclude that this attribute occurrence appears in some right hand
side rhsM,σ(ψ). We can now perform a case analysis on ψ to get:

1. ψ is some inner synthesized attribute occurrence. To ful�ll the given statement
we set 〈s, p〉 = relabelM,p(ψ).

34 CHAPTER 4. COMPOSE ATTRIBUTED TREE TRANSDUCERS

2. ψ is an inherited attribute occurrence at some successor. Then by induction
hypothesis for relabelM,p(ψ) we gain a synthesized attribute instance 〈s′, p.j〉,
which depends on relabelM,p(ψ), such that χ′ = 〈s′, j〉 is a synthesized at-
tribute occurrence at exactly this successor of σ. This occurrence is again an
outer attribute occurrence of σ, so consequently we perform the same kind
of reasoning (including the case-analysis) again, knowing that this process
must eventually lead to case (1), since the input attributed tree transducer is
non-circular and there are only �nitely many attribute occurrences.

The proven statement shows, that if every synthesized attribute instance 〈s, p〉 with
s ∈ S and labelt(p) = σ is needed, then all attribute instances 〈s′, p.j〉 and if p 6= ε
then also all attribute instances 〈i, p〉 with s′ ∈ S , i ∈ I and j ∈ [rankΣ(σ)] are
needed as well. Furthermore, since the distinguished attribute instance 〈ŝ, ε〉 is used
during reduction, all attribute instances occur in the reduction. Together with the
property that every attribute instance is evaluated exactly once (Lemma 3.2.5), the
above statement is proven. 2

4.2.3 Example (Ma−rev and Lemma 4.2.2)
If we reconsider the input tree t = (σ̂ ABBN) and the attributed tree transducer
M = Ma−rev of Example 2.4.3 which is at least single-use, then we can compute
the number of reduction steps using Lemma 4.2.2. This yields

count
M,

e⇒M,t
(σ̂ ABBN) = size(ABBN)|F |+ 1,

where size(ABBN) = 4 and |F | = 2. So �nally count
M,

e⇒M,t
(t) = 4 ∗ 2 + 1 = 9,

which is exactly the result we gained when reducing the term into its normal form
in Example 3.3.6. 2

Certainly it is easy to compute the required number of reduction steps given the
concrete input tree, since the number of required attribute instances can easily be
determined. But since the concrete input tree will not be known at compile time,
the e�ciency considerations should be independent of the actual input tree.

At this stage we opt for the composition hierarchy ATTssu ; ATTssu ⊆ ATTssu. On
the one hand side it is easy to determine the number of reduction steps using Lemma
4.2.2 given a syntactic single-use attributed tree transducer, but on the other hand
side this is quite a severe restriction. E�ectively the evaluation strategies call-by-
need and call-by-name coincide for single-use attributed tree transducers.

In chapter �ve we will show, why it is important for our considerations that the
resulting attributed tree transducer is single-use. One might argue that our call-by-
need derivation relation

e⇒M,t of an attributed tree transducerM and an input tree
t, does not accurately model a call-by-need evaluation strategy, if the attributed tree
transducerM is not weakly single-use, but this not the reason, since it is rather easy
to develop a derivation relation which accurately models a call-by-need evaluation
strategy.

If we restrict the attributed tree transducers to be syntactic single-use, then con-
sequently the number of reduction steps only depends on the size of the input tree
and the amount of attributes of an attributed tree transducer. If we reconsider the
result of Lemma 4.2.2, then we gain the following Theorem.

4.2.4 Theorem (composing syntactic single-use attributed tree transducers)
Let M1 = (Σ,Ω, S1, I1, ŝ1, σ̂, R1) and M2 = (Ω,∆, S2, I2, ŝ2, ω̂, R2) be syntac-
tic single-use attributed tree transducers. Furthermore let t1 ∈ TΣ and

4.2. EFFICIENCY CONSIDERATIONS 35

t2 ∈ TΩ, such that t2 = nf⇒M1,(bσ t1)(〈ŝ1, ε〉). Then the syntactic single-use
attributed tree transducer M1;2, which results out of Construction 4.1.1
using M1 and M2 as input, is more e�cient with respect to the plain
number of reduction steps (using a call-by-need evaluation strategy), if
and only if

size(t2)|F2| > size(t1)|F1|(|F2| − 1)− 1,

where F1 = S1 ∪ I1 and F2 = S2 ∪ I2.
Proof: Let t′1 = (σ̂ t1) and t′2 = (ω̂ t2). According to Lemma 4.2.2 we get:

count
M1,

e⇒M1,t′1
(t′1) = size(t1)|F1|+ 1

count
M2,

e⇒M2,t′2
(t′2) = size(t2)|F2|+ 1

Consequently the number of reduction steps of the sequential composition of M1

and M2 is

count
M1,

e⇒M1,t′1
(t′1) + count

M2,
e⇒M2,t′2

(t′2) = size(t1)|F1|+ size(t2)|F2|+ 2.

