
I F I G

R e s e a r c h

R e p o r t

Institut für Informatik

JLU Gießen

Arndtstraße 2

D-35392 Giessen, Germany

Tel: +49-641-99-32141

Fax: +49-641-99-32149

mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

Institut für Informatik

An n log n Algorithm for

Hyper-Minimizing States in a

(Minimized) Deterministic Automaton

Markus Holzer Andreas Maletti

IFIG Research Report 0902

April 2009

Justus-Liebig-

Universität
Gießen

IFIG Research Report

IFIG Research Report 0902, April 2009

An n log n Algorithm for Hyper-Minimizing States in a
(Minimized) Deterministic Automaton

Markus Holzer1

Institut für Informatik, Universität Giessen

Arndtstraße 2, 35392 Giessen, Germany

and

Andreas Maletti2

Departament de Filologies Romàniques, Universitat Rovira i Virgili

Av. Catalunya 35, 43002 Tarragona, Spain

Abstract. We improve a recent result [A. Badr: Hyper-Minimization in O(n2). In Proc.

CIAA, LNCS 5148, 2008] for hyper-minimized finite automata. Namely, we present an
O(n log n) algorithm that computes for a given finite deterministic automaton (dfa) an al-
most equivalent dfa that is as small as possible—such an automaton is called hyper-minimal.
Here two finite automata are almost equivalent if and only if the symmetric difference of
their languages is finite. In other words, two almost-equivalent automata disagree on accep-
tance on finitely many inputs. In this way, we solve an open problem stated in [A. Badr,
V. Geffert, I. Shipman: Hyper-minimizing minimized deterministic finite state automata.
RAIRO Theor. Inf. Appl. 43(1), 2009] and by Badr. Moreover, we show that minimization
linearly reduces to hyper-minimization, which is good evidence that our algorithm performs
reasonably well.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Mod-
els of Computation—Automata; F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems—Computations on discrete structures;
F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages—Operations

on languages;

Additional Key Words and Phrases: efficient algorithm, finite automata, hyper-
minimization, minimization

1E-mail: markus.holzer@informatik.uni-giessen.de
2E-mail: andreas.maletti@urv.cat

Acknowledgements: Part of the work was done while the first author was at Institut für In-
formatik, Technische Universität München, Boltzmannstraße 3, D-85748 Garching bei München,
Germany. The second author was supported by the Ministerio de Educación y Ciencia (MEC)
grant JDCI-2007-760.

Copyright c© 2009 by the authors

1 Introduction

Early studies in automata theory revealed that nondeterministic and determin-
istic finite automata are equivalent [1]. However, nondeterministic automata can
be exponentially more succinct w.r.t. the number of states [2, 3]. In fact, finite au-
tomata are probably best known for being equivalent to right-linear context-free
grammars and, thus, for capturing the lowest level of the Chomsky-hierarchy,
which is the family of regular languages. Over the last 50 years, a vast litera-
ture documenting the importance of finite automata as an enormously valuable
concept has been developed. Although, there are a lot of similarities between
nondeterministic and deterministic finite automata, one important difference is
that of the minimization problem. The study of this problem also dates back
to the early beginnings of automata theory. It is of practical relevance because
regular languages are used in many applications, and one may like to represent
the languages succinctly. While for nondeterministic automata the computation
of an equivalent minimal automaton is PSPACE-complete [4] and thus highly
intractable, the corresponding problem for deterministic automata is known to
be effectively solvable in polynomial time [5]. An automaton is minimal if ev-
ery other automaton with fewer states disagrees on acceptance for at least one
input.

Minimizing deterministic finite automata (dfa) is based on computing an
equivalence relation on the states of the machine and collapsing states that
are equivalent. Here two states p, q ∈ Q, where Q is the set of states of the
automaton under consideration, are equivalent, if the automaton starting its
computation in state p accepts the same language as the automaton if q is taken
as a start state. As one can show, two equivalent dfa lead to minimized dfa which
are isomorphic up to the renaming of states, and this automaton is minimal.
Hence, minimal dfa are unique. This allows one to give a nice characterization
of minimal dfa: A dfa M is minimal if and only if in M : (i) there do not exist
unreachable states and (ii) there does not exist a pair of different but equivalent
states.

