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Hyper-minimization is a recent automaton compression technique that can reduce the
size of an automaton beyond the limits imposed by classical minimization. The addi-
tional compression power is enabled by allowing a �nite di�erence in the represented
language. The necessary theory for hyper-minimization is developed for (bottom-up)
deterministic tree automata. The hyper-minimization problem for deterministic tree au-
tomata is reduced to the hyper-minimization problem for deterministic �nite-state string
automata, for which fast algorithms exist. The fastest algorithm obtained in this way
runs in time O(m logn), where m is the size of the transition table and n is the number
of states of the input tree automaton.

1. Introduction

In many application areas (such as speech processing [17], transliteration, parsing,
and machine translation [13]) large �nite-state devices are used. Since the �nal de-
vices are often shipped to customers, where they have to �t into limited memory,

procedures that reduce the size are essential in those setups. The classical minimiza-

tion problem for deterministic �nite-state automata (dfa) [21] asks for the smallest

(measured in the number of states) dfa that recognizes the same language as the

input dfa. The asymptotically fastest dfa minimization algorithm is Hopcroft's
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Fig. 1. Illustration of the di�erence locations in a context: along the path to the root (left) and
o� this path (right).

algorithm [9], which runs in time O(m log n), in which m is the number of transi-

tions and n is the number of states of the input dfa. Similar minimization algorithms

exist for �nite-state tree automata [5, 6], which recognize tree languages.

Hyper-minimization is a recent technique that allows to reduce the size of a dfa

at the expense of a �nite number of errors. Such lossy compression can be essential if

the memory facilities of the user device are severely limited (e.g., on mobile phones).

Hyper-minimization was introduced in [2], in which both its theoretical founda-

tions and an ine�cient hyper-minimization algorithm were presented. More e�cient

algorithms were subsequently developed [1] and the currently fastest algorithms

achieve the time complexityO(m log n) [4, 8], which coincides with the complexity of

the fastest classical dfa minimization algorithms. Since hyper-minimization reduces

to minimization [8], any faster hyper-minimization algorithm would automatically

yield a faster algorithm for classical dfa minimization. Although no theoretical re-

sult precludes the existence of such faster minimization algorithms, to this day no

such algorithms are known despite heavy research for more than 50 years. Most of

the mentioned applications actually use weighted dfa [18], so hyper-minimization

was generalized to this setting [16] and to dfa over in�nite strings [19]. A detailed

survey of the theory and existing algorithms can be found in [15].
Here, we generalize hyper-minimization to (bottom-up) deterministic tree au-

tomata (dta) [5, 6], which have applications in xml [10] and natural language pro-

cessing [12]. To this end, we faithfully generalize the approach and lift the basic

de�nitions from dfa to dta. The main notion for hyper-minimization of dfa is the

state almost-equivalence, which generalizes the classical forward-language equiv-

alence used in dfa minimization. Consequently, our central notion is the almost

equivalence for states of a dta, which generalizes the context-language equivalence

used in dta minimization [3]. The fastest known algorithm for dta minimization [7]
runs in time O(m log n), where m is the size and n is the number of states of the in-

put dta. Our hyper-minimization algorithm achieves the same asymptotic run-time

complexity using a reduction to hyper-minimization for dfa.

The slightly non-standard reduction shows that dta hyper-minimization is not

a straightforward adjustment of dfa hyper-minimization. Their overall structure is

identical, but the licensing properties di�er. The main di�erence concerns the lo-

cation of the errors in the recognized context language. While for dfa the errors in
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the forward languages of a state all occur along its successor states, in a dta the

errors can also occur in sibling states, which we illustrate in Fig. 1. Consequently,

several foundational results (and in particular, those on which the currently fastest

hyper-minimization algorithms rely) for dfa hyper-minimization [2] do not faithfully
generalize to dta. We provide alternatives for these statements and develop a hyper-

minimization algorithm based on them. Finally, we provide a reduction to hyper-

minimization for dfa, which allows us to easily obtain the run time O(m log n) for

our hyper-minimization algorithm for dta. Consequently, we asymptotically match

the time complexity of dta minimization, so further improvements would automat-

ically yield improvements for dta minimization, which currently seem unlikely. The

reduction required for the last statement is presented in the �nal section.

2. Preliminaries

The set of all nonnegative integers is N. The cardinality of a �nite set S is denoted

by |S|. The symmetric di�erence S	T of sets S and T is (S−T )∪ (T −S). If it is
�nite, then S and T are almost equal. A binary relation ∼= on S is an equivalence

relation if it is re�exive, symmetric, and transitive.

An alphabet Σ is a �nite set of symbols. The set of all strings over Σ is Σ∗,
which contains the empty string ε. The length of a string w ∈ Σ∗ is |w|. A deter-

ministic �nite automaton (dfa) [21] is a tupleM = (Q,Σ, q0, δ, F ), in which Q is the

�nite set of states, Σ is the alphabet of input symbols, q0 ∈ Q is the initial state,

δ : Q × Σ → Q is the (partial) transition function, and F ⊆ Q is the set of �nal

states. The transition function extends to a mapping δ : Q×Σ∗ → Q by δ(q, ε) = q

and δ(q, wσ) = δ(δ(q, w), σ) for all q ∈ Q, w ∈ Σ∗, and σ ∈ Σ. The dfaM recognizes

the language L(M) = {w ∈ Σ∗ | δ(q0, w) ∈ F}. The states q, q′ ∈ Q are equivalent,

written q ≡ q′, if δ(q, w) ∈ F if and only if δ(q′, w) ∈ F for all w ∈ Σ∗. The (trim)

dfa M is minimal if it does not contain two di�erent, but equivalent states. For

every k ∈ N, let q 'k q′ if δ(q, w) ≡ δ(q′, w) for all w ∈ Σ∗ with |w| ≥ k. If q 'k q′
for some k ∈ N, then q and q′ are almost equivalent, which we denote by q ' q′.

