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Abstract. Accumulation techniques were invented to transform func-
tional programs, which intensively use append functions (like inefficient
list reversal), into more efficient programs, which use accumulating pa-
rameters instead (like efficient list reversal). In this paper we present a
generalized and automatic accumulation technique that also handles pro-
grams operating with unary functions on arbitrary tree structures and
employing substitution functions on trees which may replace different
designated symbols by different trees. We show that this transformation
does not deteriorate the efficiency with respect to call-by-need reduction.

1 Introduction

The sequence of trees in Figure 1 illustrates the stepwise growth of a tree, where
in every step in parallel every occurrence of a symbol A (and B, respectively) is
substituted by a tree (D A) (and (T A B A), respectively).
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Fig. 1. Stepwise growth of a tree.

In a functional program pnon (formulated e.g. in Haskell), this substitution can
be defined by a ternary function g that takes the “previous tree” and the two
kinds of “fresh branches” (D A) and (T A B A) as arguments. Additionally,
a unary function f generates as many nested calls of g as the argument of f
indicates, where natural numbers are represented by a nullary Z and a unary S,
i.e. the initial expression (f (Sn Z)) generates n nested calls of g.1

? Research of this author supported by DFG under grants GK 334 and KU 1290/2-4.
1 Since there is only one unary input symbol S for f , the actual parameters (D A) and

(T A B A) of g are unique. Hence, an alternative version of g could avoid its formal
parameters y1 and y2 and directly use (D A) and (T A B A) in its A- and B-rules,
respectively. In a more elaborate example with different unary input symbols for f
the actual parameters of g may be different and hence the formal parameters are
essential. For convenience we avoided to blow up our example into this direction.
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f Z = B
f (S x1) = g (f x1) (D A) (T A B A)
g A y1 y2 = y1
g B y1 y2 = y2
g (D x1) y1 y2 = D (g x1 y1 y2)
g (T x1 x2 x3) y1 y2 = T (g x1 y1 y2) (g x2 y1 y2) (g x3 y1 y2)

Unfortunately, pnon has cubic time-complexity in the input number n, since g has
to process n intermediate results with sizes 12, 22, . . . , n2, respectively (though
they are not explicitly constructed in a call-by-need evaluation).

Therefore we would prefer the following program pacc which has linear time-
complexity in n to evaluate the (modified) initial expression (f (Sn Z) A B):

f Z y1 y2 = y2
f (S x1) y1 y2 = f x1 (D y1) (T y1 y2 y1)

Since pacc uses its second and third argument to accumulate step by step a
“D-branch” and an output tree, respectively, we call pacc an accumulative pro-
gram, whereas we call pnon non-accumulative. Techniques which transform non-
accumulative into accumulative programs are called accumulation.

In the case that substitutions on tree structures are restricted to append
functions on list structures, there is a long history of research on accumulation:
Already in [6] it is shown in the context of transforming programs into iterative
(tail-recursive) form, how non-accumulative programs can be transformed (non-
automatically) into their accumulative versions. In [3,18] a similar technique
for linear recursive functions is presented. Other non-automatic realizations of
accumulation are given e.g. in [4,14]. Finally, the transformation of [25] is fully
automatic and is accompanied by an efficiency analysis. The crucial laws, on
which the transformation of [25] is based, can be found in our paper in a similar
form. All mentioned techniques essentially rely on the properties of the monoid
of lists with append. This fact is detailed in [5].

Our automatic transformation technique is more general in two aspects: we
consider (i) arbitrary tree structures (instead of lists) as input and output, and
(ii) substitutions on trees (instead of append) which additionally may replace
different designated symbols by different trees. On the other hand, our technique
is restricted to unary functions (apart from substitutions), though also in [25] the
only example program involving a non-unary function could not be optimized.
Hence the scope of our technique includes the unary functions in the examples
of [25] (in particular, inefficient list reversal). Moreover, restricting recursive calls
of the unary functions to be primitive-recursive will guarantee that in contrast
to [25] no substitutions appear in transformed programs anymore. Our efficiency
result is based on exactly this fact.

For this purpose, we view functional programs like pnon as special 2-modular
tree transducers [10]. Every function in module 1 (like f in pnon) is unary and
is defined by a case analysis on the root symbol c of its argument t. The right-
hand side of the equation for f and c may contain (primitive-recursive) calls of
functions in module 1 on subtrees of t and arbitrary calls of the (only) function
in module 2. The function in module 2 (like g in pnon) is a substitution function,
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i.e. designated nullary substitution constructors are replaced by parameters and
other constructors are left unchanged. In [16] it was shown, how such programs
can be transformed into macro tree transducers [8,9], in which every function
(like f in pacc) may have arbitrary rank and is defined by a case analysis on the
root symbol c of its first argument t. The right-hand side of the equation for f
and c may contain (nested) recursive function calls on subtrees of t.

The accumulation technique of [16] is divided into three indirect transforma-
tion steps which are mainly based on a composition result [9,15] for top-down
tree transducers [19,21] with macro tree transducers and on the associativity of
substitution functions. Although the resulting programs avoid substitution func-
tions, they are not always more efficient than the original programs. In [16] and
in the present paper the efficiency is measured in the number of performed call-
by-need reduction steps. This point of view, which neglects the actual complexity
of rule applications, is also taken in, e.g., [20,23,24].