The computation of this equivalence can be implemented in a straightfor-
ward fashion by repeatedly refining the relation starting with a partition that
groups accepting and rejecting states together yielding a polynomial time algo-
rithm of O(n2); compare with [5]. Hopcroft’s algorithm [6] for minimization
slightly improves the naive implementation to a running time of O(m log n)
where m = |Q × Σ| and n = |Q|, where Σ is alphabet of input symbols of
the finite automaton, and is up to now the best known minimization algorithm.
Recent developments have shown that this bound is tight for Hopcroft’s al-
gorithm [7, 8]. Thus, minimization can be seen as a form of lossless compression
that can be done effectively while preserving the accepted language exactly.

Recently, a new form of minimization, namely hyper-minimization was stud-
ied in the literature [9, 10]. There the minimization or compression is done while
giving up the preservation of the semantics of finite automata, i.e., the accepted
language. It is clear that the semantics cannot vary arbitrarily. The authors of [9,
10] allow the accepted language to differ in acceptance on a finite number of in-
puts, which is called almost-equivalence. Thus, hyper-minimization aims to find

2

an almost-equivalent dfa that is as small as possible. Here an automaton is hyper-
minimal if every other automaton with fewer states disagrees on acceptance
for an infinite number of inputs. In [9] basic properties of hyper-minimization
and hyper-minimal dfa are investigated. Most importantly, a characterization
of hyper-minimal dfa is given, which is similar to the characterization of min-
imal dfa mentioned above. Namely, a dfa M is hyper-minimal if and only if
in M : (i) there do not exist unreachable states, (ii) there does not exist a pair
of different but equivalent states, and (iii) there does not exist a pair of differ-
ent but almost-equivalent states, such that at least one of them is a preamble
state. Here a state is called a preamble state if it is reachable from the start
state by a finite number of inputs, only; otherwise the state is called a kernel
state. These properties allow a structural characterization of hyper-minimal dfa.
Roughly speaking, the kernels (all states that are kernel states) of two almost-
equivalent hyper-minimized automata are isomorphic in the standard sense,
and their preambles are also isomorphic, except for acceptance values. Thus, it
turns out that hyper-minimal dfa are not necessarily unique. Nevertheless, it
was shown in [9] that hyper-minimization can be done in time O(m ·n3), where
m = |Σ| and n = |Q|; for constant alphabet size this gives an O(n3) algorithm.
Later, the bound was improved to O(n2) in [10]. In this paper we improve this
upper bound further to O(n log n), and argue that it is reasonably well because
any upper bound t(n) = Ω(n) for hyper-minimization implies that minimiza-
tion can be done within t(n). To this end, we linearly reduce minimization to
hyper-minimization.

The paper is organized as follows: In the next section we introduce the
necessary notations. Then in Section 3 we first describe the background needed
to do hyper-minimization, namely identifying kernel states, computing almost-
equivalent states, and finally merging almost-equivalent states. Then we present
a running example, and show how to implement these three sub-tasks in at most
O(n log n). Finally we summarize our results, state some open problems, and
present the linear reduction from minimization to hyper-minimization.

2 Preliminaries

Let S and T be sets. Their symmetric difference S ⊖ T is (S \ T)∪ (T \S). The
sets S and T are almost-equal if S ⊖ T is finite. A finite set Σ is an alphabet.
By Σ∗ we denote the set of all strings over Σ. The empty string is denoted by ε.
Concatenation of strings is denoted by juxtaposition and |w| denotes the length
of the word w ∈ Σ∗. A deterministic finite automaton (dfa) is a tuple M =
(Q, Σ, q0, δ, F) where Q is a finite set of states, Σ is an alphabet of input symbols,
q0 ∈ Q is the initial state, δ : Q × Σ → Q is a transition function, and F ⊆ Q
is a set of final states. The transition function δ extends to δ : Q × Σ∗ → Q as
follows: δ(q, ε) = q and δ(q, σw) = δ(δ(q, σ), w) for every q ∈ Q, σ ∈ Σ, and
w ∈ Σ∗. The dfa M recognizes the language L(M) = {w ∈ Σ∗ | δ(q0, w) ∈ F }.