Together with a mapping rk : Σ → N the alphabet Σ forms the ranked alpha-

bet (Σ, rk). For every k ∈ N, we let Σk = rk−1(k) be the set of all symbols of rank k.

We typically denote the ranked alphabet (Σ, rk) by just Σ and write σ(k) to indicate

that σ has rank k. For a set T , we let Σ(T ) = {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T}.
The set TΣ(Q) of Σ-trees with states Q is the smallest set T such that Q∪Σ(T ) ⊆ T .
We write TΣ for TΣ(∅). Let n ∈ N be such that n ≥ rk(σ) for every σ ∈ Σ. The set
of positions pos(t) ⊆ {1, . . . , n}∗ is recursively de�ned by pos(q) = {ε} for every

q ∈ Q and

pos(σ(t1, . . . , tk)) = {ε} ∪ {iw | 1 ≤ i ≤ k,w ∈ pos(ti)}

for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q). For every σ ∈ Σ∪Q, the set of all σ-labeled
positions of a tree t ∈ TΣ(Q) is posσ(t). Given such a position w ∈ posσ(t) and a

tree t′ ∈ TΣ(Q), the tree t[t′]w is obtained from t by replacing the occurrence of σ
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at w by t′. The height ht(t) and size |t| of t ∈ TΣ(Q) are ht(t) = maxw∈pos(t)|w|
and |t| = |pos(t)|, respectively.

A context c is a tree of TΣ∪{�(0)}(Q) such that pos�(c) is a singleton; i.e., the

special nullary symbol � occurs exactly once. The set of all contexts is CΣ(Q),
which we abbreviate to CΣ if Q = ∅. For every c ∈ CΣ(Q) and t ∈ TΣ∪{�}(Q), we
let c[t] = c[t]w with pos�(c) = {w}. If c, c′ ∈ CΣ(Q) are contexts, then c[c′] ∈ CΣ(Q)
is a context, and we set c0 = � and cn+1 = c[cn] for every n ∈ N. The depth of a

context c ∈ CΣ(Q) with pos�(c) = {w} is dp(c) = |w|.
A deterministic tree automaton (dta) [5, 6] is a tuple M = (Q,Σ, δ, F ), in which

Q is the �nite set of states, Σ is the ranked alphabet of input symbols, δ : Σ(Q)→ Q

is the (partial) transition function, and F ⊆ Q is the set of �nal states. The transi-

tion function δ extends to δ : TΣ(Q)→ Q by δ(q) = q for every q ∈ Q and

δ(σ(t1, . . . , tk)) = δ(σ(δ(t1), . . . , δ(tk)))

for every σ ∈ Σk and t1, . . . , tk ∈ TΣ(Q). For every q, q′ ∈ Q, we let

• L(M)qq′ = {c ∈ CΣ | δ(c[q′]) = q} be the contexts that take M from q′ to q,

• L(M)q′ =
⋃
f∈F L(M)fq′ be those that take it from q′ into a �nal state, and

• L(M)q = δ−1(q)∩ TΣ be the (stateless) trees that take M into the state q.

The dta M recognizes the tree language L(M) =
⋃
f∈F L(M)f . The size |M | of M

is
∑
s∈dom(δ)|s|. The dta is trim if L(M)q 6= ∅ for every q ∈ Q.

An equivalence relation ∼= on Q is a congruence (on the dta M) if we have that

δ(σ(q1, . . . , qk)) ∼= δ(σ(q′1, . . . , q
′
k)) for every σ ∈ Σk and q1

∼= q′1, . . . , qk
∼= q′k. Two

states q, q′ ∈ Q are equivalent, which is denoted by q ≡M q′ (or just q ≡ q′), if

L(M)q = L(M)q′ . Note that ≡M is a congruence, and actually, the coarsest (i.e.,

least re�ned) congruence on M that respects F , which means that a �nal state

cannot be equivalent to a non�nal state. The trim dta M is minimal if it does not

have two di�erent, but equivalent states. For every dtaM , an equivalent minimal dta

can be computed e�ciently using an adaptation [7] of Hopcroft's algorithm [9],
which runs in time O(m log n) where m = |M | and n = |Q|.

3. Foundations

In this section, we investigate the foundations required for the minimization of dta,

where in contrast to the standard setting we do not require that the recognized

tree language is preserved, but rather we allow a �nite di�erence. This type of min-

imization is called hyper-minimization. The theoretical properties that enable the

reduction to the hyper-minimization problem for dfa are investigated in Section 4,

but the general approach is established here. Since it coincides with the approach

for dfa hyper-minimization, we transfer the relevant notions from dfa to dta and

prove variants of the relevant theorems. We refer the reader to [2] for the founda-

tions of dfa hyper-minimization and a detailed account of the dfa-versions of most

of the results in this section.
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Fig. 2. Illustration of the dta Mex [left] and merge(Mex, β′ → β) [right] of Examples 2 and 5,
respectively.

