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Abstract. Strong lexicalization is the process of turning a grammar
generating trees into an equivalent one, in which all rules contain a ter-
minal leaf. It is known that tree adjoining grammars cannot be strongly
lexicalized, whereas the more powerful simple context-free tree grammars
can. It is demonstrated that multiple simple context-free tree grammars
are as expressive as multi-component tree adjoining grammars and that
both allow strong lexicalization.

1 Introduction

In computational linguistics several grammar formalisms [7] have been proposed
that generate semilinear superclasses of the context-free languages, are able
to model cross-serial dependencies, but remain parsable in polynomial time.
Among the most well known are the (set-local) multi-component tree adjoining
grammar (MCTAG) [5,18], which is an extension of the tree adjoining gram-
mar (TAG), and the multiple context-free (string) grammar (MCFG) [16], which
was independently discovered as (string-based) linear context-free rewriting sys-
tem (LCFRS) [17]. In both cases the ability to synchronously rewrite multiple
components was added to a classical model (TAG and CFG). In the same spirit,
the multiple context-free tree grammar (MCFTG) was introduced in [8, Sec-
tion 5] as the context-free graph grammar in tree generating normal form of [1],
but was implicitly envisioned as tree-based LCFRS already in [17].

We define the MCFTG as a straightforward generalization of both the MCFG
and the classical simple (i.e., linear and nondeleting) context-free tree grammar
(CFTG). Intuitively, an MCFTG G is a CFTG, in which several nonterminals
are rewritten in one derivation step. Thus every rule of G is a sequence of rules
of a CFTG, and the left-hand side nonterminals of these rules are rewritten syn-
chronously. However, a sequence of nonterminals can only be rewritten if (earlier
in the derivation) they were introduced explicitly as such by the application of a
rule of G, which is called “locality” in [18,14]. Therefore, each rule of G must also
specify the sequences of (occurrences of) nonterminals in its right-hand side that
may later be rewritten. Although such derivations can easily be formalized, we
prefer to define the semantics of G as a least fixed point (just as for an MCFG).
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Two tree-generating grammars are strongly (resp. weakly) equivalent if they
generate the same tree (resp. string) language, where the string language con-
sists of the yields of the generated trees. It is not difficult to see that for every
MCTAG there is a strongly equivalent MCFTG, just as for every TAG there is a
strongly equivalent CFTG [5,13]. Our main contribution is that, vice versa, for
every MCFTG there is a strongly equivalent MCTAG, generalizing the result
of [9] that relates monadic CFTGs and non-strict TAGs. It also settles a prob-
lem stated in [18, Section 4.5]: “It would be interesting to investigate whether
there exist LCFRS’s with object level tree sets that cannot be produced by any
MCTAG.” We prove that such LCFRSs do not exist. It is proved in the cited sec-
tion that MCTAGs are weakly equivalent to string-based LCFRSs, so MCFTGs
are weakly equivalent to MCFGs.

Secondly, we consider lexicalized grammars [6] in which each rule contains a
lexical item (i.e., a terminal symbol that appears in the yield of the generated
tree). Lexicalized grammars are of importance because they are often more un-
derstandable and allow easier parsing (cf. the Introduction of [12]); moreover, a
lexicalized grammar defines a so-called dependency structure on the lexical items
of each generated string, allowing to investigate certain aspects of the grammat-
ical structure of that string, see [10]. We investigate lexicalization, which is the
process that transforms a grammar into an equivalent lexicalized one. Corre-
sponding to the two notions of equivalence we obtain strong and weak lexical-
ization. Although TAGs can be weakly lexicalized [3], they cannot be strongly
lexicalized, as unexpectedly shown in [11]. However, the more powerful CFTGs
can be strongly lexicalized [12], and the used lexicalization procedure can easily
be generalized to MCFTGs. Since our transformation of an MCFTG into an
MCTAG preserves the property of being lexicalized, we obtain that MCTAGs
can be strongly lexicalized in contrast to classical TAGs.