In [16] also the reverse transformation is presented. Both transformations
together induce that the classes of macro tree transducers and of the special
2-modular tree transducers have the same computational power. Although the
reverse transformation deteriorates in general the efficiency, it also has practical
relevance: In [12] it is extended to a deaccumulation technique which is useful to
improve the automatic verification of functional (and even imperative) programs.

In [17] the deficiencies of the accumulation technique in [16] were solved by
presenting a direct transformation which additionally employs let-expressions to
avoid causes of inefficiency. Moreover, it was shown in [17] that the transforma-
tion does not deteriorate the efficiency. To this end, a call-by-need reduction on
term graphs was defined and compared for the original and resulting program.
The efficiency result is based on the fact that the number of applications of
functions in module 1 of the original program equals the number of function ap-
plications in the resulting program. Hence, the applications of the substitution
function in module 2 of the original program are saved!

We simplify the presentation of [17] by avoiding an explicit call-by-need re-
duction and by adopting a technique of [20,23,24], where function applications
(in [23,24] for (compositions of) macro tree transducers) additionally produce
special “ticking symbols” in order to make the number of performed (call-by-
name) reduction steps visible in the output. Instead of a call-by-need reduction
relation on term graphs which (implicitly) uses sharing to avoid that unevalu-
ated function arguments are copied, we use a nondeterministic reduction relation
on expressions with an explicit denotation for sharing (cf., e.g., [2,1]). Unfortu-
nately, this explicit sharing does not prevent that our nondeterministic reduction
relation creates a shared subexpression e such that e contains function applica-
tions and e is not relevant in the overall expression (in the sense that call-by-need
reduction would delete all references to e). To avoid that ticking symbols which
are generated by e are counted (and thus reduction steps needed to evaluate e),
we additionally use a counting function which takes care of such nonrelevant
subexpressions. Hence the concepts of explicit sharing and the counting function
provide a new technique to count call-by-need reduction steps.
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2 Preliminaries

We denote the set of natural numbers including 0 by IN and the set IN − {0}
by IN+. For every m ∈ IN , the set {1, . . . ,m} is denoted by [m]. The cardinality
of a set K is denoted by card(K). We use the sets X = {x0, x1, x2, x3, . . .},
Y = {y1, y2, y3, . . .}, and Z = {z1, z2, z3, . . .} of variables. For every n ∈ IN , let
Xn = {x1, . . . , xn}, Yn = {y1, . . . , yn}, and Zn = {z1, . . . , zn}. Let⇒ be a binary
relation on a set K and n ∈ IN . Then, ⇒n denotes the n-fold composition and
⇒∗ the transitive, reflexive closure of ⇒. If k ⇒∗ k′ for k, k′ ∈ K and there is
no k′′ ∈ K such that k′ ⇒ k′′, then k′ is called a normal form of k with respect
to ⇒, which is denoted by nf (⇒, k), if it exists and if it is unique.

A ranked alphabet is a pair (C, rank) where C is a finite set and rank is a
mapping which associates with every symbol c ∈ C a natural number called the
rank of c. We simply write C instead of (C, rank) and assume rank as implicitly
given. The set of symbols of C with rank n is denoted by C(n) and if c ∈ C(n),
we also use the notation c(n). The set of trees (or terms) over C indexed by (a set
of variables) U , denoted by TC(U), is the smallest subset T ⊆ (C ∪ U ∪ {(, )})∗
such that U ⊆ T and for every c ∈ C(n) with n ∈ IN and t1, . . . , tn ∈ T :
(c t1 . . . tn) ∈ T . If c ∈ C(0), we write just c instead of (c). The set TC(∅) is
abbreviated by TC . If R is the set of rules of a term rewriting system, then ⇒R

denotes the (nondeterministic) reduction relation induced by R. If there is at
most one occurrence of a variable v in a term t, then we call t linear in v.

For a term t, pairwise distinct variables v1, . . . , vn, and terms t1, . . . , tn, we
denote by t[v1/t1, . . . , vn/tn] the term that is obtained from t by substituting for
every i ∈ [n] every occurrence of vi in t by ti. We abbreviate [v1/t1, . . . , vn/tn]
by [vi/ti], if the involved variables and terms are clear from the context. We use
a linear, “substitution-like” notation for term graphs to express the sharing of
subgraphs: e[z1  e1, . . . , zn  en] denotes a term graph, in which for every
occurrence of zi in the subgraph denoted by e there is a directed edge from the
direct ancestor node of zi to the root node of the subgraph denoted by ei.

For the rest of the paper, let n ∈ IN+.

Definition 1 Let C be a ranked alphabet and U ∈ {Zn, ∅}. The set EC,n(U)
of C-expressions with sharing (and free variables of U) is defined by:

– For every zj ∈ U : zj ∈ EC,n(U).
– For every c ∈ C(k) and e1, . . . , ek ∈ EC,n(U): (c e1 . . . ek) ∈ EC,n(U).
– For every e1, . . . , en ∈ EC,n(U) and e ∈ EC,n(Zn):
e[z1  e1, . . . , zn  en] ∈ EC,n(U).

