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Abstract— For several semiringsS, two weighted finite 2. Semirings and semimodules

automata with multiplicities inS' are equivalent if and only .

if they can be connected by a chain of simulations. Such a We recall from [7], [8] that ssemiringS = (S, +,-,0,1)
semiring$S is called “proper”. It is known that the Boolean CONSists of a commutative mono(d, +,0) and a monoid
semiring, the semiring of natural numbers, the ring of(S,- 1) such that multiplication (or product) distributes
integers, all finite commutative positively ordered sengisi  Over addition (or sumj-, and moreovers -0 =0 =0-s

and all fields are proper. The semiring is Noetherian if for all s € S. A semiring S is called commutativeif
every subsemimodule of a finitely generafedemimodule 5" = s's for all s,s" € 5. (When writing expressions,
is finitely generated. First, it is shown that all Noetherian We Will follow the standard convention that multiplication
semirings and thus all commutative rings and all finiteh@s higher precedence than addition.) Examples of semi-
semirings are proper. Second, the tropical semiring is show ings include all fields and rings, all bounded distributive

not to be proper. So far there has not been any example dfttices including the2-element latticeB = {0, 1}, called
a semiring that is not proper. the Boolean semiring, the semiriiy of natural numbers,

and the tropical semiring defined in Section 5. In order
Keywords: Weighted automaton, semiring, rational series, simu{0 avoid trivial situations, we will only consider nontrali
lation, equivalence. semirings in whichO0 # 1. When S is a semiring, so is
the collectionS™*™ of all n x n matrices overS with the
- usual operations and constants. We will identify any matrix
1. Introduction in S1*™ with the corresponding row vector, and any matrix
In this paper, we consider weighted (finite) automata [1]in S™*" with the corresponding column vector.
[2] with multiplicities (or weights) in a semiringS. A WhensS is a semiring, arb-semimodulés a commutative
weighted automaton over a finite alphal®twith multi-  monoidV = (V, +,0) that is equipped with a (lefty-action
plicities in S defines arational series[1], [2], [3] in the S xV — V with (s,v) — sv subject to the usual laws:
semiringS{X~*)) of all formal series oveE with coefficients
in S. Two automata are termeghuivalentf they define the (s+ s =sv+sv
same rational series. s(v+v') = sv+ sv
In [4], [5], a notion of morphism between automata was

. . . (ss')v = s(s'v)
introduced in order to relate equivalent automata. These

morphisms, called “simulations” preserve the equivalesfce lo=wv
automata. It has been demonstrated that for many semirings, s0=0
any two equivalent automata over any finite alphabet can Ov=20

be connected by a finite chain of simulations. Semirings

with this property for all finite alphabets include the Bamte for all s,s’ € S andv, v’ € V. Note that for anym,n > 1,
semiring [4], any finite commutative positively ordered $em the setS™*" of m x n matrices equipped with the pointwise
ring [5], any field [6], the semirind¥ of natural numbers and sum operation is a-semimodule.

the ring of integers [6]. Such semirings are calf@dper. Suppose thaft is a semiring and is a finite alphabet.
Until now, there has not been any example of a semiring.et ¥* denote the free monoid of all words overincluding
that is not proper. the empty worde. Recall from [1], [3] that aformal series

In this note, our aim is two-fold. First, we point out overX with multiplicities in S is a functions: ¥* — S writ-
additional classes of proper semirings. We call a semifing ten as a formal sum .. (s,w)w, where(s,w) = s(w)
Noetherian if every subsemimodule of a finitely generatedor eachw € ¥*. The supportsupp(s) of a seriess is
S-semimodule is finitely generated. In Theorem 4.2 we showWw | (s, w) # 0}. We let S{X*) denote the collection of
that any Noetherian semiring and thus any commutative ringll such series. Eache S may be identified with the series
and any finite semiring is proper. Then in Theorem 5.4mappinge to s and all nonempty words t6. This defines
we prove that the tropical semiring [7], [8] used in manythe seried) and1. Also, each letter, € ¥ may be identified
combinatorial optimization problems it proper. with the series mapping to 1 and all other words ob*



to 0. The sum and product operations are defined by
(s + s, w) = (s,w) + (s, w)
(ss',w) = Z (s,u)(s',v)

Uv=w

for all s,s’ € S{Z*). It is well-known (see e.g. [1], [3])

that, equipped with the above operations and constants,

S{X*) is a semiring. In particulaB(%*) is isomorphic
to the semiringP(X*) of all languages oved equipped

Definition 3.1: Let A = (o, M, 3) and B = (v, N, ) be
automata inS{>*) of dimensionm and n, respectively.
We say thatX € S™*" is a simulation A — B, in
notation A —* B, if

aX =
MX=XN

iy n@/: X, .
Note that the condition/ X = X N can be expressed in

with set union as sum and concatenation as product. TH equivalent way a8/, X = XN, for all a € X.

canonical isomorphismB{>~*) — P(X*) maps a series in
B{X~*) to its support.

