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Abstract. Simulations of weighted tree automata (wta) are considered.
It is shown how such simulations can be decomposed into simpler func-
tional and dual functional simulations also called forward and backward
simulations. In addition, it is shown in several cases (fields, commuta-
tive rings, Noetherian semirings, semiring of natural numbers) that all
equivalent wta M and N can be joined by a finite chain of simulations.
More precisely, in all mentioned cases there is a single wta that simulates
both M and N . Those results immediately yield decidability of equiv-
alence provided that the semiring is finitely (and effectively) presented.

1 Introduction
Weighted tree automata are widely used in applications such as model check-
ing [1] and natural language processing [21]. They finitely represent mappings,
called tree series, that assign a weight to each tree. For example, a probabilistic
parser would return a tree series that assigns to each parse tree its likelihood.
Consequently, several toolkits [20,24,10] implement weighted tree automata.

The notion of simulation that is used in this paper is a generalization of the
simulations for unweighted and weighted (finite) string automata of [6,15]. The
aim is to relate structurally equivalent automata. The results of [6, Section 9.7]
and [22] show that two unweighted string automata (i.e., potentially nondeter-
ministic string automata over the Boolean semiring) are equivalent if and only
if they can be connected by a finite chain of relational simulations, and that
in fact functional and dual functional simulations are sufficient. Simulations for
weighted string automata (wsa) are called conjugacies in [3,4], where it is shown
that for all fields, many rings including the ring ZZ of integers, and the semi-
ring IN of natural numbers, two wsa are equivalent if and only if they can be
connected by a finite chain of simulations. It is also shown that even a finite
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chain of functional (covering) and dual functional (co-covering) simulations is
sufficient. The origin of those results can be traced back to the pioneering work
of Schützenberger in the early 60’s, who proved that every wsa over a field is
equivalent to a minimal wsa that is simulated by every trim equivalent wsa [5].
Relational simulations of wsa are also studied in [9], where they are used to
reduce the size of wsa. The relationship between functional simulations and the
Milner-Park notion of bisimulation [25,26] is discussed in [6,9].

In this contribution, we investigate simulations for weighted (finite) tree au-
tomata (wta). Schützenberger’s minimization method was extended to wta
over fields in [2,8]. In addition, relational and functional simulations for wta are
probably first used in [12,13,18]. Moreover, simulations can be generalized to
presentations in algebraic theories [6], which seems to cover all mentioned in-
stances. Here, we extend and improve the results of [3,4] to wta. In particular,
we show that two wta over a commutative ring, Noetherian semiring, or the
semiring IN are equivalent if and only if they are connected by a finite chain
of simulations. Moreover, we discuss when the simulations can be replaced by
functional and dual functional simulations, which are efficiently computable [18].
Such results are important because they immediately yield the decidability of
equivalence provided that the semiring is finitely and effectively presented.

2 Preliminaries

The set of nonnegative integers is IN. For every k ∈ IN, the set {i ∈ IN | 1 ≤ i ≤ k}
is simply denoted by [k]. We write |A| for the cardinality of the set A. A semiring
is an algebraic structure A = (A,+, ·, 0, 1) such that (A,+, 0) and (A, ·, 1) are
monoids, of which the former is commutative, and · distributes both-sided over
finite sums (i.e., a · 0 = 0 = 0 · a for every a ∈ A and a · (b + c) = ab + ac and
(b + c) · a = ba + ca for every a, b, c ∈ A). The semiring A is commutative if
(A, ·, 1) is commutative. It is a ring if there exists an element −1 ∈ A such that
1 + (−1) = 0. The set U is the set {a ∈ A | ∃b ∈ A : ab = 1 = ba} of (multiplica-
tive) units. The semiring A is a semifield if U = A\{0}; i.e., for every a ∈ A there
exists a multiplicative inverse a−1 ∈ A such that aa−1 = 1 = a−1a. A field is a
semifield that is also a ring. Let 〈B〉+ = {b1+· · ·+bn | n ∈ IN, b1, . . . , bn ∈ B} for
every B ⊆ A. If A = 〈B〉+, then A is additively generated by B. The semiring A
is equisubtractive if for every a1, a2, b1, b2 ∈ A with a1 + b1 = a2 + b2 there exist
c1, c2, d1, d2 ∈ A such that (i) a1 = c1+d1, (ii) b1 = c2+d2, (iii) a2 = c1+c2, and
(iv) b2 = d1 + d2. It is zero-sum free (zero-divisor free, respectively) if a+ b = 0
(a · b = 0, respectively) implies 0 ∈ {a, b} for every a, b ∈ A. Finally, it is positive
if it is both zero-sum and zero-divisor free. Clearly, any nontrivial (i.e., 0 6= 1)
ring is not zero-sum free, and any semifield is zero-divisor free. An infinitary
sum operation