The set EC,n of C-expressions with sharing is defined as EC,n(∅). �

Note that a C-expression with sharing e ∈ EC,n(U) can be considered as a tree
e ∈ TC′(U) where C ′ = C ∪{(·[z1  ·, . . . , zn  ·])(n+1)} is the ranked alphabet
obtained from C by adding a new (n+ 1)-ary symbol. Thus we can employ the
notions and notations, which we introduced for trees, also for C-expressions.
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Example 2 Let C = {A(0), B(0), D(1), T (3)}. Then,

(T z1 z2 z1) ∈ EC,2(Z2),
(T z1 z2 z1)[z1  (D z1), z2  (T z1 z2 z1)] ∈ EC,2(Z2),
(T z1 z2 z1)[z1  (D z1), z2  (T z1 z2 z1)]

[z1  (D A), z2  (T A B A)] ∈ EC,2,

and the latter represents the depicted term graph. �
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If e1, . . . , en are clear from the context, then we abbreviate an expression of the
form e[z1  e1, . . . , zn  en] by e[zi  ei].

In the following we define a function on C-expressions with sharing, which
constructs trees by unfolding all sharings.

Definition 3 Let C be a ranked alphabet and U ∈ {Zn, ∅}. The function tree :
EC,n(U)→ TC(U) is defined as follows:

– For every zj ∈ U : tree(zj) = zj .
– For every c ∈ C(k) and e1, . . . , ek ∈ EC,n(U):

tree(c e1 . . . ek) = (c tree(e1) . . . tree(ek)).
– For every e1, . . . , en ∈ EC,n(U) and e ∈ EC,n(Zn):

tree(e[zi  ei]) = tree(e)[zi/tree(ei)]. �

We call zi ∈ Zn a free occurrence in e ∈ EC,n(Zn), if zi occurs in tree(e). Note
that this clarifies the scope of a sharing. The scope of z1, . . . , zn in an expression
e[zi  ei] is limited to the free occurrences of z1, . . . , zn in e.

3 Nonaccumulating and Accumulating Tree Transducers

First we define nonaccumulating tree transducers as functional source language.
Nonaccumulating tree transducers are special 2-modular tree transducers [10,16].

Definition 4 An n-nonaccumulating tree transducer (for short n-ntt) is a tuple
M = (F,Sub, C,Π,R1, R2, rin), where

– F is a ranked alphabet (of function symbols) with F = F (1),

– Sub = {sub(n+1)} (substitution function),
– C is a ranked alphabet (of constructors),
– Π = {Π1, . . . ,Πn} ⊆ C(0) with card(Π) = n (the substitution constructors)

such that F , Sub, and C are pairwise disjoint,

– R1 is a set of rules such that for every f ∈ F and c ∈ C(k) there is exactly
one rule f (c x1 . . . xk) = rhsR1,f,c

with rhsR1,f,c ∈ RHS (F,Sub, C,Xk), where for every k ∈ IN ,
RHS (F,Sub, C,Xk) is the smallest set RHS such that
• for every f ∈ F and i ∈ [k]: (f xi) ∈ RHS ,
• for every r0, . . . , rn ∈ RHS : (sub r0 . . . rn) ∈ RHS , and
• for every c ∈ C(l) and r1, . . . , rl ∈ RHS : (c r1 . . . rl) ∈ RHS ,

– R2 is a set of rules such that



178 A. Kühnemann and A. Maletti

• for every j ∈ [n] there is the rule sub Πj y1 . . . yn = yj
• and for every c ∈ (C −Π)(k) there is the rule

sub (c x1 . . . xk) y1 . . . yn = c (sub x1 y1 . . . yn) . . . (sub xk y1 . . . yn),
– rin ∈ RHS (F,Sub, C,X1) is the initial right-hand side. �

Since every function is defined by recursion on its first argument (i.e., the only
argument in case of F -functions), this argument is called recursion argument.
The other arguments are called context arguments. The set RHS formalizes the
description of right-hand sides found in the introduction. The initial right-hand
side rin serves as call pattern for the n-ntt, where x1 acts as a placeholder for the
actual input tree. Note that the concept of n-ntts (with one substitution function
of rank n + 1) can easily be generalized to a model with several substitution
functions. This, however, does not increase the computational power.

In the following examples we will avoid rules, which are never used.

Example 5 Mnon = (F,Sub, C,Π,R1, R2, rin) is a 2-ntt where F = {f}, Sub =
{g(3)}, C = {S(1), Z(0), A(0), B(0), D(1), T (3)}, Π1 = A, Π2 = B, R1 and R2

contain the f -rules and g-rules, respectively, of pnon, and rin = (f x1). �

Now we present n-ntts with sharings as abstractions for our functional source
programs. In contrast to functional programs, where in a call-by-need reduction
the sharing of expressions which are bound to variables of rules is performed
implicitly, in n-ntts with sharings the sharing is performed explicitly, whenever
there is the risk to copy unevaluated expressions (cf., e.g., [2,1]). This concerns
only the context arguments of substitution functions (since other arguments
are not copied or are constructor trees). To denote explicit sharing in a right-
hand side of a rule or in a sentential form, we also use expressions with sharing.
Thus, because of possibly nested substitution functions during an evaluation, also
expressions with sharing may occur in the recursion argument of substitution
functions. Hence they must be handled by a special rule. Actually, n-ntts with
sharings could be considered as special “2-modular tree-to-graph transducers”.
See [10,11] for the concepts of modular tree transducers and top-down tree-
to-graph transducers, respectively. Note that the additional sharing mechanism
does not change the computational power of n-ntts, but may improve efficiency.