Two states p, q ∈ Q are equivalent, denoted by p ≡ q, if δ(p, w) ∈ F if and
only if δ(q, w) ∈ F for every w ∈ Σ∗. The dfa M is minimal if it does not have
equivalent states. The name ‘minimal’ stems from the fact that no dfa with less
states also recognizes L(M) if M is minimal. It is known that for M an equivalent

3

Algorithm 1 Overall structure of the hyper-minimization algorithm.
Require: a dfa M

M ← Minimize(M) // Hopcroft’s algorithm; O(m log n)
2: K ← ComputeKernel(M) // compute the kernel states; see Section 3.1

∼ ← AEquivalentStates(M) // compute almost-equivalence; see Section 3.2
4: M ← MergeStates(M, K,∼) // merge almost-equivalent states; O(m)

return M

minimal dfa can efficiently be computed using Hopcroft’s algorithm [6], which
runs in time O(m log n) where m = |Q × Σ| and n = |Q|.

In the following, let M = (Q, Σ, q0, δ, F) be a minimal dfa. Let us recall some
notions from [9]. A state q ∈ Q is a kernel state if q = δ(q0, w) for infinitely
many w ∈ Σ∗. Otherwise q is a preamble state. We denote the set of kernel
states by Ker(M) and the set of preamble states by Pre(M). For states p, q ∈ Q
we write p → q if there exists w ∈ Σ+ such that δ(p, w) = q. The states p and q
are strongly connected, denoted by p ↔ q, if p → q and q → p. Note that
strongly connected states are also a kernel states since both are reachable by
the minimality of M . Finally, q ∈ Q is a center state if q ↔ q.

3 Hyper-minimization

As already remarked, minimization yields an equivalent dfa that is as small as
possible. It can thus be considered a form of lossless compression. Sometimes the
compression rate is more important than the preservation of the semantics. This
leads to the area of lossy compression where the goal is to compress even further
at the expense of errors (typically with respect to some error profile). Our error
profile is very simple: We allow a finite number of errors. Consequently, we call
two dfa M1 and M2 almost-equivalent if L(M1) and L(M2) are almost-equal. A
dfa that admits no smaller almost-equivalent dfa is called hyper-minimal. Hyper-
minimization [9, 10] aims to find an almost-equivalent hyper-minimal dfa.

The contributions [9, 10] report hyper-minimization algorithms for M that
run in time O(n3) and O(n2), respectively. Note that |Σ| is assumed to be
constant in those contributions. Our aim here is to develop a hyper-minimization
algorithm that runs in time O(n log n) under the same assumptions.

Roughly speaking, minimization aims to identify equivalent states and hyper-
minimization aims to identify almost-equivalent states, which we define next.
Recall that M = (Q, Σ, q0, δ, F) is a minimal dfa. Let m = |Q×Σ| and n = |Q|.

Definition 1 (cf. [9, Definition 2.2]). For all states p, q ∈ Q, we say that
p and q are almost-equivalent, denoted by p ∼ q, if there exists k ≥ 0 such that
δ(p, w) = δ(q, w) for every w ∈ Σ∗ with |w| ≥ k.

Let us present the overall structure of the hyper-minimization algorithm
of [10] in Algorithm 1. Note that compared to [10], we exchanged lines 2 and 3.
Minimize refers to classical minimization. Hopcroft’s algorithm implements it
and runs in time O(m log n) [6]. The procedure MergeStates is described in [9,
10], where it is also proved that it runs in time O(m). To make the paper self-
contained, we present their algorithm (see Algorithm 2) and the corresponding

4

results next. Note that merging a state p into another state q denotes the usual
procedure of redirecting (in M) all incoming transitions of p to q. If p was the
initial state, then q is the new initial state. Clearly, the state p can be deleted.