∑
is a family (

∑
I)I such that

∑
I : AI → A. We generally write∑

i∈I ai instead of
∑
I(ai)i∈I . The semiring A together with the infinitary sum

operation
∑

is complete [11,17,19] if for all index sets I and (ai)i∈I ∈ AI

–
∑
i∈I ai = aj1 + aj2 if I = {j1, j2} with j1 6= j2,

–
∑
i∈I ai =

∑
j∈J
(∑

i∈Ij ai
)

for every partition (Ij)j∈J of I, and
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– a ·
(∑

i∈I ai
)

=
∑
i∈I aai and

(∑
i∈I ai

)
· a =

∑
i∈I aia for every a ∈ A.

An A-semimodule is a commutative monoid (B,+, 0) together with an action
· : A×B → B, written as juxtaposition, such that for every a, a′ ∈ A and b, b′ ∈ B
we have (i) (a+ a′)b = ab+ a′b, (ii) a(b+ b′) = ab+ ab′, (iii) 0b = 0, (iv) 1b = b,
and (v) (a · a′)b = a(a′b). The semiring A is Noetherian if all subsemimodules
of every finitely-generated A-semimodule are again finitely-generated.

In the following, we identify index sets of equal cardinality. Let X ∈ AI1×J1
and Y ∈ AI2×J2 for finite sets I1, I2, J1, J2. We use upper-case letters (like C,
D, E, X, Y ) for matrices and the corresponding lower-case letters for their
entries. The matrix X is relational if X ∈ {0, 1}I1×J1 . Clearly, a relational X
corresponds to a relation ρX ⊆ I1×J1 (and vice versa) by (i, j) ∈ ρX if and only
if xij = 1. Moreover, a relational matrix X is functional, surjective, or injective
if ρX has this property. As usual, we denote the transpose of X by XT, and we
call X nondegenerate if it has no rows or columns of entirely zeroes. A diagonal
matrix X is such that xij = 0 for every i 6= j. Finally, the matrix X is invertible
if there exists a matrix X−1 such that XX−1 = I = X−1X where I is the
unit matrix. The Kronecker product X ⊗ Y ∈ A(I1×I2)×(J1×J2) is such that
(X ⊗ Y )i1i2,j1j2 = xi1j1yi2j2 for every i1 ∈ I1, i2 ∈ I2, j1 ∈ J1, and j2 ∈ J2. We
let X0,⊗ = (1) and Xi+1,⊗ = Xi,⊗ ⊗X for every i ∈ IN.

Finally, let us move to trees. A ranked alphabet is a finite set Σ together
with a mapping rk: Σ → IN. We often just write Σ for a ranked alphabet and
assume that the mapping rk is implicit. We write Σk = {σ ∈ Σ | rk(σ) = k}
for the set of all k-ary symbols. The set of Σ-trees is the smallest set TΣ such
that σ(t1, . . . , tk) ∈ TΣ for all σ ∈ Σk and t1, . . . , tk ∈ TΣ . A tree series is a
mapping ϕ : TΣ → A. The set of all such tree series is denoted by A〈〈TΣ〉〉. For
every ϕ ∈ A〈〈TΣ〉〉 and t ∈ TΣ , we often write (ϕ, t) instead of ϕ(t).