The multiplicity (or fan-out) of an MCFTG G is the maximal number of
nonterminals that can be rewritten simultaneously in one derivation step. Our
strong lexicalization of G preserves the multiplicity of G, but our transformation
of G into a strongly equivalent MCTAG increases it polynomially, and so the
same is true for the strong lexicalization of MCTAGs.

2 Preliminaries

The set {1, 2, 3, . . . } of positive integers is denoted by N, and N0 = N ∪ {0}.
For all k ∈ N0 we write [k] for {i ∈ N | i ≤ k}. The cardinality of a set A
is |A|, and we let A∗ =

⋃
n∈N0

An and A+ =
⋃
n∈NA

n, where An is the n-

fold Cartesian product of A. Note that A0 = {ε}, where ε is the empty se-
quence. If A is finite, then the elements of A and A∗ are also called symbols
and strings, respectively. The length |w| of w ∈ A∗ is such that w ∈ A|w|.
For a sequence w = (a1, . . . , an) ∈ An, the set occ(w) = {a1, . . . , an} contains
the elements of A that occur in w, and w is repetition-free if no element oc-
curs more than once (i.e., |occ(w)| = n). The concatenation w · v (or just wv)
of w with a sequence v = (b1, . . . , bm) is (a1, . . . , an, b1, . . . , bm). As usual, we
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let w0 = ε and wn+1 = wwn for every n ∈ N0. For a subset B ⊆ A, the yield
of w with respect to B is the sequence ydB(w) in B∗ that is obtained from w
by removing all symbols outside B. Formally, ydB(ε) = ε and for all v ∈ A∗ we
have ydB(bv) = b · ydB(v) for all b ∈ B and ydB(av) = ydB(v) for all a ∈ A \B.

A ranked alphabet is a finite set Σ with a ranking rk: Σ → N0. For every
k ∈ N0 we let Σ(k) = {σ ∈ Σ | rk(σ) = k} be the set of k-ary symbols, and

let mrkΣ be the minimal k ∈ N0 such that
⋃k
n=0Σ

(n) = Σ. In examples we
introduce a symbol σ of rank k as σ(k). With every string σ̄ = (σ1, . . . , σn) ∈ Σ∗
we associate a multiple rank rk∗

(
σ̄
)

=
(
rk(σ1), . . . , rk(σn)

)
∈ N∗0. We fix the

countably infinite set X = {x1, x2, . . . } of variables and let Xk = {xi | i ∈ [k]}
for every k ∈ N0. For every set Z ⊆ X of variables, the set TΣ(Z) of trees over
Σ and Z is the smallest set T ⊆ (Σ ∪ Z)∗ such that Z ⊆ T and σt1 · · · tk ∈ T
for all k ∈ N0, σ ∈ Σ(k), and t1, . . . , tk ∈ T . As usual we also write the
term σ(t1, . . . , tk) to denote σt1 · · · tk. We denote TΣ(X0) = TΣ(∅) by TΣ . The
nodes of a tree are formalized as “positions”. The root is at position ε, and
the position pi with p ∈ N∗ and i ∈ N refers to the i-th child of the node at
position p. Thus, the set pos(t) ⊆ N∗ of positions of a tree t ∈ TΣ(X) is de-
fined by pos(x) = {ε} for x ∈ X and pos(t) = {ε} ∪ {ip | i ∈ [k], p ∈ pos(ti)}
for t = σ(t1, . . . , tk). The label and subtree of t at p ∈ pos(t) are t(p) and t|p,
respectively, so x(ε) = x = x|ε, t(ε) = σ, t|ε = t, t(ip) = ti(p), and t|ip = ti|p.