Algorithm 2 Merging almost-equivalent states.
Require: a minimal dfa M , its kernel states K, and its almost-equivalent states ∼

for all B ∈ (Q/∼) do

2: S ← B ∩ K // S contains the kernel states of the block B
if S 6= ∅ then

4: select q ∈ S // select an arbitrary kernel state q from B
else

6: select q ∈ B // if no such kernel state exists, pick any state q of B
for all p ∈ B \ S do

8: merge p into q // merge all preamble states of the block into q
return M

Theorem 2 ([9, Section 4]). If the requirements of Algorithm 2 are met, then
it returns in time O(m) a hyper-minimal dfa that is almost-equivalent to M .

Consequently, if we can implement: (i) ComputeKernel and (ii) AEquiv-

alentStates in time O(m log n), then we obtain a hyper-minimization algo-
rithm that runs in time O(m log n). The next two sections will show suitable
implementations for both procedures.

3.1 Identify kernel states

As we have seen in Algorithm 2, kernel states play a special role because we
never merge two kernel states. It was already shown in [9, 10], how to identify
the kernel states in time O(mn). It turns out that the kernel states can easily
be computed using a well-known algorithm due to Tarjan [11].

Theorem 3. Ker(M) can be computed in time O(m).

Proof. Using Tarjan’s algorithm [11] (or equivalently, Gabow’s algorithm [12,
13] or Kosaraju’s algorithm [14, 15]) we can identify the strongly connected
components in time O(m + n). Thus, we identified the center states. Another
depth-first search can then mark all states q such that p → q for some center
state p in time O(m). Clearly, such a marked state is a kernel state and each
kernel state is marked because for each kernel state q ∈ Ker(M) there exists a
center state p ∈ Q such that p → q by [9, Lemma 2.12]. ⊓⊔

3.2 Identify almost-equivalent states

The identification of almost-equivalent states will be slightly more difficult. We
improve the strategy of [9], which runs in time O(mn2), by avoiding pairwise
comparisons, which yields a factor n, and by merging states with a specific strat-
egy, which reduces a factor n to log n. Since M is a minimal dfa, the relation ∼

5

Algorithm 3 Algorithm computing ∼.
Require: minimal dfa M = (Q, Σ, q0, δ, F)

for all q ∈ Q do

2: π(q) ← {q} // initial block of q contains just q itself

h ← ∅ // hash map of type h : Q|Σ| → Q
4: I ← Q // states that need to be considered

P ← Q // set of current states

6: while I 6= ∅ do

q ← RemoveHead(I) // remove state from I
8: succ ← (δ(q, σ) | σ ∈ Σ) // compute vector of successors using current δ

if HasValue(h, succ) then

10: p ← Get(h, succ) // retrieve state in bucket succ of h

if |π(p)| ≥ |π(q)| then

12: Swap(p, q) // exchange roles of p and q

P ← P \ {p} // state p will be merged into q
14: I ← (I \ {p}) ∪ { r ∈ P | ∃σ : δ(r, σ) = p } // add predecessors of p in P to I

δ ← MergeState(δ, p, q) // merge states p and q in δ; q survives
16: π(q) ← π(q) ∪ π(p) // p and q are almost-equivalent

h ← Put(h, succ, q) // store q in h under key succ
18: return π

coincides with the relation defined in [9, Definition 2.2]. Thus, we know that ∼
is a congruence relation by [9, Facts 2.5–2.7].

Let us attempt to explain the algorithm. The vector (δ(q, σ) | σ ∈ Σ) is
called the follow-vector of q. The algorithm keeps a set I of states that need to
be processed and a set P of states that are still useful. Both sets are initially Q
and the hash map h is initially empty. The algorithm then iteratively processes
states of I and computes their follow-vector. Since h is initially empty, the first
follow-vector will simply be stored in h.

The algorithm proceeds in this fashion until it finds a state, whose follow-
vector is already stored in h. It then extracts the state with the same vector
from h and compares the sizes of the blocks in π that the two states belong to.
Suppose that p is the state that belongs to the smaller block and q is the state

6

F J M Q

B E I L P R

A D H

C G

Fig. 1. An example automaton with a-transitions (straight lines) and b-transitions (dashed
lines). The initial state is A.

that belongs to the larger block. Then we merge p into q and remove p from P
because it is now useless. In addition, we update the block of q to include the
block of p and add all states that have transitions leading to p to I because
their follow-vectors have changed due to the merge. The algorithm repeats this
process until the set I is empty and all states have been processed.