The attributed tree transducer M1;2, which is the result of Construction 4.1.1, has
|S1||S2|+ |I1||I2| synthesized and |S1||I2|+ |I1||S2| inherited attributes. The input
tree for the attributed tree transducer M1;2 is t′1 and therefore

count
M1;2,

e⇒M1;2,t′1
(t′1) = size(t1)(|S1||S2|+ |I1||I2|+ |S1||I2|+ |I1||S2|) + 1

= size(t1)|F1||F2|+ 1.

To ascertain e�ciency we let

count
M1;2,

e⇒M1;2,t′1
(t′1) < count

M1,
e⇒M1,t′1

(t′1) + count
M2,

e⇒M2,t′2
(t′2)

and consequently (by simple arithmetics)

size(t1)|F1||F2|+ 1 < size(t1)|F1|+ size(t2)|F2|+ 2
⇐⇒ size(t1)(|F1||F2| − |F1|) < size(t2)|F2|+ 1
⇐⇒ size(t2)|F2| > size(t1)|F1|(|F2| − 1)− 1.

2

The di�erence size(t2)|F2|−size(t1)|F1|(|F2|−1)+1 exactly characterizes the number
of reduction steps that were cut down by the composition result. Consequently
if this di�erence is positive, then the attributed tree transducer M1;2 should be
prefered, whereas if the di�erence is negative, then the attributed tree transducer
M1;2 should be avoided, since it introduces ine�ciencies. In case the di�erence is
actually zero, then M1;2 should be applied, since it avoids the computation of an
intermediate result.

The last representation was favoured, since it evidently shows that an increase of
the size of the intermediate result also increases the above mentioned di�erence. So
obviously the size of the intermediate result seems to play an important role. Still
this result is not fully satisfactory, because actually the decision cannot be drawn
independent of the input tree (e.g. the size of the input tree is needed). This matter
will be discussed in chapter �ve, when we put all the pieces together.

In the following we will present some examples illustrating the Theorem 4.2.4 and
justifying the e�ciency considerations of the previous section.

36 CHAPTER 4. COMPOSE ATTRIBUTED TREE TRANSDUCERS

4.2.5 Example (Mpalin ; Mpalin)
Let Mpalin be the attributed tree transducer de�ned in Example 4.1.2. Mpalin is
syntactic single-use, consequently Construction 4.1.1 and Theorem 4.2.4 are appli-
cable. Since S = {s}, I = {i} and for arbitrary input trees (σ̂ t1) with t1 ∈ TΣ

size(nf⇒Ma−rev,(bσ t)(〈ŝ, ε〉)) = 2 size(t1)− 1 = 2n− 1, we can conclude that

2(2n− 1) > 2n(2− 1)− 1.

So consequently Mpalin ; palin is more e�cient than the original sequential compo-
sition as stated in the previous section. The performance gain is exactly 2n − 1
reduction steps. 2

4.2.6 Example (Ma−rev ; Ma−rev)
LetMa−rev be the attributed tree transducer de�ned in Example 2.4.3. We already
stated that Ma−rev is syntactic single-use. Consequently Construction 4.1.1 and
Theorem 4.2.4 are again applicable. Since S = {rev}, I = {i} and for arbitrary
input trees (σ̂ t1) with t1 ∈ TΣ size(nf⇒Ma−rev,(bσ t)(〈ŝ, ε〉)) = size(t1) = n, we can

deduce
2n > 2n(2− 1)− 1.

Again Ma−rev ; a−rev is more e�cient than the original sequential composition. The
performance bene�t is exactly 1 reduction step. 2

4.2.7 Example (Ma−rev ; Ma−rev ; Ma−rev)
Let Ma−rev be the attributed tree transducer de�ned in Example 2.4.3. The com-
position resultMa−rev;a−rev;a−rev ofMa−rev andMa−rev ; a−rev is less e�cient than
the sequential composition, since

4n > 2n(4− 1)− 1.

The performance loss is characterized by exactly 2n− 1 reduction steps. 2

At this stage a construction named copy-rules elimination can be applied to the
composition result to eliminate the so-called copy-rules. The complete construction
can be found in [CDPR98]. A copy-rule is a rule, which does not produce out-
put symbols. Apparently the elimination of the copy-rules can seriously alter an
attributed tree transducer.

In order to bene�t from this construction we need to compute the composition result
and then apply the copy-rules elimination to it. This yields another attributed
tree transducer and we can then administer our performance analysis using this
optimized attributed tree transducer. This is possible since the resulting attributed
tree transducer will be syntactic single-use, whenever the inputted attributed tree
transducer is syntactic single-use. We will demonstrate this using Ma−rev ; a−rev.