A weighted tree automaton (over A), µk(σ)

νk(σ)

Xk,⊗ X

F

G

Fig. 1. Illustration of simulation.

for short: wta, is a system (Σ,Q, µ, F )
with an input ranked alphabet Σ, a finite
set Q of states, transitions µ = (µk)k∈IN
such that µk : Σk → AQ

k×Q for every
k ∈ IN, and a final weight vector F ∈ AQ.
Next, let us introduce the semantics ‖M‖
of the wta M . We first define the map-
ping hµ : TΣ → AQ for every σ ∈ Σk and
t1, . . . , tk ∈ TΣ by hµ(σ(t1, . . . , tk)) =

(
hµ(t1)⊗ · · · ⊗ hµ(tk)

)
· µk(σ), where the

final product · is the classical matrix product. Then (‖M‖, t) = hµ(t)F for every
t ∈ TΣ , where the product is the usual inner (dot) product. The wta M is trim
if every state is accessible and co-accessible in the Boolean wta obtained by
replacing every nonzero weight by 1.

3 Simulation

Let us introduce the main notion of the paper. From now on, letM = (Σ,Q, µ, F )
and N = (Σ,P, ν,G) be wta. Then M simulates N (cf., [6,15], [3, Def. 1], and [12,
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Def. 35]) if there is X ∈ AQ×P such that F = XG and µk(σ)X = Xk,⊗ ·νk(σ) for
every σ ∈ Σk. The matrix X is called transfer matrix, and we write M →X N
if M simulates N with transfer matrix X. Note that Xk,⊗

i1···ik,j1···jk =
∏k
`=1 xi`,j` .

We illustrate the notion of simulation in Fig. 1. If M →X M ′ and M ′ →Y N ,
then M →XY N . Moreover, if M →X N , then M and N are equivalent.

Theorem 1. If M simulates N , then M and N are equivalent.

Next, we prepare the result for functional simulations. To this end, we first
need to prove in which cases the transfer matrix is nondegenerate.

Lemma 2. Let M and N be trim and M →X N . If (i) X is functional or (ii) A
is positive, then X is nondegenerate.

Now we relate functional simulation to forward simulation [18, Def. 1]. A sur-
jective mapping ρ : Q→ P is a forward simulation from M to N if (i) Fq = Gρ(q)
for every q ∈ Q and (ii)

∑
q∈ρ−1(p) µk(σ)q1···qk,q = νk(σ)ρ(q1)···ρ(qk),p for every

p ∈ P , σ ∈ Σk, and q1, . . . , qk ∈ Q. We say that M forward simulates N , written
M � N , if there exists a forward simulation from M to N . Similarly, we can re-
late backward simulation [18, Def. 16] to dual functional simulation. A surjective
function ρ : Q→ P is a backward simulation from M to N if

∑
q∈ρ−1(p) Fq = Gp

for every p ∈ P and
∑
q1∈ρ−1(p1),...,qk∈ρ−1(pk)

µk(σ)q1···qk,q = νk(σ)p1···pk,ρ(q) for
every q ∈ Q, σ ∈ Σk, and p1, . . . , pk ∈ P . We say that M backward simulates N ,
written M � N , if there exists a backward simulation from M to N . Using
Lemma 2 we obtain the following statement.

Lemma 3. Let N be trim. Then M � N if and only if there exists a functional
transfer matrix X such that M →X N . Moreover, M � N if and only if there
exists a transfer matrix X such that XT is functional and N →X M .

Next, we recall two important matrix decomposition results of [3].

Lemma 4. If A = 〈U〉+, then for every X ∈ AQ×P there exist matrices C,E,D
such that (i) X = CED, (ii) CT and D are functional, and (iii) E is an in-
vertible diagonal matrix. If (a) X is nondegenerate or (b) A has (nontrivial)
zero-sums, then CT and D can be chosen to be surjective.

Lemma 5. Let A be equisubtractive. Moreover, let R ∈ AQ and C ∈ AP be
such that

∑
q∈Q rq =

∑
p∈P cp. Then there exists a matrix X ∈ AQ×P with row

sums R and column sums C.

Using all the previous results, we can now obtain the main result of this
section, which shows how we can decompose simulation into functional and dual
functional simulation (or: forward and backward simulation, respectively).