In the rest of this paper, M = (Q,Σ, δ, F ) is a minimal dta of size m. To avoid

a detailed discussion of unde�nedness or partialness, we imagine dom(δ) = Σ(Q).
This is achieved by imagining a non-�nal sink state ⊥ as the target of all missing

transitions. However, these transitions and the state ⊥ itself are imaginary and only

used for theoretical convenience, so they will not count towards |M | and |Q|.
Given the minimal dtaM , the goal of hyper-minimization is the (e�cient) com-

putation of a dta M ′ with as few states as possible such that L(M) and L(M ′) are
almost equal. If L(M) and L(M ′) are almost equal, then the dta M and M ′ are

almost equivalent. Moreover, if there does not exist a dta with strictly fewer states

than M that is almost equivalent to M , then M is hyper-minimal. Using these no-

tions, the goal of hyper-minimization is the computation of a hyper-minimal dta

that is almost equivalent to M .

We approach this problem in the same spirit as classical minimization. Recall,

that a minimal dta is obtained by identifying and merging all equivalent states.

We plan to obtain a hyper-minimal dta by identifying and merging certain almost

equivalent states, which we introduce next.

De�nition 1 (cf. De�nition 2.2 of [2]) Two states q, q′ ∈ Q are almost equiv-

alent if L(M)q 	 L(M)q′ is �nite. The almost equivalence on Q is denoted by ∼.

Example 2. We use the dta Mex = (Q,Σ, δ, F ) as running example, where

• Σ = {α(0), β(0), β′(0), ω(2)} and Γ = {α, β, β′},
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• Q = {σ | σ ∈ Σ} and F = {β, ω}, and
• δ is unde�ned except in the following cases: for every γ, γ′ ∈ Γ

δ(γ) = γ δ(ω(γ, γ′)) = δ(ω(α, ω)) = ω .

The dta Mex recognizes the tree language {β}∪{cn[ω(γ, γ′)] | n ∈ N, γ, γ′ ∈ Γ} with
c = ω(α,�). The dta Mex is illustrated in Fig. 2. Note that Mex is minimal and has

4 states and size 3 + 27 + 3 = 33. The states β and β′ are almost equivalent because

L(Mex)β′ = {cn[ω(�, γ)], cn[ω(γ,�)] | n ∈ N, γ ∈ Γ}

L(Mex)β = {�} ∪ L(Mex)β′ ,

whereas the state α is neither almost equivalent to β nor to ω.

Next, we demonstrate that the almost equivalence ∼ is a congruence on M . In

contrast to the state equivalence ≡, which is used for classical minimization and

respects F , the almost equivalence ∼ clearly need not respect F (see Example 2

because β ∼ β′ but β ∈ F and β′ /∈ F ).

Lemma 3 (see Lemma 2.10 in [2]) For all almost equivalent states q ∼ q′ and

all contexts c ∈ CΣ, we have δ(c[q]) ∼ δ(c[q′]). In particular, ∼ is a congruence.

Proof. Let C ′ = L(M)δ(c[q]) 	 L(M)δ(c[q′]) and C = L(M)q 	 L(M)q′ be the sets

of contexts that distinguish between δ(c[q]) and δ(c[q′]) and between q and q′, re-

spectively. We know that C is �nite and need to prove that C ′ is �nite as well.

Let ı : C ′ → CΣ be such that ı(c′) = c′[c] for every context c′ ∈ C ′. Clearly,

ı(c′) = c′[c] 6= c′′[c] = ı(c′′) for all c′, c′′ ∈ C ′ such that c′ 6= c′′. Moreover,

ı(c′) = c′[c] ∈ C for all c′ ∈ C ′, so ı : C ′ → C is injective. Consequently, |C ′| ≤ |C|,
which proves that C ′ is �nite.

The congruence property can now be deduced via particular contexts of depth 1
and the standard piecewise replacement. Let σ ∈ Σk and q1 ∼ q′1, . . . , qk ∼ q′k be

pairwise almost equivalent states. Moreover, for each q ∈ Q, let tq ∈ L(M)q be

arbitrary; such a tree exists for all q ∈ Q because M is minimal. Then

δ(σ(q1, . . . , qk)) = δ(σ(�, tq2 , . . . , tqk
)[q1])

∼ δ(σ(�, tq2 , . . . , tqk
)[q′1]) = δ(σ(q′1, q2, . . . , qk)) = δ(σ(tq′1 ,�, tq3 , . . . , tqk

)[q2])

∼ . . .
∼ δ(σ(tq′1 , . . . , tq′k−1

,�)[q′k]) = δ(σ(q′1, . . . , q
′
k)) .

To con�rm that our strategy of merging almost equivalent states yields a hyper-

minimal dta, we �rst need to characterize hyper-minimal dta. To this end, we �rst

show that the two states reached after processing the same tree in two almost

equivalent dta behave like almost equivalent states.