Definition 6 An n-nonaccumulating tree transducer with sharings (for short
n-sntt) is a tuple M = (F,Sub, C,Π,R1, R2, rin), where

– F , Sub, C, Π, R1, and rin are defined as in Definition 4,
– R2 is a set of rules such that
• for every j ∈ [n] there is the rule sub Πj y1 . . . yn = yj ,
• for every c ∈ (C −Π)(k) there is the rule2

sub (c x1 . . . xk) y1 . . . yn
= (c (sub x1 z1 . . . zn) . . . (sub xk z1 . . . zn))[zi  yi],

• and there is the rule3

sub x0[zi  xi] y1 . . . yn = x0[zi  (sub xi z1 . . . zn)][zi  yi]. �
2 If c is nullary or unary, then the explicit sharing will be avoided in examples.
3 If n = 1, then the explicit sharing [zi  yi] could be avoided.
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Note that in the last rule in the previous definition sub walks into x1, . . . , xn, but
not into x0. This is due to the fact that every instantiation of x0[zi  xi] was
generated by an inner occurrence of sub which already handled the substitution
constructors in x0. Moreover, it is easily seen that the inner occurrence of sub
does not introduce substitution constructors in x0 because only calls of the form
(sub xi z1 . . . zn) can occur in x0. We further note that an application of the last
rule represents a short cut, since a call-by-need reduction on term graphs would
(i) walk stepwise through the expression bound to x0 and would (ii) end up with
different occurrences of sub at different occurrences of a zi (thus performing
several runs on the expression bound to xi).

Example 7 M̃non = (F,Sub, C,Π,R1, R2, rin) is a 2-sntt, where F = {f},
Sub = {g(3)}, C = {S(1), Z(0), A(0), B(0), D(1), T (3)}, Π1 = A, Π2 = B, R1

contains the f -rules of pnon and R2 contains rules

g A y1 y2 = y1
g B y1 y2 = y2
g (D x1) y1 y2 = D (g x1 y1 y2)
g (T x1 x2 x3) y1 y2 = (T (g x1 z1 z2) (g x2 z1 z2) (g x3 z1 z2))[zi  yi]
g x0[zi  xi] y1 y2 = x0[zi  (g xi z1 z2)][zi  yi],

and rin = (f x1). Let R = R1 ∪R2. Then,

f (S3 Z) ⇒5
R g (g (T A B A) (D A) (T A B A)) (D A) (T A B A)

⇒4
R g (T z1 z2 z1)[z1  (D A), z2  (T A B A)] (D A) (T A B A)

⇒R (T z1 z2 z1)[z1  (g (D A) z1 z2), z2  (g (T A B A) z1 z2)]
[z1  (D A), z2  (T A B A)]

⇒6
R (T z1 z2 z1)[z1  (D z1), z2  (T z1 z2 z1)[z1  z1, z2  z2]]

[z1  (D A), z2  (T A B A)]. �

Our main transformation will deliver accumulating tree transducers with shar-
ings, which could be considered as special “macro tree-to-graph transducers”.
See [9,11] for the concepts of macro tree transducers and top-down tree-to-graph
transducers, respectively.

Definition 8 An n-accumulating tree transducer with sharings (for short n-satt)
is a tuple M = (F,C,R, rin), where

– F is a ranked alphabet (of function symbols) with F = F (n+1),
– C is a ranked alphabet (of constructors), such that F and C are disjoint,
– R is a set of rules such that for every f ∈ F and c ∈ C(k) there is exactly

one rule f (c x1 . . . xk) y1 . . . yn = rhsR,f,c

with rhsR,f,c ∈ RHS ′(F,C,Xk, Yn), where for every j ∈ [n], the right-hand
side rhsR,f,c is linear in yj , and for every k ∈ IN and U ∈ {Yn, Zn, ∅}, the
set RHS ′(F,C,Xk, U) is the smallest set such that
• for every f ∈ F , i ∈ [k], and r1, . . . , rn ∈ RHS ′(F,C,Xk, U):

(f xi r1 . . . rn) ∈ RHS ′(F,C,Xk, U),
• for every c ∈ C(l) and r1, . . . , rl ∈ RHS ′(F,C,Xk, U):

(c r1 . . . rl) ∈ RHS ′(F,C,Xk, U),
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• for every r1, . . . , rn ∈ RHS ′(F,C,Xk, U) and r0 ∈ RHS ′(F,C,Xk, Zn):
r0[zi  ri] ∈ RHS ′(F,C,Xk, U), and

• for every u ∈ U : u ∈ RHS ′(F,C,Xk, U),
– rin ∈ RHS ′(F,C,X1, ∅) is the initial right-hand side. �

The linearity condition in the previous definition will be called context-linearity.
Note that it guarantees that no unevaluated subexpressions are copied in a
nondeterministic reduction relation. This fact will be needed in Subsections 4.3
and 5.3, where n-satts are realized by functional programs under call-by-need
evaluation, such that the number of performed reduction steps is equal.