Theorem 6. Let A be equisubtractive with A = 〈U〉+. Then M →X N if
and only if there exist two wta M ′ and N ′ such that (i) M →C M ′ where
CT is functional, (ii) M ′ →E N ′ where E is an invertible diagonal matrix, and
(iii) N ′ →D N where D is functional. If M and N are trim, then M ′ �M and
N ′ � N .
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Proof. Clearly, M →C M ′ →E N ′ →D N , which proves that M →CED N .
For the converse, Lemma 4 shows that there exist matrices C, E, and D such
thatX = CED, CT andD are functional matrices, and E ∈ AI×I is an invertible
diagonal matrix. Finally, let ϕ : I → Q and ψ : I → P be the functions associated
to CT and D.

It remains to determine the wta M ′ and N ′. µk(σ)

νk(σ)

µ′k(σ)

ν′k(σ)

Ck,⊗ C

Ek,⊗ E

Dk,⊗ D

Y

Fig. 2. Relations between the
matrices.

Let M ′ = (Σ, I, µ′, F ′) and N ′ = (Σ, I, ν′, G′)
with G′ = DG and F ′ = EDG. Then we have
CF ′ = CEDG = XG = F . Thus, it remains
to specify µ′k(σ) and ν′k(σ) for every σ ∈ Σk.

To this end, we determine a matrix Y ∈ AI
k×I

such that we have (1) Ck,⊗ · Y = µk(σ)CE and
(2) Y D = Ek,⊗ ·Dk,⊗ · νk(σ). Let µ′k(σ) = Y E−1

and ν′k(σ) = (Ek,⊗)−1 ·Y . Consequently, we have
µk(σ)C = Ck,⊗ · µ′k(σ), µ′k(σ)E = Ek,⊗ · ν′k(σ),
and ν′k(σ)D = Dk,⊗ · νk(σ). These equalities are
displayed in Fig. 2 (right).

Finally, we need to specify the matrix Y . For
every q ∈ Q and p ∈ P , let Iq = ϕ−1(q) and
Jp = ψ−1(p). Obviously, Y can be decomposed
into disjoint (not necessarily contiguous) subma-
trices Yq1···qk,p ∈ A(Iq1×···×Iqk )×Jp with q1, . . . , qk ∈ Q and p ∈ P . Then prop-
erties (1) and (2) hold if and only if for every q1, . . . , qk ∈ Q and p ∈ P the
following two conditions hold:

1. For every i ∈ I such that ψ(i) = p, the sum of the i-column of Yq1···qk,p is
µk(σ)q1···qk,ϕ(i) · ei,i.

2. For all i1, . . . , ik ∈ I such that ϕ(ij) = qj for every j ∈ [k], the sum of the

(i1, . . . , ik)-row of Yq1···qk,p is
∏k
j=1 eij ,ij · νk(σ)ψ(i1)···ψ(ik),p.

Those two conditions are compatible because∑
i∈I

ψ(i)=p

µk(σ)q1···qk,ϕ(i) · ei,i =
(
µk(σ)CED

)
q1···qk,p

=
(
µk(σ)X

)
q1···qk,p

=
(
Xk,⊗ · νk(σ)

)
q1···qk,p

=
(
Ck,⊗ · Ek,⊗ ·Dk,⊗ · νk(σ)

)
q1···qk,p

=
∑

i1,...,ik∈I
∀j∈[k] : ϕ(ij)=qj

( k∏
j=1

eij ,ij

)
· νk(σ)ψ(i1)···ψ(ik),p .

Consequently, the row and column sums of the submatrices Yq1···qk,p are con-
sistent, which yields that we can determine all the submatrices (and thus the
whole matrix) by Lemma 5. If M and N are trim, then either (a) A is zero-sum
free (and thus positive because it is additively generated by its units), in which
case X is nondegenerate by Lemma 2, or (b) A has nontrivial zero-sums. In both
cases, Lemma 4 shows that the matrices CT and D are surjective, which yields
the additional statement by Lemma 3. ut
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The decomposition of simulations into forward and backward simulation is
effective and has computational benefits because it is shown in [18] that forward
and backward simulation can be efficiently computed. To keep the presentation
simple, we will continue to deal with simulation in the following. However, in
many of the following cases they can be decomposed.