Lemma 4. As usual, let M be the minimal dta under consideration. Moreover, let

M ′ = (Q′,Σ, δ′, F ′) be another minimal dta that is almost equivalent to M . Then

L(M ′)δ′(t) and L(M)δ(t) are almost equal for all t ∈ TΣ.
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Proof. For every tree language L ⊆ TΣ and t ∈ TΣ, let t
−1L = {c ∈ CΣ | c[t] ∈ L}

be the set of contexts that wrap around t to form a tree in L. Since M and M ′ are

almost equivalent, we know that L(M) and L(M ′) are almost equal. Consequently,

also t−1L(M) = L(M)δ(t) and t−1L(M ′) = L(M ′)δ′(t) are almost equal, which

proves the statement.

We already announced that we plan to obtain a hyper-minimal dta by merg-

ing certain almost equivalent states. As in classical minimization, a merge of

the state q ∈ Q into the state q′ ∈ Q redirects all transitions leading to q

into q′. Formally, for two di�erent states q, q′ ∈ Q, the dta merge(M, q → q′) is

(Q− {q},Σ, δ′, F − {q}), where for every s ∈ Σ(Q− {q})

δ′(s) =

{
q′ if δ(s) = q

δ(s) otherwise.

Example 5. Recall the dta Mex = (Q,Σ, δ, F ) of Example 2. If we merge β′ into β,

then we obtain the dta merge(Mex, β
′ → β), which is (Q − {β′},Σ, δ′, F ) where δ′

is unde�ned except in the following cases: for every γ, γ′ ∈ {α, β}

δ′(α) = α δ′(β) = δ′(β′) = β δ′(ω(γ, γ′)) = δ′(ω(α, ω)) = ω .

The merged dta is illustrated in Fig. 2.

Before we proceed, we recall a central notion from [2]. A state q ∈ Q is a

kernel state if L(M)q is in�nite. Otherwise q is a preamble state. The set of kernel

states is Ker(M). In contrast to the standing assumption, we do not assume that

M is minimal in the next lemma. This adjustment is necessary because we want to

perform many merges in sequence, but we cannot guarantee that the dta resulting

from a merge in a minimal dta is again minimal.

Lemma 6. Let M = (Q,Σ, δ, F ) be a not necessarily minimal dta, and let q ∼ q′

be di�erent almost equivalent states such that q is a preamble state. Then the dta

merge(M, q → q′) and M are almost equivalent.

Proof. Let merge(M, q → q′) = (Q′,Σ, δ′, F ′). Since q and q′ are almost equivalent,

the set C = L(M)q 	 L(M)q′ is �nite. Let ` ∈ N be such that ` > ht(c) for every

c ∈ C. Moreover, let t ∈ TΣ be such that ht(t) ≥ ` + |Q|. Since q is a preamble

state, the elements of the �nite set L(M)q are pairwise not subtrees (i.e., t′ ∈ TΣ

is a subtree of t ∈ TΣ if there exists a context c ∈ CΣ such that t = c[t′]) of each
other. Consequently, we obtain the uniquely determined tree u ∈ TΣ(Q) from t

by replacing all subtrees from L(M)q in t by just the state q. Since we replaced

subtrees by the state that accepts them, we obtain that δ(t) = δ(u). Furthermore,

ht(u) ≥ ` because ht(t′) ≤ |Q| for all t′ ∈ L(M)q since q is a preamble state. Let

posq(u) = {w1, . . . , wn} with w1 < · · · < wn be the occurrences of q in u. For

each i ∈ [n], let ci = (u[q′]w1 · · · [q′]wi−1)[�]wi
be the context obtained from u by
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replacing the �rst i− 1 occurrences w1, . . . , wi−1 of q by the merging target state q′

and the occurrence wi by �. Clearly, ht(ci) = ht(u) ≥ ` for all i ∈ [n], and thus

δ(t) = δ(u) = δ(c1[q])
†
≡ δ(c1[q′]) = δ(c2[q])

†
≡ · · ·

†
≡ δ(cn[q′])

‡
= δ′(t) ,

where † holds because ht(ci) ≥ `, which yields that the states q and q′ reach equiv-

alent states after processing the contexts c1, . . . , cn, and ‡ holds because δ and δ′

coincide on all transitions not involving q. Consequently, δ(t) ≡ δ′(t), and thus

merge(M, q → q′) and M agree on all suitably tall trees. Since there are only

�nitely many small trees (mind that the rank of symbols is �xed), we obtain that

merge(M, q → q′) and M are almost equivalent.

Lemma 6 shows how to obtain a smaller dta that remains almost equivalent to

the original dta. Since we did not require minimality in Lemma 6, the procedure

can be iterated. It remains to demonstrate that if no further merges are possible

(subject to the conditions of Lemma 6), then the obtained dta is hyper-minimal. To

prove this, we characterize hyper-minimality in the spirit of [2]. Recall that a trim

dta is minimal if and only if it does not have two di�erent, but equivalent states.

The condition for hyper-minimality replaces equivalence by almost equivalence and

additionally requires that one state is a preamble state (see Lemma 6).

Theorem 7. The minimal dta M is hyper-minimal if and only if every pair of

di�erent, but almost equivalent states consists of only kernel states.