Example 9 Macc = (F ′, C,R, r′in) is a 2-satt, where F ′ = {f (3)}, C = {S(1),
Z(0), A(0), B(0), D(1), T (3)}, R contains the rules

f Z y1 y2 = y2
f (S x1) y1 y2 = (f x1 (D z1) (T z1 z2 z1))[zi  yi]

and r′in = (f x1 A B). Then,

f (S3 Z) A B ⇒R (f (S2 Z) (D z1) (T z1 z2 z1))[z1  A, z2  B]
⇒R (f (S Z) (D z1) (T z1 z2 z1))

[z1  (D z1), z2  (T z1 z2 z1)][z1  A, z2  B]
⇒2

R (T z1 z2 z1)[z1  (D z1), z2  (T z1 z2 z1)]
[z1  (D z1), z2  (T z1 z2 z1)][z1  A, z2  B]. �

For every n-sntt M = (F,Sub, C,Π,R1, R2, rin) with R = R1∪R2 and for every
n-satt M = (F,C,R, rin), ⇒R is locally confluent, because there are no critical
pairs. Similarly to modular tree transducers [10] and macro tree transducers [9],
⇒R is also terminating, since every rule application to a function symbol with
its recursion argument t delivers only (i) new function symbols with subtrees of
t as recursion arguments or (in the case of an n-sntt) (ii) occurrences of the sub-
stitution function which does not call any other function and also “strictly walks
down” on its recursion argument. Thus, for every t ∈ TC , nf (⇒R, rin[x1/t]) ex-
ists. Moreover, there are no function symbols in this normal form, because all
functions are exhaustively defined on their possible recursion arguments (in par-
ticular on all outputs of functions which are nested in their recursion arguments).
Hence, the normal form is a C-expression with sharing.

Definition 10 Let M = (F,Sub, C,Π,R1, R2, rin) be an n-sntt with R = R1 ∪
R2 or let M = (F,C,R, rin) be an n-satt. The tree transformation computed
by M is the function τM : TC → TC , which is for every t ∈ TC defined by
τM (t) = tree(nf (⇒R, rin[x1/t])). �

4 Accumulation Technique

Our transformation technique consists of three steps: (i) a preprocessing step
which abstracts n-ntts into n-sntts, (ii) the main transformation on the level
of tree transducers with sharings (transforming n-sntts into n-satts), and (iii) a
postprocessing step which realizes n-satts as functional programs. Since the pre-
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and postprocessing steps are relatively simple compared to the main transfor-
mation, they will be presented only informally.

4.1 Preprocessing

Explicit sharings which were introduced in the previous section, are added. More
exactly, the sub-rules of Definition 4 are replaced by those of Definition 6. Note
that this preprocessing step simplifies our efficiency considerations; the main
transformation could also take n-ntts as inputs.

4.2 Main Transformation

The main transformation processes an n-sntt M and yields an n-satt M ′. The
construction introduces a new (n+ 1)-ary function symbol f for every function
symbol f of M . The context arguments of the new f shall store replacements
for the substitution constructors. Intuitively speaking, a call like (f t e1 . . . en)
should evaluate (using M ′) to the result of (sub (f t) e1 . . . en) (evaluated us-
ing M). Thereby the intermediate result that is produced by the call (f t) is
avoided. The formalization of this intuitive relation can be found in Lemma 13.
The construction uses an auxiliary function sub to transform right-hand sides of
rules thereby evaluating substitutions at compile time.

Definition 11 Let M = (F,Sub, C,Π,R1, R2, rin) be an n-sntt. First, we define
the set R2 of transformation rules which contains

– for every j ∈ [n] a rule sub Πj y1 . . . yn = yj ,
– for every c ∈ (C −Π)(k) a rule4

sub (c x1 . . . xk) y1 . . . yn
= (c (sub x1 z1 . . . zn) . . . (sub xk z1 . . . zn))[zi  yi],

– for every f ∈ F a rule sub (f x0) y1 . . . yn = f x0 y1 . . . yn,
– and the rule5

sub (sub x0 x1 . . . xn) y1 . . . yn
= (sub x0 (sub x1 z1 . . . zn) . . . (sub xn z1 . . . zn))[zi  yi].