Below we will denote byS(X) the set of all series
in S{~*) whose support is a subset Bf Notice that each

If X is a simulation4 — B, then M*X = XN* and
M,X = XN, for all £ > 0 andw € ¥* and thus

aM*3 =aM*X5 = aXN*§ =yN*§

element of S(X) may be written as a linear combination for all £ > 0, which proves thatd and B are equivalent.

s1a1+- -+ span, Whereaq, ..., a, are the letters oE and
each coefficiens; is an element of.

For later use we note that whesy with « € I are
series inS{X*)) with pairwise disjoint support, then it is
possible to define their suh_,_; s; as the series with
(s,w) = (s;,w) if w € supp(s;) for somei and (s, w) =0
otherwise.

3. Automata and simulations

Suppose thab is a semiring and is a finite alphabet.
A (finite) automatonin S{>*) of dimensionn > 1 is a
triplet A = («, M, 3), wherea € S1*" is theinitial vector,
M e S(x)™*" is the transition matrix and 3 € S"*!
is the final vector of A. Note that we may writeM as
a finite sumM = > _ M,a with M, € S™*" for all
a € X, where(MM,);; is the coefficient otz in M;; for each
1<4,5<n.

Since each entry o¥f is a series in5(¥), for eachk > 0
it holds that each entry af/* is a series whose support is
included inX* = {w € ¥* | |w| = k}, which is the set of
all words in>* of lengthk. Thus, it is possible to defink/*
as the matrix

M*=E,+M+M>+---=> M
i>0
where M° = E, is the n x n identity matrix. It is

easy to see that for any < 4,57 < n andw € ¥*,
we have (M*);;,w) = (My):;, where M, = E, and
M,, = M,M, for all v € ¥* anda € X. The behavior
of the automatord is defined as the series

|Al = aM™§ € S(E7).

Alternatively, |A| is the series with|A|, w) = aM,,3 for
all w € ¥*. We say that automatd and 5 are equivalent
if |.A] = |B|. Note that an automaton B{X*)) is just an
ordinary finite nondeterministic automaton.

Simulations of automata were defined in [4], [5] in
order to provide a structural characterization of equivale
automata.

Definition 3.2: Call a semiringS proper if for any finite
alphabet: and for any two automatal and B in S{X*)
the following two conditions are equivalent:

« A andB are equivalent.

o There exists a finite chain of simulations connect-
ing A and B; i.e., there is a sequence of automata
Co,...,Cr with & > 0 such thatCy = A, C, = B,
and for eachl < i < k — 1, either there is a simulation
C; —%i C;,1 or a simulationC; ., —%i C;.

For later use we note:

Lemma 3.3:If every finitely generated subsemiring of a

semiring S is contained in a proper subsemiring 8f then
S is proper.

Proof: Suppose thatd = («, M, 8) andB = (v, N, 9)
are equivalent automata i¥(>X*). Let S, denote the
subsemiring ofS that is generated by the entriesafs, ~, 0
and M, N. By assumptionS, is contained in a proper sub-
semiringS;. SincesS; is proper and4 and3 are equivalent
automata inS; (X*)), they can be connected by a finite chain
of simulations involving automata ifi; (>*)) and simulation
matrices overs; . Trivially, those are automata ii{>*)) and
simulation matrices ove$. [ |

In [6], [4], [5] several proper semiring$ have been

identified, including the Boolean semiring [4], any finite
positively ordered commutative semiring [5], any field [6],
the semiringN of natural numbers and the ring of
integers [6]. In Section 4, we will show that every Noetheria
semiring and thus every commutative ring and every finite
semiring is proper. Then, in Section 5, we will show that
the tropical semiring is not proper.

4. Noetherian semirings

Definition 4.1: We call a semiringS Noetherianif for
every finitely generated’-semimoduleA, every subsemi-
module of A is finitely generated.

Theorem 4.2:Every Noetherian semiring is proper.

Proof: Suppose thatS is a Noetherian semiring
and ¥ is a finite alphabet. LetA = (o, M,3) and



B = (v,N,d) be equivalent automata i§{>*) of di- is 1. We end this section by pointing out that whéhis
mensionm and n, respectively. Our aim is to construct an a finite semiring and4 = («,M,3) and B = (v, N, 0)
automatorC = (k, R, \) of dimensionp, say, together with are equivalent automata i§({X*), then the automaton
simulationsC —* A andC —Y B, whereX € SP*™ and C = (x, R, \) in the proof of Theorem 4.2 can be chosen to

Y e §Pxn, be deterministic. Indeed, sinceis finite, there is somé
To this end, for eaclt > 0, let such thatl,, contains all vectors of the forifi,,, v,,) with
w € ¥*. We may choos€ai,1),...,(ap,7p) to be an

Vi = {(ow, ) | |ul < K}, enumeration ofVy, with (a1,71) = (o, %), say. Now if
where o, = abM,, and~, = ~yN,. Moreover, let{V}) (i My, viN,) = (aj,,) for somea € ¥ and1 < i,j < p,
be the subsemimodule of thg&-semimodule of(m + n)-  then we may define théh row of R, to be the unit vector
dimensional row vectors ovef generated by/,. Since whose jth component isl (and whose other components
are 0). Moreover, we can defing; = 1 andk; = 0
awfl = aMyf = (A, w) = (|Bl,w) = ¥Nuwd = 709, for 1 < i < p. The vector\ is the same as before. We
for all w € ©*, we havea/3 = ~'d for all («/,+) € (V;,), clearly have (1) and (2), so that the matricsandY" are
k > 0 such thata/ € S™ and~’ € S™. simulationsC — A andC — B, respectively.