4.2.8 Example (copy-rules elimination)
Let Ma−rev ; a−rev be the attributed tree transducer de�ned in Example 4.1.3 and
furthermore let M ′ be the resulting attributed tree transducer, when copy-rules
elimination [CDPR98] is applied to Ma−rev ; a−rev. Then

M ′ = ({A(1), B(1), N (0)}, {A(1), B(1), N (0)}, {(i, i)}, ∅, ŝ, σ̂, R′)

with R′ = (rhsM ′,bσ, rhsM ′,A, rhsM ′,B , rhsM ′,N) and right hand side functions as
follows:

rhsM ′,bσ(〈ŝ, 0〉) = 〈(i, i), 1〉
rhsM ′,A(〈(i, i), 0〉) = A 〈(i, i), 1〉
rhsM ′,B(〈(i, i), 0〉) = B 〈(i, i), 1〉
rhsM ′,N (〈(i, i), 0〉) = N.

4.2. EFFICIENCY CONSIDERATIONS 37

We use a partial result out of the proof of Theorem 4.2.4 to perform an e�ciency
analysis:

size(t1)|F ′|+ 1 < size(t1)|F1|+ size(t2)|F2|+ 2,

where in our running example F1 = F2 (they both correspond to Ma−rev) and
F ′ = {(i, i)} corresponds to the optimized attributed tree transducer M ′. Again let
n = size(t1), then

n+ 1 < 2n+ 2n+ 2

and clearlyM ′ is much more e�cient, since we managed to cut down 3n+1 reduction
steps. 2

We saw that copy-rules elimination might greatly improve the performance of the
composition result. Although the attributed tree transducer M1;2 is less e�cient
than the sequential composition of the attributed tree transducers M1 and M2,
it might happen that the attributed tree transducer M ′ with copy-rules elimi-
nated outperforms the sequential composition. This happens, for example, with
Ma−rev;a−rev;a−rev of Example 4.1.3.

38 CHAPTER 4. COMPOSE ATTRIBUTED TREE TRANSDUCERS

Chapter 5

Back to macro tree transducers

5.1 The construction

Within this section we will present the last construction needed to transform the
gained attributed tree transducer back to a macro tree transducer. Therefore we
will state the construction of [Küh00a], based on [FZ82].

5.1.1 Construction (ATT ⊆ MAC)
Let M = (Σ,∆, S, I, ŝ, σ̂, R) be an attributed tree transducer with q = |I| and
I = {i1, . . . , iq}. Furthermore let α ∈ ∆(0) be an arbitrary output symbol. We
construct a macro tree transducer M ′ = (Σ,∆, F, e, R′) with τ(M ′) = τ(M) where

• F = { s(q+1) | s ∈ S },

• e = transbσ,∅
(
rhsM (〈ŝ, 0〉, σ̂

)
and

• for every k ∈ N , σ ∈ Σ(k) and s ∈ S the rule-set R′ contains the rule

s (σ x1 . . . xk) y1 . . . yq = transσ,∅
(
rhsM (〈s, 0〉, σ)

)
.

For every k ∈ N,σ ∈ Σ(k)
+ and V ⊆ outM (σ) we de�ne the function

transσ,V : T∆

(
outM (σ)

)
→ RHS∆,F,k,q

• for every l ∈ [q]
transσ,V (〈il, 0〉) = yl

• for every n ∈ N , δ ∈ ∆(n) and %1 . . . %n ∈ T∆

(
outM (σ)

)
transσ,V (δ %1 . . . %n) = δ

(
transσ,V (%1)

)
. . .

(
transσ,V (%n)

)
• for every s ∈ S and j ∈ [k]

transσ,V (〈s, j〉) =

{
α if 〈s, j〉 ∈ V
s xj ψ1 . . . ψq otherwise

where ψn = transσ,V ∪{〈s,j〉}
(
rhsM (〈in, j〉, σ)

)
for every n ∈ [q].

2

Having stated the construction we will now turn to an example. We will use the
attributed tree transducer Ma−rev ; a−rev of Example 4.1.3.