A forest t = (t1, . . . , tm) is a sequence of trees t1, . . . , tm ∈ TΣ(X). A single
tree is a forest of length 1. The nodes of the forest t are addressed by positions
from (N∪ {#})∗, where # is a special symbol. Intuitively, these positions are of
the form #j−1p, in which #j−1 selects the tree tj and p ∈ pos(tj) is a position
in tj . Formally, pos(t) = {#j−1p | j ∈ [m], p ∈ pos(tj)}. The label and subtree
of t at position #j−1p are t(#j−1p) = tj(p) and t|#j−1p = tj |p, respectively. For
every set Ω ⊆ Σ ∪X, the set posΩ(t) = {p ∈ pos(t) | t(p) ∈ Ω} contains the Ω-
labeled positions of t. We let occΩ(t) = {t(p) | p ∈ posΩ(t)} be the symbols of Ω
that occur in t. The forest t is uniquely Ω-labeled if all symbols of Ω occur at most
once in t; i.e., |pos{σ}(t)| ≤ 1 for every σ ∈ Ω. The set PΣ(Xk) of k-ary patterns
is PΣ(Xk) = {t ∈ TΣ(Xk) | ∀x ∈ Xk : |pos{x}(t)| = 1}. The rank rk(t) of a
k-ary pattern t is k. Clearly, PΣ(X0) = TΣ . We let PΣ(X) =

⋃
k∈N0

PΣ(Xk),

and we associate the multiple rank rk∗
(
t
)

=
(
rk(t1), . . . , rk(tm)

)
∈ N∗0 with

every forest t = (t1, . . . , tm) of PΣ(X)∗. For all θ : X → TΣ(X), the first-
order substitution tθ is inductively defined by xθ = θ(x), tθ = σ(t1θ, . . . , tkθ),
and uθ = (u1θ, . . . , umθ) for every x ∈ X, t = σ(t1, . . . , tk) ∈ TΣ(X), and
u = (u1, . . . , um) ∈ TΣ(X)∗. Thus, each occurrence of a variable x ∈ X is re-
placed by the tree θ(x). If there exists n ∈ N0 with θ(xi) = xi for all i > n,
then we also write t[θ(x1), . . . , θ(xn)] instead of tθ. In second-order substitution
we replace nodes that are labeled by symbols of Σ. Let θ : Σ → PΣ(X) be
such that rk(θ(σ)) = rk(σ) for all σ ∈ Σ. The second-order substitution tθ is
inductively defined by xθ = x, tθ = θ(σ)[t1θ, . . . , tkθ], and uθ = (u1θ, . . . , umθ)
with x, t, and u as above. Intuitively, the second-order substitution tθ replaces
each σ-labeled subtree of t by the tree θ(σ), into which the (recursively processed)
direct subtrees are first-order substituted. If there exist distinct σ1, . . . , σn ∈ Σ
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such that θ(σ) = σ(x1, . . . , xk) for all σ ∈ Σ(k) \ {σ1, . . . , σn}, we also write
t[(σ1, . . . , σn) ← (θ(σ1), . . . , θ(σn))] instead of tθ. Finally, let L = {σ̄1, . . . , σ̄k}
be a subset of Σ∗ such that σ̄1 · · · σ̄k is repetition-free. A (second-order) substitu-
tion function for L is a mapping f : L → PΣ(X)∗ such that rk∗(f(σ̄)) = rk∗(σ̄)
for every σ̄ ∈ L. For a forest t ∈ PΣ(X)∗, the simultaneous second-order sub-
stitution t[f ] is defined by t[f ] = t[σ̄1 · · · σ̄k ← f(σ̄1) · · · f(σ̄k)]. For a complete
exposition of tree language theory, we refer the reader to [4].

3 Multiple Context-Free Tree Grammars

We define the (simple) multiple context-free tree grammar as a straightforward
generalization of both the (simple) context-free tree grammar [15,2] and the
multiple context-free (string) grammar [16,17]. We obtain essentially a tree-based
linear context-free rewriting system.

Definition 1. A (simple) multiple context-free tree grammar (MCFTG) is a
system G = (N,N , Σ, I, R) such that

– N is a ranked alphabet of nonterminals,
– N ⊆ N+ is a finite set of big nonterminals, which are nonempty repetition-

free nonterminal sequences with occ(A) 6= occ(A′) for all distinct A,A′ ∈ N ,
– Σ is a ranked alphabet of terminals such that Σ ∩N = ∅ and mrkΣ ≥ 1,
– I ⊆ N ∩N (0) is the set of initial (big) nonterminals, and
– R is a finite set of rules of the form A → (u,L), where A ∈ N is a

big nonterminal, u ∈ PN∪Σ(X)+ is a uniquely N -labeled forest (of pat-
terns) such that rk∗(u) = rk∗(A), and L ⊆ N is a set of big nonterminals,
called links, such that {occ(B) | B ∈ L} is a partition of occN (u); i.e.,
occ(B)∩occ(B′) = ∅ for all distinct B,B′ ∈ L and occN (u) =

⋃
B∈L occ(B).