Since Vi C Viy1, also (Vi) € (Vigy) for eachk > 0. In [5] a different argument is given to show that every
SinceS is Noetherian, it follows that there is sonkg with  finite positively ordered commutative semiring is proper.
(Vio) = (Viy+1). Moreover,(V4,) is finitely generated. Let However, the argument applies to all finite semirings.

Vi) = {(a1,71),-- -, (ap, 7, , say, wherey; € S™ and . ..
<%» €0>S" f<§r( all 4. %inceIﬁkoil pg)]gfko) for each letten: € 3, 5. The trop|cal semiring

there is a matrixk, € SP*? such that(«; M,,v;N,) is a Below we will say that a semiring' is effectively pre-
linear combination sentableif its carrier can be represented as a recursive
P subset ofN such that its operations are recursive functions.
(iMa,¥iNa) = Z(Ra)ij (v, 7;)- (1) Examples of effectively presentable semirings are alldinit
j=1 semirings, the semiringN and thetropical semiring[7],
Also, (a,v) € (Vi,) yields that(a, ) is a linear combina- [8], which is T" = (N U {oo}, min, +, 00, 0) where the sum
tion of the (aj,7;): operation is the minimum, the product operation is ordinary
' » addition withn + co = 0o = co + n for all n € NU {co},
(a,7) = Z k(0 75) @) and the constants are and 0: .
— ’ Lemma 5.1:If S is effectively presentable, then it is
! semidecidable whether two automataand 5 in S{X*}),
wherer; € S for everyl < j < p. Now let whereY. is a finite alphabet, areot equivalent.
o k=(K1,...,kp) €SP and Proof: Let wy,w;,... be a recursive enumeration
e R=3, v Raa € S(X)P*P, of ¥*. Fori > 0 compute (|A|,w;) and (|B|,w;). If
Moreover, let X be the p x m matrix over S whose (|A|,w;) # (|B],w;) for somes, then A and B are not
rows are the vectorss,...,a, andY the p x n matrix  equivalent. [ |
over S whose rows are the vectots, . . ., v,. Moreover, let Lemma 5.2:If S is a proper and effectively presentable
A=Xp=Y6e SPx1, semiring, then it is semidecidable whether two finite au-
ThenC = (k, R, ) is an automaton of dimensign In  tomata inS{>~*) over a finite alphabek are equivalent.
addition, X is a simulationC — A andY is a simula- Proof: Given two automatad = («,M,3) and

tion C — B. Indeed,xX = o andxY = vy by (2), and B = (y,N,0) in S{(X*), we generate all finite se-
R, X = XM, and R,Y = YN, for all a € ¥ by (1). quences of automatd,...,C; connecting.A with B to-
Finally, X3 =X =Y. m gether with matricesXy,..., X1 over S of appropriate
Corollary 4.3: Suppose that every finitely generated sub-dimension. We check whether or ndf; is a simulation
semiring of a semiring' is Noetherian. Ther$' is proper.  C;—; — C; orC; — C;_; for eachi. If a chain of simulations
Proof: By Theorem 4.2 and Lemma 3.3. m is found, thend and B are equivalent. ]
Since every finitely generated commutative ring is Noethe- From Lemmata 5.1 and 5.2 we can immediately conclude:
rian, (cf. [1]), and since every finite semiring is clearly Corollary 5.3: Suppose thaf is a proper and effectively

Noetherian, we obtain: presentable semiring. Then it is decidable whether two
Corollary 4.4: Every commutative ring is proper. automataA and B in S{X*) are equivalent, wher& is
Corollary 4.5: Every finite semiring is proper. any finite alphabet.

Call an automator{e, M, 3) in S{X*) (strictly) deter- Theorem 5.4:The tropical semiring’ is not proper.
ministic if o and each row of any/, for a € ¥ is a Proof: Clearly,T is an effectively presentable semiring.

unit vector i.e., it has a single nonzero component whichlt was shown in [9] that the equivalence problem of automata



in T{X~*) is undecidable wheix: is a finite alphabet with
at least two letters. Thug; is not proper by Corollary 5.3.
[ |
Other effectively presentable semirings that are not prope
are the variants of the tropical semiring studied in [9]. Whe
S embeds inS’ and S is not proper, thert’ is not proper
either.

6. Conclusion

We have shown that whef is a Noetherian semiring
and ¥ is any finite alphabet, then two automataand B
in S(X*) are equivalent if and only if they can be connected
by a finite chain of simulations. In fact, whe# and B are
equivalent, then an automatghwas found together with
simulations A — C — B. When S is finite, thenC may
be chosen to be deterministic. Moreover, we have shown
that whenS is the tropical semiring, then for any finite
alphabet® of size at leas® there exist equivalent automata
in S{X*) that cannot be connected by any finite chain of
simulations.
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