39

40 CHAPTER 5. BACK TO MACRO TREE TRANSDUCERS

5.1.2 Example (Mrev;rev)
Let the attributed tree transducerMa−rev ; a−rev be given as in Example 4.1.3. Then
the result of applying Construction 5.1.1 to this attributed tree transducer is the
macro tree transducer Mrev;rev = (Σ,∆, F, e, R) with

• Σ = ∆ = {A(1) , B(0) , N (0)},

• F = {(rev, rev)(3) , (i, i)(3)},

• e = (rev, rev)x1

(
(i, i)x1 N N

)
N and

R = { (rev, rev) (Ax1) y1 y2 = (rev, rev)x1 y1 y2 ,
(rev, rev) (B x1) y1 y2 = (rev, rev)x1 y1 y2 ,
(rev, rev)N y1 y2 = y1 ,

(i, i) (Ax1) y1 y2 = A
(
(i, i)x1 y1 y2

)
,

(i, i) (B x1) y1 y2 = B
(
(i, i)x1 y1 y2

)
,

(i, i)N y1 y2 = y2 }.
2

As we can see in this example the gained macro tree transducer is still far from be-
ing optimal for computing the identity. This is where optimizations like removal of
super�ous context parameters and copy state elimination step in. Both techniques
are introduced in [Voi01]. These techniques might remove function symbols com-
pletely (copy state elimination) or change their arity (removal of super�ous context
parameters). Similar to copy-rule elimination we simply apply the construction and
consider e�ciency again afterwards.

5.1.3 Example (M ′
rev;rev)

Let the macro tree transducer Mrev;rev be given as in the previous Example. Then
the result of applying removal of super�ous context parameters and copy state
elimination will be the macro tree transducer M ′

rev;rev = (Σ,∆, F, e, R) with

• Σ = ∆ = {A(1) , B(0) , N (0)},

• F = {(i, i)(2)},

• e = (i, i)x1 N N and

R = { (i, i) (Ax1) y1 = A
(
(i, i)x1 y1

)
,

(i, i) (B x1) y1 = B
(
(i, i)x1 y1

)
,

(i, i)N y1 = y1 }.

The state (function symbol) (rev, rev) was eliminated, since it only projected on its
�rst context parameter, and the �rst context parameter (originally) y1 was removed,
since it is never outputted. 2

5.2. EFFICIENCY CONSIDERATIONS 41

5.2 E�ciency considerations

The �nal step is to relate the e�ciency of the composed attributed tree transducer
to the e�ciency of the macro tree transducer gained by Construction 5.1.1. Since we
restricted ourselves to syntactic single-use attributed tree transducers in Chapter
four, our main focus will be the call-by-name evaluation strategy. Since call-by-need
and call-by-name coincide for single-use macro tree transducers, we do not need to
consider them separately.

5.2.1 Theorem (relating the number of derivation steps)
Let M = (Σ,∆, S, I, ŝ, σ̂, R) be a single-use attributed tree transducer and
let (σ̂ t) with t ∈ TΣ be an input tree. Furthermore let M ′ = (Σ,∆, F, e, R′)
be the macro tree transducer resulting from Construction 5.1.1 using M
as input. Then

countM ′,⇒M′ (t) = countM,⇒M,t
(t)− ıM,⇒M,t

(t)− 1

where ıM,⇒M,t
(t) denotes the number of reduction steps invested to reduce

inherited attribute instances (during computation of the normal form).

Proof: In order to prove this result, we will again make use of the property, that
the macro tree transducer M ′ de�nes the same translation as M . The proof is
very similar to the one found in Theorem 3.3.5. Firstly we select an arbitrary
output symbol 3(1) /∈ ∆ and we de�ne a new attributed tree transducer M =
(Σ,∆ ∪ {3(1)}, S, I, ŝ, σ̂, R), which is only a slight modi�cation of M with R =
(rhsM,σ | σ ∈ Σ+), such that for every σ ∈ Σ+ and ξ ∈ inM (σ) the right hand side

function rhsM,σ is de�ned to be

rhsM,σ(ξ) =

{
3

(
rhsM,σ(ξ)

)
, if ξ ∈ FunS,{0}

rhsM,σ(ξ) , otherwise
.

This yields a well-de�ned attributed tree transducer and we can immediately con-
clude that

countM,⇒M,t
(t) = countM,⇒M,t

(t) and ıM,⇒M,t
(t) = M,⇒M,t

(t),

where M,⇒M,t
(t) is exactly the number of reduction steps invested to reduce inher-

ited attribute instances of t using M . Consequently

countM,⇒M,t
(t)− ıM,⇒M,t

(t) = countM,⇒M,t
(t)−M,⇒M,t

(t) = |nf⇒M,t
(〈ŝ, ε〉)|3 +1

This result is due to the strong resemblance of the attributed tree transducers M
and M . They e�ectively exhibit the same behaviour just that the attributed tree
transducer M outputs the symbol 3 every time a synthesized attribute instance
is reduced. So consequently the number of 3 symbols in the normal form repre-
sents the number of reduced synthesized attributes instances. Since the original
attributed tree transducer M is single-use, the attributed tree transducer M is
single-use as well. This e�ectively excludes that the substitution a�ects more than
one attribute instance, hence the number of 3 symbols corresponds to the number
of reduction steps invested to reduce synthesized attribute instances.