Proof. Lemma 6 proves the �only if�-direction by contra-position because we

can merge almost equivalent states with at least one preamble state to obtain a

smaller, not necessarily minimal, but almost equivalent dta. For the �if�-direction,

let M ′ = (Q′,Σ, δ′, F ′) be an almost equivalent dta that has strictly fewer states

(i.e., |Q′| < |Q|). We construct the product dtaM×M ′ = (Q×Q′, Σ, δ×δ′, F×F ′),
where (δ × δ′) : Σ(Q×Q′)→ Q×Q′ is such that

(δ × δ′)(σ(〈q1, q
′
1〉, . . . , 〈qk, q′k〉)) = 〈δ(σ(q1, . . . , qk)), δ′(σ(q′1, . . . , q

′
k))〉

for every σ ∈ Σk and 〈q1, q
′
1〉, . . . , 〈qk, q′k〉 ∈ Q × Q′. Since M is minimal, we

have L(M)q 6= ∅ for every q ∈ Q. If q ∈ Ker(M), then we select tq ∈ L(M)q such that
ht(tq) ≥ |Q|2. For all preamble states q ∈ Q, we select tq ∈ L(M)q arbitrarily. By

the pigeon-hole principle with |Q′| < |Q|, there must exist di�erent q1, q2 ∈ Q and

q′ ∈ Q′ such that (δ×δ′)(tq) = 〈q, q′〉 for q ∈ {q1, q2}. Consequently, q1 ∼ q2 because

L(M)q1 and L(M ′)q′ as well as L(M)q2 and L(M ′)q′ are almost equal by Lemma 4.

By the assumption, q1 and q2 must be kernel states ofM because q1 and q2 are di�er-

ent, but almost equivalent. Moreover, 〈q1, q
′〉 and 〈q2, q

′〉 are kernel states ofM×M ′
by the selection of the access trees tq1 and tq2 with ht(tq1) ≥ |Q|2 ≤ ht(tq2), which
can be pumped [5, 6]. Now, for the sake of a contradiction, let c ∈ L(M)q1	L(M ′)q′ .
Then {c[t] | t ∈ L(M × M ′)〈q1,q

′〉} ⊆ L(M) 	 L(M ′). Since 〈q1, q
′〉 is a ker-

nel state of M × M ′, the set L(M × M ′)〈q1,q
′〉 is in�nite, which yields that
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Algorithm 1 Structure of our dta hyper-minimization algorithm.

Require: a minimal dta M = (Q,Σ, δ, F ) of size m with n states

Return: an almost equivalent hyper-minimal dta

K ← Ker(M) // complexity: O(m); see Section 4

2: ∼ ← AlmostEquivalence(M) // complexity: O(m logn); see Section 4

for all B ∈ (Q/∼) do
4: select qB ∈ B such that qB ∈ K if possible

for all q ∈ B −K do

6: M ← merge(M, q → qB) // complexity: O(1)

return M

L(M) 	 L(M ′) is in�nite. This contradicts that M and M ′ are almost equivalent,

so consequently, L(M)q1	L(M ′)q′ = ∅, and similarly L(M)q2	L(M ′)q′ = ∅. Thus,
L(M)q1 = L(M ′)q′ = L(M)q2 , which proves that q1 and q2 are equivalent. Since M

is minimal, we obtain that q1 = q2 contradicting the assumption that q1 and q2 are

di�erent. Consequently, the dta M ′ with strictly fewer states cannot exist, which

proves the statement.

Example 8. The dta Mex of Example 2 is not hyper-minimal since β ∼ β′ and

both states are preamble states. However, the dta merge(Mex, β
′ → β) of Example 5

is hyper-minimal.

The overall hyper-minimization approach is demonstrated in Algorithm 1. First,

we determine the kernel states and the almost equivalence with the help of the

methods described in Section 4. With these two pieces of information, we can merge

states (by simply changing a reference to obtain the constant run-time) subject to

the conditions of Lemma 6, which shows that the merged dta is almost equivalent

to the original. Once we stop the merges, there are no more preamble states that are

almost equivalent to another state, which by Theorem 7 means that the returned

dta is hyper-minimal.

Corollary 9 (of Lemma 6 and Theorem 7) Given a correct computation of

the kernel states Ker(M) and the almost equivalence ∼, Algorithm 1 returns a

hyper-minimal dta that is almost equivalent to M .

4. Computation of the kernel states and the almost equivalence

In this section, we show how to compute the kernel states Ker(M) as well as the

almost equivalence ∼ e�ciently. In both cases, we use a reduction to the corre-

sponding problem for dfa. We start with the calculation of the kernel states. Recall

that m = |M |. It is known [4, 8] that the kernel states of a dfa can be computed

using any fast algorithm for computing strongly connected components in a directed

graph (e.g., Tarjan algorithm [20]). The next proposition shows the trivial problem
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ω

α β′ β

ω γ

β′ β α

ω
ω

γ

γ

αββ′

Fig. 3. The graph (Q,E) [left] derived from the dta Mex of Example 2 and the dta [right] of
Example 12.

translation.

Lemma 10. Ker(M) can be computed in time O(m).

Proof. We turn the dta M into the graph (Q,E), where

E = {〈q, δ(σ(q1, . . . , qk))〉 | q ∈ {q1, . . . , qk}, σ(q1, . . . , qk) ∈ dom(δ)} .