Then, the n-satt constructed from M by accumulation is defined as acc(M) =
(acc(F ), C, acc(R1), acc(rin)), where

– acc(F ) = {f (n+1) | f ∈ F},
– acc(R1) contains for every f ∈ acc(F ) and c ∈ C(k) the rule
f (c x1 . . . xk) y1 . . . yn = nf (⇒R2

, sub rhsR1,f,c y1 . . . yn),
– acc(rin) = nf (⇒R2

, sub rin Π1 . . . Πn). �

It can be shown easily that acc(M) is in fact a well-defined n-satt. In particu-
lar, the context-linearity is induced by the fact that the sub-rules do not copy
variables. Given the above intuition, the rules for sub should be straightforward:
The first rule avoids the explicit construction of Πj-symbols. The second rule
is standard and the third rule encodes our intuition. Finally, the fourth rule

4 If c is nullary or unary, then the explicit sharing will be avoided in examples.
5 If n = 1, then the explicit sharing could be avoided.
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represents the “associativity” of substitutions. Note the similarity of these rules
to the laws (1), (2), (∗), and (3), respectively, of [25]. In the second and fourth
rule we use explicit sharings in order to avoid that occurrences of F -functions
are copied and thus are executed more than once in the transformed program.

Example 12 Let M̃non = (F,Sub, C,Π,R1, R2, rin) be the 2-sntt from Exam-
ple 7. Then, the set R2 contains the rules

g A y1 y2 = y1
g B y1 y2 = y2
g (D x1) y1 y2 = D (g x1 y1 y2)
g (T x1 x2 x3) y1 y2 = (T (g x1 z1 z2) (g x2 z1 z2) (g x3 z1 z2))[zi  yi]
g (f x0) y1 y2 = f x0 y1 y2
g (g x0 x1 x2) y1 y2 = (g x0 (g x1 z1 z2) (g x2 z1 z2))[zi  yi]

and the 2-satt constructed from M̃non by accumulation is defined as M̃acc =
acc(M̃non) = (acc(F ), C, acc(R1), acc(rin)), where acc(F ) = {f (3)}, acc(R1)
contains the following rules with underlined left- and right-hand sides

f Z y1 y2 = nf (⇒R2
, g B y1 y2) = y2,

f (S x1) y1 y2 = nf (⇒R2
, g (g (f x1) (D A) (T A B A)) y1 y2)

= nf (⇒R2
, (g (f x1) (g (D A) z1 z2) (g (T A B A) z1 z2))[zi  yi])

= (f x1 (D z1) (T z1 z2 z1)[zi  zi])[zi  yi]

and acc(rin) = nf (⇒R2
, g (f x1) A B) = (f x1 A B). �

The correctness proof6 of the main transformation is based on the following
lemma which formalizes our intuition from the beginning of this subsection.

Lemma 13 Let M = (F,Sub, C,Π,R1, R2, rin) be an n-sntt and acc(M) =
(acc(F ), C, acc(R1), acc(rin)). For every f ∈ F and t ∈ TC :

tree(nf (⇒R1∪R2
, sub (f t) z1 . . . zn)) = tree(nf (⇒acc(R1), f t z1 . . . zn)). �

Theorem 14 Let M be an n-sntt. Then, τM = τacc(M). �

4.3 Postprocessing

Finally, an n-satt resulting from the main transformation is translated into a
functional program by replacing in the right-hand sides of rules and in the ini-
tial right-hand side the explicit sharings with let-expressions. More exactly, an
expression of the form

r[z1  r1, . . . , zn  rn] is replaced by let {v1 = r1; . . . ; vn = rn} in r,

where v1, . . . , vn are fresh variables (which can be obtained using tree-structured
addresses in the translation process) and r1, . . . , rn, r result from recursively
replacing explicit sharings in r1, . . . , rn, r, respectively, and additionally using
v1, . . . , vn instead of the free occurrences of z1, . . . , zn in r.

6 Available at www.orchid.inf.tu-dresden.de/gdp/conferences/amast06.shtml



The substitution vanishes 183

Example 15 Let M̃acc be the 2-satt of Example 12. Postprocessing translates
f (S x1) y1 y2 = (f x1 (D z1) (T z1 z2 z1)[zi  zi])[zi  yi] into the rule

f (S x1) y1 y2 = let {v1 = y1; v2 = y2}
in f x1 (D v1) (let {v11 = v1; v12 = v2} in (T v11 v12 v11)).�

A more elaborate translation could simplify (or even avoid) some let-expressions,
e.g. if zj does not occur or occurs only once freely in r or if rj = zj or rj = yj
(i.e. we have zj  zj or zj  yj). For the case rj = yj note that the resulting
program will be again treated call-by-need, and hence yj is shared implicitly.

Example 16 Instead of constructing the rule as in Example 15, the following
rule can be used (cf. also the introduction):

f (S x1) y1 y2 = f x1 (D y1) (T y1 y2 y1) �

5 Efficiency Non-deterioration by Accumulation

Our aim is to show the efficiency non-deterioration for call-by-need reduction.
Unfortunately, it is technically difficult to formally compare the number of steps
caused by deterministic reduction relations (cf. e.g. [17]). Hence we will base our
comparison on the nondeterministic reduction relations for n-sntts and n-satts.