Similar to the proof of Theorem 3.3.5 we will apply Construction 5.1.1 to M to

gain a macro tree transducer M
′
= (Σ,∆ ∪ {3(1)}, F, e, R′), where for every k, n ∈

N , σ ∈ Σ(k) and every f ∈ F (n+1) the rule-set R
′
contains the rule

f (σ x1 . . . xk) y1 . . . yn = 3 (rhsM ′,σ,f).

42 CHAPTER 5. BACK TO MACRO TREE TRANSDUCERS

Again these rules (as opposed to the original rules of M ′) output the special output
symbol 3 and afterwards behave like the original rule does. Then obviously the
number of reduction steps is

countM ′,⇒M′ (t) = countM
′
,⇒

M′
(t) = |nf⇒

M′ (e[x1/t])|3,

since the output symbol 3, which the macro tree transducer M
′
outputs at every

reduction step, is not counted and sharing of context parameters cannot appear.

Although the macro tree transducers are not necessarily non-copying, sharing can-
not occur. If a context parameter occurs several times in some right hand side, then
only one appearance will be evaluated (reached). This is due to the fact that the
attributed tree transducer was single-use.

Due to Construction 5.1.1 the induced translations of M and M
′
are equal (i.e.

τ(M) = τ(M
′
)) and also nf⇒M,t

(〈ŝ, ε〉) = nf⇒M
′(e[x1/t]). We conclude

|nf⇒M
′(e[x1/t])|3 = |nf⇒M,t

(〈ŝ, ε〉)|3

and �nally
countM ′,⇒M′ (t) = countM,⇒M,t

(t)− ıM,⇒M,t
(t)− 1.

2

After having established this relation, we will give an example.

5.2.2 Example (relating the number of reduction steps)
Let M = Mrev;rev of Example 5.1.2. Furthermore let t = ABBN be the input tree.
We demonstrate the step-wise reduction using the call-by-name derivation relation.

(rev, rev) (ABBN)
(
(i, i) (ABBN)N N

)
N

⇒M (rev, rev) (BBN)
(
(i, i) (ABBN)N N

)
N

⇒M (rev, rev) (BN)
(
(i, i) (ABBN)N N

)
N

⇒M (rev, rev)N
(
(i, i) (ABBN)N N

)
N

⇒M (i, i) (ABBN)N N

⇒M A
(
(i, i) (BBN)N N

)
⇒M AB

(
(i, i) (BN)N N

)
⇒M ABB

(
(i, i)N N N

)
⇒M ABBN

So e�ectively we needed eight reduction steps to compute the normal form. In order
to compare this result, we demonstrate the reduction process using the attributed
tree transducer M = Ma−rev ; a−rev of Example 4.1.3.

〈(ŝ, ŝ), ε〉 ⇒M,(bσ t) 〈(rev, rev), 1〉
⇒M,(bσ t) 〈(rev, rev), 1.1〉 ⇒M,(bσ t) 〈(rev, rev), 1.1.1〉
⇒M,(bσ t) 〈(rev, rev), 1.1.1.1〉 ⇒M,(bσ t) 〈(i, rev), 1.1.1.1〉
⇒M,(bσ t) 〈(i, rev), 1.1.1〉 ⇒M,(bσ t) 〈(i, rev), 1.1〉
⇒M,(bσ t) 〈(i, rev), 1〉 ⇒M,(bσ t) 〈(i, i), 1〉
⇒M,(bσ t) A 〈(i, i), 1.1〉 ⇒M,(bσ t) AB 〈(i, i), 1.1.1〉
⇒M,(bσ t) ABB 〈(i, i), 1.1.1.1〉 ⇒M,(bσ t) ABB 〈(rev, i), 1.1.1.1〉
⇒M,(bσ t) ABB 〈(rev, i), 1.1.1〉 ⇒M,(bσ t) ABB 〈(rev, i), 1.1〉
⇒M,(bσ t) ABB 〈(rev, i), 1〉 ⇒M,(bσ t) ABBN

5.2. EFFICIENCY CONSIDERATIONS 43

The attributed tree transducer needs 17 reduction steps in total, nine of which are
used to reduce synthesized attribute instances. So the given relation holds for this
example. 2

We postponed the problem concerning copying macro tree transducers. This exam-
ple shall illustrate the e�ects that might occur.

5.2.3 Example (copying macro tree transducer)
LetM1 = Mrev of Example 2.3.3 andM2 = (Σ,∆, F, e, R) be macro tree transducers
with

• Σ = {A(1) , B(1) , N (0)},

• ∆ = {α(0) , σ(2)},

• F = {s(2)},

• e = (s x1 α) and

R = { s (Ax1) y1 = σ (s x1 y1) y1 ,
s (B x1) y1 = s x1 y1 ,
sN y1 = y1 }.