Consequently, |E| ≤ m. A strongly connected component of this graph is triv-

ial, when it consists of a single node without a loop. It is simple to observe

that q ∈ Ker(M) if and only if it is reachable from a non-trivial strongly connected

component of the graph (Q,E) [see [8] for details]. Since Tarjan's algorithm [20]
for strongly connected components of (Q,E) runs in time O(|Q|+ |E|) and |Q| ≤ m
by minimality and |E| ≤ m, we obtain the stated complexity O(m).

Example 11. The only kernel state of the dta Mex of Example 2 is ω, which is

easily determined from the graph (Q,E) displayed in Fig. 3.

It remains to compute the almost equivalence e�ciently. Since almost equiva-

lent states q and q′ have almost equal context languages L(M)q and L(M)q′ , there
exists an integer k ∈ N such that k > dp(c) for all contexts c ∈ L(M)q 	 L(M)q′ .
A simple pumping argument shows that we can select k such that k ≤ |Q|2. In
fact, a slightly more elaborate argument proves that even k ≤ |Q| can be required.

In contrast to the string case, the set of contexts of bounded depth can be (and

typically is) in�nite. Nevertheless, for every context c ∈ CΣ with dp(c) ≥ k the

states δ(c[q]) and δ(c[q′]) are equivalent because no deeper context is in the sym-

metric di�erence L(M)q 	 L(M)q′ . Since M is minimal, and thus has no di�erent,

but equivalent states, we can conclude that δ(c[q]) = δ(c[q′]) for all c ∈ CΣ with

dp(c) ≥ k. Since we need this property in the sequel, for every k ∈ N we let q ∼k q′
if q ∼ q′ and δ(c[q]) = δ(c[q′]) for all c ∈ CΣ with dp(c) ≥ k. In particular, q ∼ q′
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implies q ∼k q′ for some k ∈ N. Roughly speaking, almost equivalent states always

eventually yield the same state after processing suitably deep (or large) contexts.

The converse of the previous statement is particularly interesting for the compu-

tation of almost equivalent states because it would o�er a way to determine the al-

most equivalence of two states with the help of ∼0,∼1, . . . For minimal dfa this con-

verse trivially holds because there are only �nitely many strings of bounded length;

i.e., two states that always eventually yield the same state are almost equivalent,

which is the main property used in the fastest hyper-minimization algorithms [4, 8]
for dfa. Unfortunately, the converse does not hold for dta because there can be

in�nitely many contexts of bounded depth, so that not only the successor, but also

the sibling states determine the almost equivalence (see Fig. 1). Let us illustrate

this di�culty on an example.

Example 12. Let us consider the dta (Q,Σ, δ, F ) with Q = {σ | σ ∈ Σ}, input sym-

bols Σ = {α(0), β(0), β′(0), γ(1), ω(2)}, and the �nal states F = {ω}. The transition

function δ is given by

δ(σ) = σ δ(γ(α)) = δ(γ(γ)) = γ δ(ω(β, γ)) = δ(ω(β′, α)) = ω

for every σ ∈ {α, β, β′}. This dta is illustrated in Fig. 3. Although β and β′ agree

on all contexts of depth at least 2 (both states reject all such contexts), they are

not almost equivalent since they di�er on the in�nitely many contexts ω(�, t) with

t ∈ T{γ(1),α(0)}, which lead to acceptance in β, but are rejected in β′.

Already in the conference version [11], we announced an adjusted version of the

converse for the e�cient computation of the almost equivalence. We use two new

notions: skinny contexts of CΣ(Q) and a distinction between preamble and kernel

contexts. We begin with their de�nition. The skinny contexts ĈΣ(Q) ⊆ CΣ(Q) are
the smallest set C such that � ∈ C and σ(q1, . . . , qi−1, c, qi+1, . . . , qk) ∈ C for all

σ ∈ Σk, q1, . . . , qk ∈ Q, integers 1 ≤ i ≤ k, and contexts c ∈ C. In other words,

skinny contexts only contain states outside the path from the root to the unique

occurrence of the symbol �. We remark that δ(c[q]) = δ(c′[q]) for all c, c′ ∈ CΣ(Q)
such that c′ is obtained from c by replacing an occurrence of a state q′ by a tree

of δ−1(q′). Consequently, we can replace any occurrence of a state q′ by a tree in the

tree language δ−1(q′) without e�ect on the behavior of M . The obtained context c′

is an instance of c. The essential property is that each context c′ ∈ CΣ(Q) is an

instance of exactly one skinny context, which allows us to reduce CΣ(Q) to ĈΣ(Q).
This move from CΣ to ĈΣ(Q) is a common strategy, which is also used in dta

minimization [7, 14]. Finally, a context c ∈ CΣ(Q) is a kernel context if posq(c) 6= ∅
for some q ∈ Ker(M); i.e., the context c contains a kernel state of M .