Therefore we first present a mechanism such that the number of call-by-need
reduction steps caused by the R1-rules of an n-ntt M equals the number of
“relevant” nondeterministic reduction steps caused by the R1-rules of the cor-
responding n-sntt M̃ : In both reduction relations the copying of unevaluated
applications of F -functions is avoided (by implicit and explicit sharing, respec-
tively). But, whereas the deletion of a useless unevaluated application of an
F -function is performed automatically in a call-by-need reduction, the nonde-
terministic reduction relation for M̃ either simply evaluates such an application
and later moves the result into a subexpression ei of an expression of the form
e[zi  ei] or, vice versa, the reduction relation for M̃ first moves it into an ei
of an expression e[zi  ei], where it is evaluated later. In both situations the
normal form of e will not contain a free occurrence of zi, but nevertheless the use-
less evaluation is performed! In order to consider only the relevant R1-reduction
steps, in our mechanism (i) every application of an R1-rule will additionally
generate a special symbol ◦ and (ii) in the normal form only those ◦-symbols
are counted by a function step, which do not occur in a subexpression ei of an
expression e[zi  ei], where zi does not occur freely in e.

Then we use the same counting mechanism for the n-satt acc(M̃) in order to
prove that the number of relevant R1-reduction steps of M̃ equals the number
of relevant reduction steps of acc(M̃). Together with a final argumentation that
the postprocessing phase does not change the number of reduction steps, we
obtain the desired efficiency result. Note that our comparison procedure does
not consider the R2-reduction steps of M or M̃ , which do not occur in acc(M̃)
and hence are saved by accumulation!

In the following we assume that ◦ is a new unary symbol and for every ranked
alphabet C we define C◦ = C ∪ {◦}.
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Definition 17 Let M = (F,Sub, C,Π,R1, R2, rin) be an n-sntt. The n-sntt
M◦ = (F,Sub, C◦, Π,R◦1, R

◦
2, rin) is defined by

– if R1 contains a rule f (c x1 . . . xk) = rhsR1,f,c,
then R◦1 contains a rule f (c x1 . . . xk) = ◦ rhsR1,f,c, and

– R◦1 contains for every f ∈ F a (dummy; never applied) rule f (◦ x1) = . . .,
– R◦2 contains the rules of R2, and
– R◦2 contains the rule sub (◦ x1) y1 . . . yn = ◦ (sub x1 y1 . . . yn).

Let M=(F,C,R, rin) be an n-satt. The n-satt M◦=(F,C◦, R◦, rin) is defined by

– if R contains a rule f (c x1 . . . xk) y1 . . . yn = rhsR,f,c,
then R◦ contains a rule f (c x1 . . . xk) y1 . . . yn = ◦ rhsR,f,c, and

– R◦ contains for every f ∈ F a (dummy) rule f (◦ x1) y1 . . . yn = . . .. �

Note that by the additional sub-rule of R◦2 in the previous definition the ◦-
symbols produced by R◦1-rules are retained.

Definition 18 Let C be a ranked alphabet.
The function step : EC◦,n(Zn)→ IN is defined as follows:

– For every e ∈ EC◦,n(Zn): step(◦ e) = 1 + step(e).
– For every c ∈ C(k) and e1, . . . , ek ∈ EC◦,n(Zn):

step(c e1 . . . ek) =
∑k

i=1 step(ei).
– For every e1, . . . , en, e ∈ EC◦,n(Zn):

step(e[zi  ei]) = step(e) +
∑n

i=1(step(ei) ∗ rel(zi, e)).
– For every i ∈ [n]: step(zi) = 0.

The function rel : Zn×EC◦,n(Zn)→ {0, 1} is for every i ∈ [n] and e ∈ EC◦,n(Zn)
defined by rel(zi, e) = 1 iff zi occurs in tree(e). �

Example 19 Since the phenomenon of non-relevant subexpressions does not
occur in our running example, we choose an artificial example here:

step((◦ z1)[z1  (◦ A)][z1  (◦ A)])
= step((◦ z1)[z1  (◦ A)]) + step(◦ A) ∗ rel(z1, (◦ z1)[z1  (◦ A)])
= step(◦ z1) + step(◦ A) ∗ rel(z1, (◦ z1)) + 1 ∗ 0 = 1 + 1 ∗ 1 + 1 ∗ 0 = 2 �

Now we have to consider again our three transformation steps, where the sec-
ond step involves a formal proof and the first and last step are argumentations
concerning call-by-need reduction, which we avoided to define formally.

5.1 Preprocessing

For an n-ntt M = (F,Sub, C,Π,R1, R2, rin) and a term t ∈ TC we will denote
by cbnR1(t) the number of R1-reduction steps which are used to reduce rin[x1/t]
to a term graph corresponding to nf (⇒R1∪R2

, rin[x1/t]) with a call-by-need re-
duction. Let M̃ = (F, {sub}, C,Π, R̃1, R̃2, r̃in) result from M by preprocessing.
Then we have to argue that

cbnR1(t) = step(nf (⇒R̃◦1∪R̃◦2
, r̃in[x1/t])).
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First we only consider the F -functions: Since every application of a rule in R̃◦1
delivers exactly one occurrence of ◦, the number of occurrences of ◦ in nf (⇒R̃◦1

,

r̃in[x1/t]) equals the number of applied R̃1-steps to calculate nf (⇒R̃1
, r̃in[x1/t]).

This number is in turn equal to the number of applied R1-steps to calculate a
term graph corresponding to nf (⇒R1

, rin[x1/t]) with call-by-need, because oc-
currences of F -functions are not nested and hence are neither copied nor deleted.