Although the macro tree transducer M2 has many bene�cial syntactic properties
(syntactic single-use and non-deleting in context parameters), it is not non-copying
and therefore also not single-use. The macro tree transducer M ′ shall be result of
our series of transformations. We will only state the �nal result:

M ′ = (Σ,∆, {(r, s), (yr, ys)}, e′, R′)

with e′ = (r, s)x1 ((yr, ys)x1 αα)α and

R′ = { (r, s) (Ax1) y1 y2 = (r, s)x1 (σ y1 ((yr, ys)x1 (σ y1 α) y2)) y2 ,
(r, s) (B x1) y1 y2 = (r, s)x1 y1 y2 ,
(r, s)N y1 y2 = y1 ,

(yr, ys) (Ax1) y1 y2 = (yr, ys)x1 (σ y1α) y2 ,
(yr, ys) (B x1) y1 y2 = (yr, ys)x1 y1 y2 ,
(yr, ys)N y1 y2 = y2 }

Let t1 = BBN be an input tree. We assume that a call-by-need derivation relation
computes the results. It is easy to see that M1 needs three reduction steps to
compute τ(M1)(t1) = BBN andM2 needs another three reduction steps to compute
τ(M2)(BBN) = α. In total the sequential composition needs six reduction steps.
Next we consider the composition result:

(r, s) (BBN) ((yr, ys) (BBN) αα)α
e⇒M ′ (r, s) (BN)((yr, ys) (BBN) αα)α
e⇒M ′ (r, s)N((yr, ys) (BBN) αα)α
e⇒M ′ (yr, ys) (BBN) αα
e⇒M ′ (yr, ys) (BN) αα
e⇒M ′ (yr, ys)N αα
e⇒M ′ α

The composition result also needs six reduction steps to compute the normal form.
Let t2 = ABN be an input tree of the same size, then M1 needs again three

44 CHAPTER 5. BACK TO MACRO TREE TRANSDUCERS

reduction steps to compute τ(M1)(t2) = BAN . M2 also needs three reduction
steps to compute τ(M2)(BAN) = (σ αα). So the sequential composition again
needs six reduction steps. In general the number of reduction steps for the sequential
composition only depends on the size of the input tree. Now let us consider M ′

(shared redeces are underlined):

(r, s) (ABN) ((yr, ys) (ABN) αα)α
e⇒M ′ (r, s) (BN) (σ ((yr, ys) (ABN) αα) ((yr, ys) (BN)

(σ ((yr, ys) (ABN) αα)α)α))α
e⇒M ′ (r, s)N (σ ((yr, ys) (ABN) αα) ((yr, ys) (BN)

(σ ((yr, ys) (ABN) αα)α)α))α
e⇒M ′ σ ((yr, ys) (ABN) αα) ((yr, ys) (BN)

(σ ((yr, ys) (ABN) αα)α)α)
e⇒M ′ σ ((yr, ys) (BN) (σ αα)α) ((yr, ys) (BN) (σ ((yr, ys) (BN) (σ αα)α)α)α)
e⇒M ′ σ ((yr, ys)N (σ αα)α) ((yr, ys) (BN) (σ ((yr, ys)N (σ αα)α)α)α)
e⇒M ′ σ α ((yr, ys) (BN) (σ αα)α)
e⇒M ′ σ α ((yr, ys)N (σ αα)α)
e⇒M ′ σ αα

Surprisingly the macro tree transducer M ′ needs eigth reduction steps. So we see
that the number of reduction steps (forM ′) depends on the position of the A in the
input tree. If t3 = (BAN) is the input tree, then M ′ needs seven reduction steps,
whereas the sequential composition still needs only six. 2

This is mainly due to Construction 4.1.1, where two former inherited attributes
i1, i2 become a synthesized attribute (i1, i2). The problem is that those inherited
attributes correspond to context parameters, which can be shared, whereas the syn-
thesized attribute corresponds to a function call and will not be shared. Speci�cally
the non-shared (yr, ys)-call is exactly the source of this problem.

5.3 Putting the pieces together

Let M1 and M2 be syntactic single-use, preserving in context parameters macro
tree transducers. Then by Construction 3.1.1 we gain attributed tree transducers
M ′

1 andM
′
2, which will both be syntactic single-use. IfM1 needs k1 reduction steps

to compute the normal form given an arbitrary input tree, then k1 + 1 synthesized
attribute instances are reduced in the process of computing the same normal form
usingM ′

1 (cf. Theorem 3.3.5). The same applies of course forM2 andM
′
2. UsingM

′
1

andM ′
2 as input for Construction 4.1.1 yields another syntactic single-use attributed

tree transducer M ′, which induces the same translation like M ′
1;M

′
2 and thereby

M1;M2. With the help of Construction 5.1.1 we �nally gain a macro tree transducer
M , which also induces the same translation.