The multiplicity (or fan-out) of G, denoted by µ(G), is the maximal length of
its big nonterminals. The width of G, denoted by ω(G), is the maximal rank of
its nonterminals. A (simple) context-free tree grammar (CFTG) is an MCFTG
of multiplicity 1. ut

For a given rule ρ = A → (u,L), its left-hand side is A, its right-hand side
is u, and its set of links is L. Since rk∗(A) = rk∗(u), the rule ρ is of the form

(A1, . . . , An)→
(
(u1, . . . , un), {B1, . . . , Bk}

)
,

where n ∈ N, Ai ∈ N , ui ∈ PN∪Σ(Xrk(Ai)), k ∈ N0, and Bj ∈ N for all
i ∈ [n] and j ∈ [k]. Intuitively, the application of the rule ρ consists of the
simultaneous application of the n rules Ai(x1, . . . , xrk(Ai)) → ui of an ordi-
nary CFTG to occurrences of the nonterminals A1, . . . , An, and the introduc-
tion of all the nonterminals that occur in the big nonterminals B1, . . . , Bk. Ev-
ery Bj = (C1, . . . , Cm) ∈ N+ can be viewed as a link between the (unique) po-
sitions of u with labels C1, . . . , Cm as well as a link between the corresponding
positions after the application of ρ. The rule ρ can only be applied to positions
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S →

σ

B
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e

B′

C ′

e

B
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B
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b

C

σ

γ

x1
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x1

C

x1
→

β

x1

γ

x1

Fig. 1. The first three rules of Example 3.

with labels A1, . . . , An that are joined by such a link. Thus, rule applications are
“local” in the sense that a rule can rewrite only nonterminals that were previ-
ously introduced together in a single step of the derivation, just as for the local
unordered scattered context grammar of [14], which is equivalent to the multi-
ple context-free (string) grammar. Instead of defining derivation steps between
trees in TN∪Σ , it is technically more convenient to define the generation of trees
recursively. In an ordinary CFTG, a nonterminal A of rank k can be viewed as a
generator of trees in PΣ(Xk) using derivations that start with A(x1, . . . , xk). In
the same fashion, a big nonterminal A of an MCFTG generates forests in PΣ(X)+

of the same multiple rank as A.

Definition 2. Let G = (N,N , Σ, I, R) be an MCFTG. For every big nontermi-
nal A ∈ N we recursively define the set L(G,A) ⊆ PΣ(X)+ of forests generated
by A as follows. For every rule ρ = A → (u,L) ∈ R and every substitution
function f : L → PΣ(X)+ for L such that f(B) ∈ L(G,B) for every B ∈ L,
the forest u[f ] is in L(G,A). The tree language L(G) generated by G is defined
by L(G) =

⋃
S∈I L(G,S) ⊆ TΣ . ut

Note that u[f ] is a simultaneous second-order substitution (see Section 2).
Since rk∗(f(B)) = rk∗(B) for all B ∈ L, we have rk∗(t) = rk∗(A) for every forest
t ∈ L(G,A). Two MCFTGs G and G′ are (strongly) equivalent if L(G) = L(G′).

Example 3. We consider the MCFTG G = (N,N , Σ, {S}, R) with nonterminals
N = {S(0), B(1), C(1), B′(1), C ′(1)}, big nonterminals N = {S, (B,C), (B′, C ′)},
terminals Σ = {σ(2), β(1), γ(1), b(0), c(0), e(0)}, and the rules R (see Fig. 1):

S → σ
(
B(C(e)), B′(C ′(e))

)
(B,C)→

(
B(σ(β(x1), b)), C(σ(γ(x1), c))

)
(B,C)→

(
β(x1), γ(x1)

)
(B′, C ′)→

(
B(σ(β(x1), b)), C(σ(γ(x1), c))