Example 4. Consider the minimal dfa of Figure 1 (see [9, Figure 2]). Let us show
the run of Algorithm 3 on it. We present a protocol (for line 10) in Table 1. At
then end of the algorithm the hash map contains the following entries:

(

B
C

)

→ A

(

F
D

)

→ B

(

H
G

)

→ C

(

I
H

)

→ D

(

I
F

)

→ E

(

J
E

)

→ F

(

L
H

)

→ G

(

M
I

)

→ H

(

L
J

)

→ I

(

M
J

)

→ J

(

P
M

)

→ L

(

Q
M

)

→ M

(

P
R

)

→ P

(

R
R

)

→ R

(

L
I

)

→ I

(

I
E

)

→ F

(

I
I

)

→ C

(

I
G

)

→ E

(

F
C

)

→ B .

From Table 1 we obtain the partition induced by ∼, which is

{{A}, {B}, {C, D}, {E}, {F}, {G, H, I, J}, {L, M}, {P, Q}, {R}} .

This coincides with the partition obtained in [9, Figure 2]. Since E, F , I, J , L,
M , P , Q, and R are kernel states, we can only merge C into D and merge G
and H into I. The result of those merges is shown in Figure 2. The obtained
dfa coincides with the one of [9, Figure 3].

Next, let us look at the time complexity before we turn to correctness. In
this respect, line 14 is particularly interesting because it might add to the set I,

7

Table 1. Run of Algorithm 3 (at line 10) on the automaton of Figure 1.

I Q \ P q p π (singleton blocks not shown)

{B, . . . , R} ∅ A
. . . ∅
{R} ∅ P Q
{M} {Q} R {P, Q}
∅ {Q} M L {P, Q}

{H} {M, Q} J I {L, M}, {P, Q}
{F, I} {J, M, Q} H {I, J}, {L, M}, {P, Q}
{I} {J, M, Q} F {I, J}, {L, M}, {P, Q}

{C, D, G} {J, M, Q} I H {I, J}, {L, M}, {P, Q}
{D, G} {H, J, M, Q} C {H, I, J}, {L, M}, {P, Q}
{G} {H, J, M, Q} D C {H, I, J}, {L, M}, {P, Q}
{B} {D, H, J, M, Q} G I {C, D}, {H, I, J}, {L, M}, {P, Q}
∅ {D, G, H, J, M, Q} B {C, D}, {G, H, I, J}, {L, M}, {P, Q}

which controls the loop. Our strategy that determines which states to merge
will realize the reduction of a factor n to just log n. To simplify the argument,
we will call δ(q, σ) a transition and we consider it the same transition even if
the value of δ(q, σ) changes in the course of the algorithm.

Proposition 5. The following properties of Algorithm 3 hold whenever line 7
is executed: (i) I ⊆ P and (ii) {π(p) | p ∈ P } is a partition of Q.

Moreover, let us consider p and q after the execution of line 10. In essence, we
would like to show that p 6= q. We thus need to show that (δ(q, σ) | σ ∈ Σ) 6= α
for every α ∈ h−1(q) whenever line 8 is executed. Clearly, when line 8 is first
executed with our particular q, then h−1(q) = ∅ and thus the property trivially
holds. Moreover, q is then no longer in I. It can be added to I in line 14, but
only if δ(q, σ) /∈ P for some σ ∈ Σ. Then it is changed in line 15 such that
δ(q, σ) ∈ P after its execution. Thus, all stored values h−1(q) have at least one
component that is not in P , whereas δ(q, σ) ∈ P for every σ ∈ Σ after execution
of line 15. Consequently, in line 10 the retrieved state p cannot be q itself.

Lemma 6. For every r ∈ Q and σ ∈ Σ, the transition δ(r, σ) is considered at
most (log n) times in lines 14 and 15 during the full execution of Algorithm 3.