The macro tree transducerM needs l reduction steps to compute some normal form
given the input tree t, if l + 1 synthesized attribute instances were reduced by M ′

in order to compute the normal form given the input tree (σ̂ t) (cf. Theorem 5.2.1).

A relation between k1, k2 and l was established in Theorem 4.2.4, which we will
restate here for macro tree transducers.

5.3.1 Theorem (decision theorem)
Let M1, M2 be syntactic single-use and preserving in context parameters

5.3. PUTTING THE PIECES TOGETHER 45

macro tree transducers and let M with τ(M) = τ(M1); τ(M2) be the macro
tree transducer constructed as explained above. Furthermore let t1 be
an input tree for M1 and consequently t2 = τ(M1)(t1). Then M is more
e�cient, with respect to the plain number of reduction steps, if and only
if

size(t2)|F2| > size(t1)
(
|F1|(|F2| − 1) + (

∑
f∈F1

rankF1(f)− 1)(
∑
f∈F2

rankF2(f)− 1)
)
2

In general the transformation seems to su�er heavily from the explosion in the
number of attributes caused by Construction 4.1.1. Furthermore there is a strong
presentiment that this behaviour applies to less restricted classes as well.

In the followingM1 andM2 shall be syntactic single-use attributed tree transducers
as de�ned in Theorem 4.2.4. We try to �nd subclasses such that we can guarantee
a performance bene�t.

1. Let M2 be a top-down tree transducer with |F2| = 1. Then Theorem 4.2.4
yields

size(t2) > 0.

Consequently performing the composition is bene�cial. A similar result was
shown in [Höf99]. Actually the motivating example presented in the introduc-
tion is an example for this class.

2. M1 is producing, i.e. every right hand side must contain at least one out-
put symbol. Then every function call also introduces an output symbol and
since the macro tree transducerM1 is syntactic single-use and non-deleting in
context parameters, size(t2) ≥ size(t1)|F1| and consequently if

|F1| > (
∑
f∈F1

rankF1(f)− 1)(
∑
f∈F2

rankF2(f)− 1)

then performing the transformation is in fact bene�cial.

Since ATTssu ; ATTlsu ⊆ ATTlsu and our performance measure applies for at least
single-use attributed tree transducers as well (cf. Lemma 4.2.2), we can conclude
that the resulting attributed tree transducer will reduce every attribute instance
of a given input tree at least once (using a true call-by-need derivation relation for
attributed tree transducers), because it might reduce synthesized attribute instances
several times (non-weakly single-use behaviour). Then the macro tree transducer,
resulting out of Construction 5.1.1 will also reduce the corresponding function calls
more than once, so that we can pessimistically approximate the number of reduction
steps.

5.3.2 Observation
Let M1 be a syntactic single-use and preserving in context parameters macro tree
transducer, M2 be a syntactic single-use and non-deleting in context parameters
macro tree transducer and let M with τ(M) = τ(M1); τ(M2) be the macro tree
transducer constructed as explained above. Furthermore let t1 be an input tree for
M1 and consequently t2 = τ(M1)(t1). Then the sequential composition M1;M2 is
more e�cient, with respect to the plain number of reduction steps, if

size(t2)|F2| < size(t1)
(
|F1|(|F2| − 1) + (

∑
f∈F1

rankF1(f)− 1)(
∑
f∈F2

rankF2(f)− 1)
)
2

46 CHAPTER 5. BACK TO MACRO TREE TRANSDUCERS

Chapter 6

Conclusions

The main focus of this thesis was the identi�cation of classes of functional programs,
where we could guarantee (independent of the actual input) that the composition re-
sult (as computed by our series of transformations) always outperforms the original
sequential composition. An input-size dependent characterization was established.
There one also noticed that the series of transformations seems to su�er heavily
from the explosion in the number of attributes initiated by the composition of the
attributed tree transducer. Some small subclasses were identi�ed and a pessimistic
approximation of the performance was given, when dealing with copying behaviour.

6.1 Future work

Within this thesis we presented an e�ciency analysis for the composition of macro
tree transducers with the help of attributed tree transducers. Therefore we needed
to restrict the macro tree transducers (and accordingly the functional programs) to
be syntactic single-use and non-deleting in context parameters.

It could be worthwhile to further investigate this series of transformations trying to
relax some of our imposed restrictions, especially the restriction single-use. To es-
tablish e�ciency analysis results for general macro tree transducers, more elaborate
techniques are necessary to drop the restrictions non-deleting in context parameters
or at least single-use.

Furthermore other transformations, especially the direct composition of macro tree
transducers presented in [Voi01], should be analysized as well. By investigating
these transformations one might be able to gain decision procedures for more general
classes of functional programs, since these transformations not necessarily impose
conditions such as weakly single-use.