4 Category of Simulations

In this section our aim is to show that several well-known constructions of wta
are functorial : they may be extended to simulations in a functorial way. Below we
will only deal with the sum, Hadamard product, σ0-product, and σ0-iteration
(cf. [14]). Scalar OI-substition, † (the dagger operation) [7], homomorphism,
quotient, and top-concatenation [14] may be covered in a similar fashion.

In this section, let A be commutative. Moreover, let M = (Σ,Q, µ, F ),
M ′ = (Σ,Q′, µ′, F ′), and M ′′ = (Σ,Q′′, µ′′, F ′′) be wta. We already remarked
that, if M →X M ′ and M ′ →Y M ′′, then M →XY M ′′. Moreover, M →I M
with the unit matrix I ∈ AQ×Q. Thus, wta over the alphabet Σ form a cate-
gory SimΣ .

In the following, let M = (Σ,Q, µ, F ) and N = (Σ,P, ν,G) be wta such that
Q ∩ P = ∅. The sum M + N of M and N is the wta (Σ,Q ∪ P, κ,H) where
H = 〈F,G〉 and

κk(σ)q1···qk,q = (µk(σ) + νk(σ))q1···qk,q =


µk(σ)q1···qk,q if q, q1, . . . , qk ∈ Q
νk(σ)q1···qk,q if q, q1, . . . , qk ∈ P
0 otherwise.

for all σ ∈ Σk and q, q1, . . . , qk ∈ Q∪P . It is known that ‖M+N‖ = ‖M‖+‖N‖.
Next, we extend the sum construction to simulations. To this end, let M →X M ′

andN →Y N ′ withN ′ = (Σ,P ′, ν′, G′). The sumX+Y ∈ A(Q∪P )×(Q′∪P ′) of the
transfer matrices X and Y is X+Y = (X 0

0 Y ). Then (M +N)→X+Y (M ′+N ′).

Proposition 7. The function +, which is defined on wta and transfer matrices,
is a functor Sim2

Σ → SimΣ.

Next, we treat the remaining operations. Let σ0 be a distinguished symbol
in Σ0. The σ0-product M ·σ0 N of M with N is the wta (Σ,Q ∪ P, κ,H) such
that H = 〈F, 0〉 and for each σ ∈ Σk with σ 6= σ0,

κk(σ)q1···qk,q =


µk(σ)q1···qk,q if q, q1, . . . , qk ∈ Q
µ0(σ0)q ·

∑
p∈P νk(σ)q1···qk,pGp if q ∈ Q and q1, . . . , qk ∈ P

νk(σ)q1···qk,q if q, q1, . . . , qk ∈ P
0 otherwise.

Moreover,

κ0(σ0)q =

{
µ0(σ0)q ·

∑
p∈P ν0(σ0)pGp if q ∈ Q

ν0(σ0)q if q ∈ P.
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It is known that ‖M ·σ0
N‖ = ‖M‖ ·σ0

‖N‖. Let M →X M ′ and N →Y N ′.
We define X ·σ0

Y = X + Y . The Hadamard product M ·H N is the wta
(Σ,Q × P, κ,H) where H = F ⊗ G and κk(σ) = µk(σ) ⊗ νk(σ) for all σ ∈ Σk.
If M →X M ′ and N →Y N ′, then we define X ·H Y = X ⊗ Y . Finally, let A be
complete. Thus, A allows the definition of the star operation a∗ =

∑
n∈IN a

n for
every a ∈ A. The σ0-iteration M∗σ0 of M is the wta (Σ,Q, κ, F ) where

κk(σ)q1···qk,q = µk(σ)q1···qk,q + ‖M‖(σ0)∗ ·
∑
p∈Q

µk(σ)q1···qk,pFp

for all σ ∈ Σk \ {σ0} and κ0(σ0) = µ0(σ0). If M →X M ′, then we define
X∗σ0 = X.

Proposition 8. The functions ·σ0 and ·H, which are defined on wta and trans-
fer matrices, are functors Sim2

Σ → SimΣ. Moreover, σ0-iteration is a functor
SimΣ → SimΣ if A is complete.