)
(B′, C ′)→

(
β(x1), γ(x1)

)
,

where we write a rule A → (u,L) as A → u. In this example, and the next,
the sets L of links are unique. Here they are {(B,C), (B′, C ′)} for the first rule,
{(B,C)} for the second and fourth rule, and ∅ for the third and fifth rule. Since
the rules for (B,C) and (B′, C ′) have the same right-hand sides and links, they
are aliases. They represent essentially the same big nonterminal, but must be
different because they occur together in the right-hand side of the first rule. It
is easy to see that L(G, (B,C)) = L(G, (B′, C ′)) consists of all forests (tm, um)
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with m ∈ N0, where tm = β(σβ)mx1b
m and um = γ(σγ)mx1c

m. Note that
we here use string notation, thus, e.g., u2 = γ(σγ)2x1c

2 is the tree γσγσγx1cc
which can be written as the term γ(σ(γ(σ(γ(x1), c)), c)). Hence L(G) consists
of all trees σ(tm[um[e]], tn[un[e]]) = σβ(σβ)mγ(σγ)mecmbmβ(σβ)nγ(σγ)necnbn

with m,n ∈ N0. ut

4 Lexicalization

For a given terminal alphabet Σ we fix a subset ∆ ⊆ Σ(0) of lexical symbols.
We say that an MCFTG G is lexicalized if each rule contains at least one lex-
ical symbol; i.e., if pos∆(u) 6= ∅ for every rule A → (u,L) of G. Clearly, if
G is lexicalized, then L(G) has finite ambiguity, in the following sense. Let the
yield yd(t) of a tree t ∈ TΣ be the string of lexical symbols that label its leaves,
from left to right. So, yd(t) = yd∆(t) ∈ ∆∗ (as defined in Section 2). We say
that a tree language L ⊆ TΣ has finite ambiguity if {t ∈ L | yd(t) = w} is finite
for every w ∈ ∆+ and {t ∈ L | yd(t) = ε} = ∅. We can lexicalize MCFTGs,
which means that for each MCFTG G of which L(G) has finite ambiguity, we
can construct an equivalent lexicalized MCFTG. This is called strong lexicaliza-
tion [6,11] because we require strong equivalence.

Theorem 4. For each MCFTG G such that L(G) has finite ambiguity there is
an equivalent lexicalized MCFTG G′ with µ(G′) = µ(G) and ω(G′) = ω(G) + 1.

The construction is essentially the same as the one in [12] for CFTGs. First,
all nonlexicalized rules of rank 0 and rank 1 are removed, where the rank of
a rule A → (u,L) is |L|. This is similar to the removal of rules A → ε and
A → B from a context-free grammar. Since L(G) has finite ambiguity, such
rules can only generate finitely many trees. Second, all rules of rank 0 with
exactly one lexical symbol are removed. That can be done by applying all such
rules to the other rules, in all possible ways. Finally, we guess a lexical symbol
for every application of a nonlexicalized rule and put the guessed symbol in a
new argument of a nonterminal (thus turning the rule into a lexicalized one). It
is passed from nonterminal to nonterminal until a rule of rank 0 is applied, where
we exchange the same lexical symbol for the new argument. The resulting rule
is still lexicalized because we made sure that rules of rank 0 contain at least two
lexical symbols. Lexical symbols that are guessed for distinct rule applications
are transported to distinct applications of rules of rank 0.

5 MCFTG and MCTAG

Next we prove that MCTAGs have the same tree generating power as MCFTGs.
It is shown in [9, Section 4] that “non-strict” TAGs have the same tree generat-
ing power as “footed” CFTGs. Since the translation from one formalism to the
other is straightforward, we avoid the introduction of the formal machinery that
is needed to define MCTAGs in the usual way. Rather we first define non-strict
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MCTAGs to be footed MCFTGs, which generalize footed CFTGs in an obvi-
ous way. After that we define (strict) MCTAGs as a special type of non-strict
MCTAGs. The main result of [9] is that non-strict TAGs have the same tree
generating power as monadic CFTGs, where a CFTG G is monadic if ω(G) ≤ 1.
Our result shows that the monadic restriction is not needed in the multi case.