Proof. Suppose that p = δ(r, σ) in line 14. Moreover, |π(p)| < |π(q)| by lines
11–12. Then line 15 redirects the transition δ(r, σ) to q; i.e., δ(r, σ) = q after
line 15. Moreover, |π(q)| > 2 · |π(p)| after the execution of line 16 because p 6= q
as already argued, and thus, π(p) ∩ π(q) = ∅ by Proposition 5. Moreover, by
the same proposition |π(q)| ≤ n for every q ∈ Q. Consequently, δ(r, σ) can be
considered at most (log n) times in lines 14 and 15. ⊓⊔

Theorem 7. Algorithm 3 can be implemented to run in time O(m log n).

Proof. Clearly, we assume that all operations except for those in lines 14 and 15
to execute in constant time. Then lines 1–5 execute in time O(n). Next we
will prove that the loop in lines 6–17 executes at most O(m · log n) times.
By Proposition 5 we have I ⊆ P . Now let us consider a particular state q ∈

8

F J M Q

B E I L P R

A D

Fig. 2. One resulting hyper-minimal automaton with a-transitions (straight lines) and b-
transitions (dashed lines). The initial state is A.

Q. Then q ∈ I initially and it has |Σ| outgoing transitions. By Lemma 6,
every such transition is considered at most (log n) times in line 14, which yields
that q is added to I. Consequently, the state q can be chosen in line 10 at
most (1 + |Σ| · log n) times. Summing over all states of Q, we obtain that the
loop in lines 6-17 can be executed at most (n + m · log n) times. Since all lines
apart from lines 14 and 15 are assumed to execute in constant time, this proves
the statement for all lines apart from 14 and 15. By Lemma 6 every transition is
considered at most (log n) times in those two lines. Since there are m transitions
in M and each consideration of a transition can be assumed to run in constant
time, we obtain that lines 14 and 15 globally (i.e., including all executions of
those lines) execute in time O(m log n), which proves the statement. ⊓⊔

Finally, we need to prove that Algorithm 3 is correct. By Proposition 5,
{π(p) | p ∈ P } is a partition of Q whenever line 7 is executed. Let ≃ be the
induced equivalence relation. Next we prove that ≃ is a congruence.

Lemma 8. Whenever line 7 is executed, π induces a congruence.

Proof. We prove this by induction. Clearly, π induces a congruence when line 7
is executed first. Let us consider line 16 where π is changed. By the induction
hypothesis, π induces a congruence before execution of this line. Denote it by ≃.
Moreover, p and q are clearly such that δ(p, σ) = δ(q, σ) for every σ ∈ Σ (using
the δ at that point). It is obvious that only states that are equivalent in ≃ have
been merged in the past. Thus, δ(p, σ) ≃ δ(q, σ) in the original δ. Consequently,
also π after the execution of line 16 induces a congruence. ⊓⊔

This proves that we compute a congruence. Now we can use [9, Lemma 2.10]
to prove that all states in a block of the returned partition are almost-equivalent.

Theorem 9. The partition returned by Algorithm 3 induces ∼.

Proof. Let ≃ be the congruence (see Lemma 8) returned by Algorithm 3. For
every σ ∈ Σ and p, q ∈ Q that are merged in line 15 we have δ(p, σ) ∼ δ(q, σ).
Thus, p ∼ q by [9, Lemma 2.10], which proves ≃ ⊆ ∼. For the converse, let p ∼ q.
Clearly, δ is the transition function of M/≃ at the end of the algorithm. Denote

9

the transition function of M/≃ by δ′ and the original transition function of M
by δ. Since p ∼ q, there exists k ≥ 0 such that δ(p, w) = δ(q, w) for every w ∈ Σ∗

with |w| ≥ k. Clearly, this yields that δ′([p], w) = δ′([q], w) for every such w. This
implies the existence of B, D ∈ (Q/≃) such that δ′(B, σ) = δ′(D, σ) for every
σ ∈ Σ. However, an easy proof shows that the algorithm does not terminate as
long as there are distinct states B and D such that δ′(B, σ) = δ′(D, σ) for every
σ ∈ Σ. Consequently, p ≃ q, which proves the statement. ⊓⊔

Theorem 10. For every dfa we can obtain a almost-equivalent, hyper-minimal
dfa in time O(m log n).