5 Joint Reduction

In this section, we will establish equivalence results using an improved version
of the approach called joint reduction in [4]. Let V ⊆ AI be a set of vectors for
a finite set I. The A-semimodule generated by V is denoted by 〈V 〉. Given two
wta M = (Σ,Q, µ, F ) and N = (Σ,P, ν,G) with Q ∩ P = ∅, we first compute
M + N = (Σ,Q ∪ P, µ′, F ′) as defined in Section 4. The aim is to compute a
finite set V ⊆ AQ∪P such that

(i) (v1 ⊗ · · · ⊗ vk) · µ′k(σ) ∈ 〈V 〉 for every σ ∈ Σk and v1, . . . , vk ∈ V , and
(ii) v1F = v2G for every (v1, v2) ∈ V such that v1 ∈ AQ and v2 ∈ AP .

With such a finite set V we can now construct a wta M ′ = (Σ,V, ν′, G′) with
G′v = vF ′ for every v ∈ V and

∑
v∈V ν

′
k(σ)v1···vk,v · v = (v1⊗· · ·⊗ vk) ·µ′k(σ) for

every σ ∈ Σk and v1, . . . , vk ∈ V . It remains to prove that M ′ simulates M +N .
To this end, let X = (v)v∈V where each v ∈ V is a row vector. Then for every
σ ∈ Σk, v1, . . . , vk ∈ V , and q ∈ Q ∪ P , we have

(ν′k(σ)X)v1···vk,q =
∑
v∈V

ν′k(σ)v1···vk,v · vq =
(∑
v∈V

ν′k(σ)v1···vk,v · v
)
q

=
(
(v1 ⊗ · · · ⊗ vk) · µ′k(σ)

)
q

=
∑

q1,...,qk∈Q∪P
(v1)q1 · . . . · (vk)qk · µ′k(σ)q1···qk,q

=
(
Xk,⊗ · µ′k(σ)

)
v1···vk,q

.

Moreover, if we let X1 and X2 be the restrictions of X to the entries of Q and P ,
respectively, then we have ν′k(σ)X1 = Xk,⊗

1 ·µk(σ) and ν′k(σ)X2 = Xk,⊗
2 · νk(σ).

In addition, G′v = vF ′ =
∑
q∈Q∪P vqF

′
q = (XF ′)v for every v ∈ V , which

proves that M ′ →X (M + N). Since v1F = v2G for every (v1, v2) ∈ V , we
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have G′(v1,v2) = (v1, v2)F ′ = v1F + v2G = (1 + 1)v1F = (1 + 1)v2G. Now, let

G′′(v1,v2) = v1F = v2G for every (v1, v2) ∈ V . Then

(X2G)v =
∑
p∈P

vpGp = v2G = G′′v = v1F =
∑
q∈Q

vqFq = (X1F )v

for every v = (v1, v2) ∈ V . Consequently, M ′′ →X1
M and M ′′ →X2

N , where
M ′′ = (Σ,V, ν′, G′′). This proves the next theorem.

Theorem 9. Let M and N be equivalent. If there exists a finite set V ⊆ AQ∪P
with properties (i) and (ii), then a finite chain of simulations joins M and N .
In fact, there exists a single wta that simulates both M and N .

Let us first recall a known result [2] for fields. Note that, in comparison to
our results, the single wta can be chosen to be a minimal wta.

Theorem 10 (see [2, p. 453]). Every two equivalent trim wta M and N over
a field A can be joined by a finite chain of simulations. Moreover, there exists a
minimal wta that simulates both M and N .

We can obtain a similar theorem with the help of Theorem 9 as follows. Let
A be a Noetherian semiring. Let V0 = {µ′0(α) | α ∈ Σ0} and

Vi+1 = Vi ∪
(
{(v1 ⊗ · · · ⊗ vk) · µ′k(σ) | σ ∈ Σk, v1, . . . , vk ∈ Vi} \ 〈Vi〉

)
for every i ∈ IN. Then {0} ⊆ 〈V0〉 ⊆ 〈V1〉 ⊆ · · · ⊆ 〈Vk〉 ⊆ · · · is stationary
after finitely many steps because A is Noetherian. Thus, let V = Vk for some
k ∈ IN such that 〈Vk〉 = 〈Vk+1〉. Clearly, V is finite and has property (i). Trivially,
V ⊆ {hµ′(t) | t ∈ TΣ}, so let v ∈ V be such that v =