According to [9], a CFTG is footed if for every rule A(x1, . . . , xk) → u
with k ∈ N there is a unique position of u with exactly k children that are
labeled x1, . . . , xk from left to right.

Definition 5. Let Ω be a ranked alphabet. A pattern t ∈ PΩ(Xk) is footed
if either k = 0, or k ∈ N and there exists p ∈ posΩ(t), called the foot node
of t, such that t|p = σ(x1, . . . , xk) for some σ ∈ Ω(k). Let G = (N,N , Σ, I, R)
be an MCFTG. A rule A → ((u1, . . . , un),L) ∈ R is footed if ui is footed for
every i ∈ [n]. The MCFTG G is footed if every rule in R is footed. ut

Note that, by definition, every tree t ∈ TΩ = PΩ(X0) is footed. For a footed
MCFTG G, it is straightforward to show that the trees t1, . . . , tn are footed for
every forest (t1, . . . , tn) ∈ L(G,A). This implies that ω(G) ≤ mrkΣ .

Based on the close relationship between non-strict TAGs and footed CFTGs
as shown in [9, Section 4], we here define a non-strict TAG to be a footed CFTG
and, similarly, a non-strict MCTAG to be a footed MCFTG. To convince the
reader familiar with TAGs of this definition, we add some more terminology. Let
A→ (u,L) be a rule with A = (A1, . . . , An) and u = (u1, . . . , un). If the rule is
initial (i.e., A ∈ I), then the right-hand side u together with the set L of links
is called an initial forest, and otherwise it is called an auxiliary forest. Applica-
tion of the rule consists of adjunctions and substitutions. The replacement of the
nonterminal Ai by ui is called an adjunction if rk(Ai) ≥ 1 and a substitution oth-
erwise. An occurrence of a nonterminal C ∈ N in u with rk(C) ≥ 1 has an oblig-
atory adjunction (OA) constraint, whereas an occurrence of a terminal σ ∈ Σ
in u with rk(σ) ≥ 1 has a null adjunction (NA) constraint. In the same manner
we handle obligatory and null substitution (OS and NS) constraints. Each big
nonterminal B ∈ L can be viewed as a selective adjunction/substitution (SA/SS)
constraint, which restricts the auxiliary forests that can be adjoined/substituted
for B to the right-hand sides of the rules with left-hand side B.

Given a footed pattern t ∈ PN∪Σ(Xk) with k ≥ 1, we define rlab(t) = t(ε)
and flab(t) = t(p), where p is the foot node of t. Thus, rlab(t) and flab(t)
are the labels of the root and the foot node of t, respectively. For k = 0, we
let rlab(t) = t(ε) and flab(t) = t(ε) for technical convenience.

Definition 6. Let Ω,Σ be ranked alphabets and ϕ : Ω → Σ be a fixed mapping.
A pattern t ∈ PΩ(Xk) is adjoining if it is footed and ϕ(rlab(t)) = ϕ(flab(t)). ut

Definition 7. A (strict and set-local) multi-component tree adjoining grammar
(MCTAG) is an MCFTG G = (N,N , Σ, I, R), for which there exists a rank-
preserving mapping ϕ : (N ∪Σ)→ Σ such that ϕ(σ) = σ for every σ ∈ Σ, and
moreover, for every rule (A1, . . . , An)→ ((u1, . . . , un),L) ∈ R and every i ∈ [n],
ui is an adjoining pattern and ϕ(rlab(ui)) = ϕ(Ai).

A tree adjoining grammar (TAG) is an MCTAG of multiplicity 1. ut
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The MCFTG G of Example 3 is an MCTAG with respect to the mapping ϕ
such that ϕ(S) = σ, ϕ(B) = ϕ(B′) = β, and ϕ(C) = ϕ(C ′) = γ.