Also intermediate result elimination techniques which are not based on tree trans-
ducer theory should be taken into consideration, in particular the short-cut defor-
estation technique [GLP93] since it is already implemented (for example in e�cient
implementations of Haskell).

47

48 CHAPTER 6. CONCLUSIONS

Bibliography

[BD77] R. M. Burstall and J. Darlington. A transformation system for develop-
ing recursive programs. Journal of the ACM, 24:44�67, 1977.

[Bor97] E. Bormann. E�zienzanalyse für Transformationen von primitiv-
rekursiven Programmschemata. Groÿer Beleg, Dresden University of
Technology, September 1997.

[BW88] R. Bird and P. Wadler. Introduction to functional programming. Inter-
national Series in Computer Science. Prentice Hall, 1988.

[CDPR98] L. Correnson, E. Duris, D. Parigot, and G. Roussel. Symbolic compo-
sition. Technical report 3348, Unité de recherche INRIA, Rocquencourt
(France), 1998.

[CDPR99] L. Correnson, E. Duris, D. Parigot, and G. Roussel. Declarative program
transformation: a deforestation case-study. In International Confer-
ence on Principles and Practice of Declarative Programming 1999 Paris
(France), volume 1702 of Lecture Notes in Computer Science, pages 360�
377. Springer, September / October 1999.

[EV85] J. Engelfriet and H. Vogler. Macro tree transducers. Journal of Com-
puting System Science, 31:71�146, 1985.

[FV98] Z. Fülöp and H. Vogler. Syntax-directed semantics � Formal models
based on tree transducers. Monographs in Theoretical Computer Science.
Springer, 1998.

[FZ82] P. Franchi-Zannettacci. Attributs sémantiques et schémas de pro-
grammes. Ph.D. thesis, Université de Bordeaux I, 1982.

[Fül81] Z. Fülöp. On attributed tree transducers. Acta Cybernetica, 5:261�279,
March 1981.

[Gan83] H. Ganzinger. Increasing modularity and language-independency in au-
tomatically generated compilers. Science of Computer Programming,
3:223�278, 1983.

[Gie88] R. Giegerich. Composition and evaluation of attribute coupled gram-
mars. Acta Informatica, 25:355�423, 1988.

[GLP93] A. Gill, J. Launchbury, and S.L. Peyton Jones. A short cut to deforesta-
tion. In Conference on functional programming languages and computer
architecture, pages 223�232. ACM Press, Denmark, 1993.

[God00] M. Godisch. Komposition mit Hilfe von Attributgrammatiken. Haupt-
seminarbeleg, Dresden University of Technology, July 2000.

49

50 BIBLIOGRAPHY

[Höf99] Matthias Hö�. Vergleich von Verfahren zur Elimination von Zwisch-
energebnissen bei funktionalen Programmen. Master's thesis, Dresden
University of Technology, September 1999.

[KV97] A. Kühnemann and H. Vogler. Attributgrammatiken - Eine grundlegende
Einführung. Vieweg, 1997.

[Küh97] A. Kühnemann. Berechnungsstärken von Teilklassen primitiv-rekursiver
Programmschemata. Ph.D. thesis, Dresden University of Technology,
1997.

[Küh98] A. Kühnemann. Bene�ts of tree transducers for optimizing functional
programs. In Foundations of Software Technology & Theoretical Com-
puter Science 1998 Chennai (India), volume 1530 of Lecture Notes in
Computer Science, pages 146�157. Springer, 1998.

[Küh99] A. Kühnemann. Comparison of deforestation techniques for functional
programs and for tree transducers. In International Symposium on Func-
tional and Logic Programming 1999 Tsukuba (Japan), volume 1722 of
Lecture Notes in Computer Science, pages 114�130. Springer, 1999.

[Küh00a] A. Kühnemann. Attribute grammars and program optimization. Lecture
script, Dresden University of Technology, July 2000.

[Küh00b] A. Kühnemann. Bene�ts of tree transducers for optimizing functional
programs. In International Colloquium `Partial Evaluation and Program
Transformation', pages 61�82. Waseda University, Tokyo (Japan), 2000.

[Mal89] G. Malcolm. Homomorphisms and promotability. In Mathematics of
program construction, volume 375 of Lecture Notes in Computer Science,
pages 335�347. Springer, 1989.

[Rou94] G. Roussel. Algorithmes de base pour la modularité et la réutilisabilité
des grammaires attribuées. Ph.D. thesis, Université de Paris 6, 1994.

[Tho99] S. Thompson. Haskell - the craft of functional programming. Interna-
tional Computer Science Series. Addison-Wesley, 1999.

[Voi01] J. Voigtländer. Composition of restricted macro tree transducers. Mas-
ter's thesis, Dresden University of Technology, March 2001.

[Wad90] P. Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:231�248, 1990.