Lemma 13. We have q ∼ q′ if and only if there is an integer k ∈ N such that

• δ(c[q]) = δ(c[q′]) for all c ∈ ĈΣ(Q) with dp(c) ≥ k, and
• δ(c[q]) = δ(c[q′]) for all kernel contexts c ∈ ĈΣ(Q).
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Proof. We start with the �if�-direction. By assumption, q and q′ agree on skinny

kernel contexts. By the argumentation above, they also agree on all instances of such

contexts. Moreover, they disagree only on �nitely many skinny non-kernel contexts

because there are only �nitely many skinny contexts of a given depth. Since only

preamble states occur in disagreement contexts, we know that those contexts have

only �nitely many instances of CΣ, on which q and q′ also disagree. This proves

that q and q′ agree on almost all contexts of CΣ, which yields q ∼ q′.
For the remaining �only if� direction, we know that q and q′ disagree on �nitely

many contexts of CΣ. Let C be the �nite set of skinny contexts, of which the

disagreement contexts are instances of. We select k such that it is strictly larger

than the depth of any context of C. Since q and q′ agree on every instance c′ ∈ CΣ of

a skinny context c ∈ ĈΣ(Q) with depth at least k, they also agree on c, which proves

the �rst item. Now, let c be a skinny kernel context. Clearly, c has in�nitely many

instances in CΣ, on all of which M behaves equally. Thus, q and q′ cannot disagree

on c because they would have to disagree also on all in�nitely many instances of c,

which proves the second item.

Since the parameter k in Lemma 13 can always be limited to |Q|, we now have an

e�ective procedure to check for almost equivalence of two states. To determine the

full almost equivalence on Q, we also prove a variant that utilizes the known almost

equivalence of pairs of states. A context c ∈ CΣ(Q) is shallow if c ∈ Σ(Q∪{�}). The
set of all shallow contexts forM is denoted by CM . Intuitively, shallow contexts are

transitions with exactly one � in the list of source states. In particular, they are

skinny contexts.

Corollary 14 (of Lemma 3 and Lemma 13) We have ∼0 = {(q, q) | q ∈ Q},
and for every k ∈ N we have q ∼k+1 q′ if and only if for each shallow context

c ∈ CM

• δ(c[q]) ∼k δ(c[q′]) and

• δ(c[q]) = δ(c[q′]) if c is a kernel context.

Proof. For the �only-if� direction, q ∼k+1 q
′ implies q ∼ q′, which by Lemma 13 im-

plies the second item. Moreover, using Lemma 3 we conclude that δ(c[q]) ∼ δ(c[q′]).
Naturally δ(c[q]) and δ(c[q′]) agree on all contexts of depth at least k because q and q′

agree on all contexts of depth at least k+1. For the converse, it is clear that q and q′

agree on all contexts of depth at least k + 1. It remains to prove that q ∼ q′. By

induction using the �rst item, we can obtain that δ(c[q]) = δ(c[q′]) for all c ∈ ĈΣ(Q)
with dp(c) ≥ k because ∼0 is the identity. The second item of Lemma 13 is similarly

obtained using both items of this statement, which then proves that q ∼ q′.

Corollary 14 allows us to implement the computation of the almost equivalence

e�ciently. In the conference version [11] we presented an e�cient algorithm based

on a similar property, but did not prove its correctness. Here we present a reduction
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to dfa, for which we know how to compute the almost equivalence e�ciently [4, 8].
However, the statement corresponding to Corollary 14 for dfa does not have the

stronger condition on kernel contexts (since kernel contexts do not exist if all sym-

bols are at most unary), so our translation into a dfa will include a nonstandard

part.

De�nition 15. The reduction dfa Red(M) is the dfa

(Q ∪Ker(M) ∪ {q0}, CM ∪ Σ0 ∪Ker(M), q0, δ
′, F ∪Ker(M)) ,

such that Ker(M) = {q | q ∈ Ker(M)} is a copy of Ker(M) and

• δ′(q0, α) = δ(α) for every α ∈ Σ0,

• for every q ∈ Q and c ∈ CM , let

δ′(q, c) =

{
δ(c[q]) if c is a kernel context

δ(c[q]) otherwise

• δ′(q, q) = q for every q ∈ Ker(M), and
• all remaining entries in δ′ are unde�ned.

Thus, by de�nition, the dfa Red(M) has at most 2 · |Q|+ 1 states and at most

m+ |Q| transitions. Since M is minimal, we also know that |Q| ≤ m, which yields

that Red(M) has O(|Q|) states and O(m) transitions.

Example 16. We construct the dfa Red(Mex) = (Q′,Σ′, q0, δ
′, F ′) for the dta Mex

of Example 2. Given Γ = {α, β, β′}, the components are

• Q′ = {q0, α, β, β
′, ω, ω},

• Σ′ = {α, β, β′, ω, ω(α,�), ω(�, ω)} ∪ {ω(�, γ), ω(γ,�) | γ ∈ Γ},
• F ′ = {β, ω, ω}, and
• the following transitions are in δ′: for every γ, γ′ ∈ Γ

δ′(q0, γ) = γ δ′(γ, ω(�, γ′)) = ω δ′(γ, ω(γ′,�)) = ω

δ′(ω, ω) = ω δ′(ω, ω(α,�)) = ω δ′(α, ω(�, ω)) = ω .

The dfa Red(Mex) is illustrated in Fig. 4. It has 6 states and 24 transitions.

Lemma 17. Red(M) is minimal.

Proof. The minimality of M immediately yields the minimality of Red(M) as any
di�erence context also yields a di�erence string in Red(M).

Finally, we need to demonstrate how computing the almost equivalence '
for Red(M) helps us compute the almost equivalence ∼ for M . The next theorem

shows that both are basically the same. We only need to disregard the additional

states introduced in the reduction [i.e., those in {q0} ∪Ker(M)].