∑
i∈I(hµ(ti), hν(ti)) for

some finite index set I and ti ∈ TΣ for every i ∈ I. Then(∑
i∈I

hµ(ti)
)
F =

∑
i∈I

(‖M‖, ti) =
∑
i∈I

(‖N‖, ti) =
(∑
i∈I

hν(ti)
)
G

because ‖M‖ = ‖N‖, which proves property (ii).
In fact, since M +N uses only finitely many semiring coefficients, it is suffi-

cient that every finitely generated subsemiring of A is contained in a Noethe-
rian subsemiring of A. Then the following theorem follows from Theorem 9.

Theorem 11. Let A be such that every finitely generated subsemiring is con-
tained in a Noetherian subsemiring of A. For all equivalent wta M and N
over A, there exists a finite chain of simulations that join M and N . In fact,
there exists a single wta that simulates both M and N .

Note that ZZ is a Noetherian ring. More generally, every finitely generated
commutative ring is Noetherian [23, Cor. IV.2.4 & Prop. X.1.4].

Corollary 12 (of Theorem 11). For all equivalent wta M and N over a com-
mutative ring A, there exists a finite chain of simulations that join M and N .
In fact, there exists a single wta that simulates both M and N .
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Finally, let A = IN be the semiring of natural numbers. We compute the
finite set V ⊆ INQ∪P as follows:

1. Let V0 = {µ′0(α) | α ∈ Σ0} and i = 0.
2. For every v, v′ ∈ Vi such that v ≤ v′, replace v′ by v′ − v.
3. Set Vi+1 = Vi ∪

(
{(v1 ⊗ · · · ⊗ vk) · µ′k(σ) | σ ∈ Σk, v1, . . . , vk ∈ Vi} \ 〈Vi〉

)
.

4. Until Vi+1 = Vi, increase i and repeat step 2.

Clearly, this algorithm terminates since every vector can only be replaced by
a smaller vector in step 2 and step 3 only adds a finite number of vectors,
which after the reduction in step 2 are pairwise incomparable. Moreover, prop-
erty (i) trivially holds because at termination Vi+1 = Vi after step 3. Con-
sequently, we only need to prove property (ii). To this end, we first prove
that V ⊆ 〈{hµ′(t) | t ∈ TΣ}〉+,−. This is trivially true after step 1 because
µ′0(α) = hµ′(α) for every α ∈ Σ0. Clearly, the property is preserved in steps
2 and 3. Finally, property (ii) can now be proved as follows. Let v ∈ V be such
that v =

∑
i∈I1(hµ(ti), hν(ti)) −

∑
i∈I2(hµ(ti), hν(ti)) for some finite index sets

I1 and I2 and ti ∈ TΣ for every i ∈ I1 ∪ I2. Then by ‖M‖ = ‖N‖ we obtain(∑
i∈I1

hµ(ti)−
∑
i∈I2

hµ(ti)
)
F =

∑
i∈I1

hµ(ti)F −
∑
i∈I2

hµ(ti)F

=
∑
i∈I1

(‖M‖, ti)−
∑
i∈I2

(‖M‖, ti) =
∑
i∈I1

(‖N‖, ti)−
∑
i∈I2

(‖N‖, ti)

=
∑
i∈I1

hν(ti)G−
∑
i∈I2

hν(ti)G =
(∑
i∈I1

hν(ti)−
∑
i∈I2

hν(ti)
)
G .

Corollary 13 (of Theorem 9). For all equivalent wta M and N over IN, there
exists a finite chain of simulations that join M and N . In fact, there exists a
single wta that simulates both M and N .

For all finitely and effectively presented semirings, Theorems 10 and 11 and
Corollaries 12 and 13 also yield decidability of equivalence for M and N . Es-
sentially, we run the trivial semi-decidability test for inequality and a search for
the wta that simulates both M and N in parallel. We know that either test will
eventually return, thus deciding whether M and N are equivalent. Conversely,
if equivalence is undecidable, then simulation cannot capture equivalence [16].
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