Now we additionally consider the substitution function sub: (i) Occurrences
of F -functions in the recursion argument of sub are neither copied nor deleted in
a reduction by R1 ∪R2. Correspondingly, in a reduction by R̃◦1 ∪ R̃◦2 occurrences
of ◦ in the recursion argument of sub are exactly once reproduced and counted by
step. (ii) In a call-by-need reduction by R1 ∪R2 no application of an F -function
inside a context argument of sub is copied and also in a reduction by R̃◦1 ∪ R̃◦2
(with explicit sharing) no corresponding occurrence of ◦ is copied. (iii) But, in a
call-by-need reduction by R1 ∪ R2, every R1-step which constitutes a subgraph
of the term graph corresponding to nf (⇒R1 , rin[x1/t]), such that the subgraph
occurs in a deleted context argument position j of an occurrence of sub will not
be executed, whereas a reduction by R̃◦1 ∪ R̃◦2 may behave differently: either the
occurrence of ◦ in nf (⇒R̃◦1

, r̃in[x1/t]) that corresponds to the above R1-step is

also deleted (by a sub-rule on a Πi with i 6= j) or it is shifted into a subexpression
ej of an expression of the form e[zi  ei] in which zj does not occur freely in e
and hence it is not counted by step.

5.2 Main Transformation

The proof7 of efficiency non-deterioration of the main transformation is based
on the following lemma. Note the similarity of this lemma to Lemma 13: Instead
of the reduction relations of M and acc(M), their “◦-generating versions” are
used here. Moreover, instead of calculating the output tree by tree, the number
of ◦-symbols is counted by step.

Lemma 20 Let M = (F,Sub, C,Π,R1, R2, rin) be an n-sntt and acc(M) =
(acc(F ), C, acc(R1), acc(rin)). For every f ∈ F and t ∈ TC :

step(nf (⇒R◦1∪R◦2 , sub (f t) z1 . . . zn)) = step(nf (⇒acc(R1)◦ , f t z1 . . . zn)). �

Theorem 21 Let M = (F,Sub, C,Π,R1, R2, rin) be an n-sntt and acc(M) =
(acc(F ), C, acc(R1), acc(rin)). Then, for every t ∈ TC :

step(nf (⇒R◦1∪R◦2 , rin[x1/t])) = step(nf (⇒acc(R1)◦ , acc(rin)[x1/t])). �

5.3 Postprocessing

Let-expressions do not cause additional reduction steps, rather they denote in
functional languages explicit sharings. Thus, if we denote for an n-satt M =
(F,C,R, rin), for R̃ and r̃in obtained from R and rin , respectively, by introducing
let-expressions, and for a term t ∈ TC , by cbnR̃(t) the number of call-by-need

7 Available at www.orchid.inf.tu-dresden.de/gdp/conferences/amast06.shtml
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reduction steps which are used to reduce r̃in[x1/t] to a term graph corresponding
to nf (⇒R, rin[x1/t]) with R̃, then it suffices to argue that

cbnR̃(t) = step(nf (⇒R◦ , rin[x1/t])).

The introduction of let-expressions does not change the copying or deletion prop-
erties of the rules in R. Moreover, in a call-by-need reduction by R̃ no function
application inside some context argument is copied, and because of the context-
linearity of R and hence also of R◦, no corresponding occurrence of ◦ is copied
in a reduction by R◦. Hence there is only one main difference in the calculations
of R̃ and R◦: On the one hand, in a call-by-need reduction by R̃ a function
application is not evaluated, if it occurs in a subexpression ej of an expression
of the form let {v1 = e1; . . . ; vn = en} in e, in which e is evaluated and vj does
not occur in e. On the other hand, the corresponding function application in a
subexpression e′j of an expression of the form e′[zi  e′i] (where v1, . . . , vn corre-
spond to z1, . . . , zn, respectively) is evaluated by R◦ and a symbol ◦ is produced.
But since zj does not occur freely in e′, the produced ◦ is not counted by step.

6 Future Work

We have proved that our accumulation technique does not deteriorate the ef-
ficiency, where efficiency is measured in the number of performed call-by-need
reduction steps. This point of view neglects the actual complexity of reduction
steps. In particular, we weigh applications of unary functions against applications
of the corresponding functions with accumulating parameters. A more elaborate
efficiency measure could be based on weighted reduction steps, e.g., by using
more than one ◦-symbol for a rule with parameters. Furthermore, it would be
interesting to develop a syntactic characterization of those programs, for which
the time-complexity is changed by accumulation (like in our running example).

In [22] list manipulating operations, in particular append, are eliminated by
employing shortcut deforestation [13,7] instead of tree transducer composition
as in [16]. To this end, the technique from [22] does not only abstract from list
constructors, but also from the list manipulating operations. We believe that this
transformation can be generalized to eliminate also tree manipulating operations
as, e.g., substitutions. But, as already stated in the Conclusion of [22], “a general
statement about the relation between the runtimes of original and transformed
programs is hard to make”. Nevertheless it would be interesting to compare such
a transformation with our approach.
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