Theorem 18. Let ' be the almost equivalence for Red(M). Then ∼ = ' ∩Q2.
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Fig. 4. The dfa Red(Mex) [left] of Example 16 and an illustration [right] of the reduction discussed
in Section 5.

Proof. We prove that ∼k = 'k∩Q2 by induction on k. Since bothM and Red(M)
are minimal by Lemma 17, we have that ∼0 = {(q, q) | q ∈ Q} = '0 ∩ Q2, which

completes the induction base. In the induction step, we suppose that ∼k = 'k∩Q2.

Let q ∼k+1 q′. By Corollary 14 we have δ(c[q]) ∼k δ(c[q′]) for every shallow

context c ∈ CM with equality if c is a kernel context. In the latter case, we ob-

tain δ′(q, c) = δ(c[q]) = δ(c[q′]) = δ′(q′, c), so δ′(q, c) 'k δ′(q, c). Similarly, for

non-kernel contexts c we obtain δ′(q, c) = δ(c[q]) ∼k δ(c[q′]) = δ′(q′, c), which
by the induction hypothesis yields δ′(q, c) 'k δ′(q′, c). For all remaining letters

σ ∈ Σ0 ∪Ker(M) we have δ′(q, σ) = ⊥ = δ′(q′, σ), so δ′(q, σ) 'k δ′(q′, σ) for every

letter σ ∈ CM ∪ Σ0 ∪Ker(M), which proves that q 'k+1 q
′.

For the converse, let q 'k+1 q
′ with q, q′ ∈ Q. Consequently, δ′(q, σ) 'k δ′(q, σ)

for all letters σ ∈ CM ∪ Σ0 ∪ Ker(M). Let c ∈ CM be a shallow context. If c is

not a kernel context, then δ(c[q]) = δ′(q, c) 'k δ′(q′, c) = δ(c[q′]), which by in-

duction hypothesis yields δ(c[q]) ∼k δ(c[q′]). Finally, if c is a kernel context, then

δ(c[q]) = δ′(q, c) 'k δ′(q′, c) = δ(c[q′]). It is easy to observe that

'k ∩Ker(M) = {(q, q) | q ∈ Ker(M)} .

Since δ′(q, c) 'k δ′(q′, c) and both are in Ker(M), we can conclude that they are

equal, which in turn proves that δ(c[q]) = δ(c[q′]). Thus, we proved both conditions

of Corollary 14, which yields q ∼k+1 q
′ and concludes the induction.

Example 19. With the existing algorithms we determine the almost equivalence '
on the dfa Red(Mex) of Example 16, which is displayed in Fig. 4:

' = {(q, q) | q ∈ Q′} ∪ {〈β, β′〉, 〈β′, β〉} .

Consequently, Theorem 18 yields that β and β′ are the only di�erent, but almost

equivalent states in Mex of Example 2.
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We already proved in Corollary 9 that Algorithm 1 is correct. Now we complete

its run-time analysis, which leads to our main theorem.

Theorem 20. Hyper-minimization of M can be performed in time O(m log |Q|).

Proof. Algorithm 1 runs in time O(m log |Q|) because we can determine

• the kernel states Ker(M) in O(m) by Lemma 10 and

• the almost equivalence ∼ using Theorem 18 and the almost equivalence '
of Red(M), which can be computed in time O(m′ log n′) by Theorem 13

of [8], where m′ ∈ O(m) is the number of transitions of Red(M) and

n′ ∈ O(|Q|) is the number of states of Red(M).

Overall, this yields the desired run-time complexity, and the correctness of Algo-

rithm 1 was already established in Corollary 9.

5. Relation to minimization

In this section, we demonstrate that dta minimization can be reduced in linear time

to dta hyper-minimization. For dfa this is achieved [8] with a new distinguished

symbol that takes every state back to the initial state, thus making all states kernel

states. Since we do not have a single initial state in a dta, we use a slightly di�erent

construction. Let M = (Q,Σ, δ, F ) be a dta that is not necessarily minimal. For

every α ∈ Σ0, let
−−→
δ(α) be a new symbol of rank 1. Moreover, we use two new symbols

→(0) and 	(1), and a new state ı /∈ Q that acts similar to an initial state in a dfa.

We construct the dta M ′ = (Q ∪ {ı},Σ′, δ′, F ), in which

• Σ′ = Σ ∪ {−→q (1) | α ∈ Σ0, q = δ(α)} ∪ {→(0),	(1)},
• δ′(s) = δ(s) for all s ∈ dom(δ),
• δ′(→) = ı and δ′(	(ı)) = ı, and

• δ′(−→q (ı)) = q for all α ∈ Σ0 and q = δ(α).
• All remaining transitions are unde�ned.

Clearly, M ′ can be constructed in time O(|M |). We illustrate the construction in

Fig. 4. All reachable states inM ′ are kernel states. It is easy to see that such a dta is

hyper-minimal if and only if it is minimal. Consequently, we can hyper-minimizeM ′

to obtain a minimal dta M ′′ for the tree language L(M ′). We can turn this dta M ′′

into a minimal dta for L(M) by dropping all transitions involving the newly intro-

duced symbols. Thus, we have reduced minimization to hyper-minimization, which

shows that the complexity of dta minimization is a lower bound on the complexity

of hyper-minimization.
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