Each nonterminal C with ϕ(C) = σ can be viewed as the terminal sym-
bol σ together with some information that is relevant to SA and SS constraints.
The requirements in Definition 7 mean that the root and foot node of ui rep-
resent the same terminal symbol as Ai. Thus, intuitively, adjunction always
replaces a (constrained) terminal symbol by a tree with that same symbol
as root label and foot node label. Thus, if (t1, . . . , tn) ∈ L(G, (A1, . . . , An))
then rlab(ti) = flab(ti) = ϕ(Ai) for every i ∈ [n]. Our MCTAGs and TAGs are
slightly more general than the usual ones, because the roots of the generated
trees need not have the same label; in other words, the underlying syntax may
have more than one “sentence symbol” ϕ(S) with S ∈ I. We view this as an
irrelevant technicality.

Let MCFTL and MCTAL denote the classes of tree languages generated by
MCFTGs and MCTAGs, respectively. We now prove that MCTAL = MCFTL.
By definition, we have MCTAL ⊆ MCFTL. The next theorem shows that for
every MCFTG G there is an equivalent MCTAG, which is also lexicalized if
G is lexicalized. Roughly speaking, the transformation of an MCFTG into an
MCTAG is realized by decomposing each tree ui in the right-hand side of a
rule A → (u,L) with A = (A1, . . . , An) and u = (u1, . . . , un) into a bounded
number of parts, to replace ui in u by the sequence of these parts, and to re-
place Ai in A by a corresponding sequence of new nonterminals that simultane-
ously generate these parts.

Theorem 8. For every MCFTG G with terminal alphabet Σ there is an equiv-
alent MCTAG G′ such that µ(G′) ≤ µ(G) ·mrkΣ · |Σ| · (2 ·ω(G)−1) if ω(G) 6= 0,
and µ(G′) = µ(G) otherwise. Moreover, if G is lexicalized, then so is G′.

Proof. The basic fact used in this proof is that, for any ranked alphabet Ω and
mapping ϕ : Ω → Σ, every tree u ∈ TΩ(X) with u /∈ X and posX(u) 6= ∅ can
be decomposed into at most mrkΩ · |Σ| · (2k − 1) adjoining patterns, where k
is the number |posX(u)| of occurrences of variables in u. This decomposition
can be obtained inductively as follows. Let p ∈ posΩ(u) be the longest po-
sition such that ϕ(u(p)) = ϕ(u(ε)) and |posX(u|p)| = |posX(u)|. Then there
are an adjoining pattern uε ∈ PΩ(Xm) and trees u1, . . . , um ∈ TΩ(X) such
that m = rk(u(p)) ≥ 1, u = uε[u1, . . . , um], and p is the foot node of uε. In other
words, u is decomposed as uε[u1, . . . , um] where uε is an adjoining pattern. For
every i ∈ [m] with ui /∈ X, either ui ∈ TΩ and so ui is an adjoining pattern of
rank 0, or posX(ui) 6= ∅, in which case the tree ui can be decomposed further. It
should be clear that, in this inductive process, there are at most |Σ|·(2k−1) such
positions p. The factor mrkΩ is due to the adjoining patterns of rank 0. As an
example, let Ω = {σ(2), τ (2), β(1), a(0), b(0)} and let ϕ be the identity on Ω. Then
the tree u = σ(a, σ(v, σ(x3, b))) with v = σ(a, τ(a, σ(a, τ(x1, β(β(x2)))))) is de-
composed as u = uε[u1[u11, u12[x1, u122[x2]]], u2[x3, u22]] into the adjoining pat-
terns uε = σ(a, σ(x1, x2)), u1 = σ(a, τ(a, σ(x1, x2))), u11 = a, u12 = τ(x1, x2),
u122 = β(β(x1)), u2 = σ(x1, x2), and u22 = b. Using new symbols Cαp such
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that α ∈ Ω, p ∈ N∗, and rk(Cαp ) = rk(α), we can also express this decomposition

as u = K[γ], where K is the tree Cσε (Cσ1 (Ca11, C
τ
12(x1, C

β
122(x2))), Cσ2 (x3, C

b
22)),

which can be viewed as the skeleton of the decomposition, and γ is the substitu-
tion function such that γ(Cαp ) = up. Note that the superscript α of Cαp is equal
to ϕ(rlab(up)). This decomposition is formalized below and applied to (variants
of) the trees in the right-hand sides of the rules of G.