4 Conclusions

We have designed an O(m log n) algorithm, where m = |Q×Σ| and n = |Q|, that
computes a hyper-minimized dfa from a given dfa, which may have fewer states
than the classical minimized dfa. Its accepted language is almost-equivalent to
the original one; i.e., differs in acceptance on a finite number of inputs only.
Since hyper-minimization is a very new field of research, most of the standard
questions related to descriptional complexity such as, e.g., nondeterministic au-
tomata to dfa conversion w.r.t. hyper-minimality, are problems of further re-
search.

Finally, let’s argue that minimization linearly reduces to hyper-minimization.
This is seen as follows: Let M = (Q, Σ, q0, δ, F) be a dfa. If L(M) = ∅, which
can be verified in time linear in the number of states, then we are already
done since the single state hyper-minimal dfa accepting the emptyset is also
minimal. Now let L(M) 6= ∅ and assume # to be a new input symbol not
contained in Σ. We construct a dfa M ′ = (Q, Σ ∪ {#}, q0, δ

′, F) by δ′(p, σ) =
δ(p, σ) for p ∈ Q and σ ∈ Σ and δ′(p, #) = q0 for p ∈ Q. Observe, that by
construction M ′ consists of kernel states only. Thus, hyper-minimizing M ′ leads
to a dfa M ′′ that is unique because for two almost-equivalent hyper-minimized
automata the kernels are isomorphic to each other [9, Theorem 3.5]—compare
this with the characterization of minimal and hyper-minimal dfa mentioned
in the Introduction. Thus, M ′′ is a minimal dfa accepting L(M ′). Then it is
easy to see that taking M ′′ and deleting the #-transitions yields a minimal dfa
accepting L(M). Hence, minimization linearly reduces to hyper-minimization.
Thus, our algorithm performs reasonably well, especially in the light of the recent
developments for Hopcroft’s state minimization algorithm, which show that
the O(n log n) bound is tight for that algorithm [7] even under any possible
implementation [8].

References

1. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev.
3 (1959) 114–125

2. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and form
al systems. In: Annual Symposium on Switching and Automata Theory, IEEE Computer
Society Press (1971) 188–191

10

3. Moore, F.R.: On the bounds for state-set size in the proofs of equi valence between deter-
ministic, nondeterministic, and two-way finite automata. IEEE Transaction on Computing
C-20 (1971) 1211–1219

4. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM J. Comput. 22(6)
(December 1993) 1117–1141

5. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Com-
putation. Addison Wesley (1979)

6. Hopcroft, J.E.: An n log n algorithm for minimizing states in a finite automaton. In:
Theory of Machines and Computations. Academic Press (1971) 189–196

7. Berstel, J., Caston, O.: On the complexity of Hopcroft’s state minimization algorithm.
In: Conference on Implementation and Application of Automata (CIAA). Number 3317
in LNCS, Springer (2004) 35–44

8. Castiglione, G., Restivo, A., Sciotino, M.: Hopcroft’s algorithm and cyclic automata. In:
Conference on Languages, Automata Theory and Applications (LATA). Number 5196 in
LNCS, Springer (2008) 172–183

9. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite state
automata. RAIRO Theor. Inf. Appl. 43(1) (2009) 69–94

10. Badr, A.: Hyper-minimization in O(n2). In: Conference on Implementation and Applica-
tion of Automata (CIAA). Number 5148 in LNCS, Springer (2008) 223–231

11. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2)
(1972) 146–160

12. Cheriyan, J., Mehlhorn, K.: Algorithms for dense graphs and networks. Algorithmica
15(6) (1996) 521–549

13. Gabow, H.N.: Path-based depth-first search for strong and biconnected components. Inf.
Process. Lett. 74(3–4) (2000) 107–114

14. Kosaraju, S.R.: Strong-connectivity algorithm. unpublished manuscript (1978)
15. Sharir, M.: A strong-connectivity algorithm and its applications in data ow analysis.

Computers and Mathematics with Applications 7(1) (1981) 67–72

11