Let G = (N,N , Σ, I, R) be an MCFTG. Provided that ω(G) 6= 0, then we
have mrkΣ · (2 ·ω(G)−1) ≥ 1 because mrkΣ ≥ 1 by Definition 1. By straightfor-
ward constructions we may assume that G is “permutation-free” and “noneras-
ing”. This means that if (A1, . . . , An)→ ((u1, . . . , un),L) is a rule in R, then the
pattern ui is in PFN∪Σ(Xrk(Ai)) \X for every i ∈ [n], where PFΩ(Xk) denotes
the set of permutation-free k-ary patterns over Ω; i.e., patterns t ∈ PΩ(Xk)
such that ydX(t) = x1 · · ·xk. The nonerasing requirement that ui /∈ X is only
relevant when rk(Ai) = 1, meaning that ui 6= x1.

We define G′ = (N ′,N ′, Σ, I ′, R′). The set N ′ of nonterminals consists of all
quadruples 〈C, σ,m, p〉 with C ∈ N , σ ∈ Σ, m ∈ {0, rk(σ)}, and p ∈ N∗ such
that |p| ≤ |Σ|·ω(G). The rank of 〈C, σ,m, p〉 is m. The set of initial nonterminals
is I ′ = {〈S, σ, 0, ε〉 | S ∈ I, σ ∈ Σ}. We will define N ′ and R′ in such a way
that G′ is an MCTAG with respect to the mapping ϕ : (N ′ ∪ Σ) → Σ such
that ϕ(〈C, σ,m, p〉) = ϕ(σ) = σ. For every nonterminal C ∈ N , a skeleton of C
is a pattern K ∈ PFN ′(Xrk(C)) \X such that

(1) for every p ∈ posN ′(K) there exist a symbol σ ∈ Σ and m ∈ {0, rk(σ)} such
that K(p) = 〈C, σ,m, p〉;

(2) for all p, q ∈ posN ′(K), if position q is a proper descendant of position p,
then ϕ(K(q)) 6= ϕ(K(p)) or |posX(K|q)| < |posX(K|p)|;

(3) for every p ∈ posN ′(K), if K|p ∈ TN ′ then rk(K(p)) = 0.

For such a skeleton K, we let seq(K) = ydN ′(K), which is in (N ′)+. There are
only finitely many skeletons K of C because |posN ′(K)| ≤ mrkΣ · |Σ| · (2k− 1),
if k = rk(C) ≥ 1. If rk(C) = 0, then each skeleton of C is of the form 〈C, σ, 0, ε〉
with σ ∈ Σ. Note that K can be reconstructed from seq(K) because K is
permutation-free. In the example above, the tree K is a skeleton of C, provided
Cαp denotes 〈C,α, rk(α), p〉, and seq(K) = (Cσε , C

σ
1 , C

a
11, C

τ
12, C

β
122, C

σ
2 , C

b
22).

We apply the above basic fact to patterns over N ′ ∪ Σ. Let K be a skele-
ton of C ∈ N . A substitution function γ for occN ′(K) is adjoining if, for
every C ′ ∈ occN ′(K), the pattern γ(C ′) ∈ PN ′∪Σ(X) is adjoining and we
have ϕ(rlab(γ(C ′))) = ϕ(C ′). We say that the pair 〈K, γ〉 is an adjoining C-
decomposition of the tree K[γ]. By a straightforward induction, following the
above basic fact, we can prove that every pattern u over N ′ ∪ Σ has an ad-
joining C-decomposition decC(u). More precisely, for every C ∈ N and ev-
ery u ∈ PFN ′∪Σ(Xrk(C)) \X there is a pair decC(u) = 〈K, γ〉 such that K is a
skeleton of C, γ is an adjoining substitution function for occN ′(K), andK[γ] = u.

A skeleton function for A ∈ N is a substitution function κ for occ(A) that
assigns a skeleton κ(C) of C to every nonterminal C ∈ occ(A). The string
homomorphism hκ from occ(A)∗ to (N ′)∗ is defined by hκ(C) = seq(κ(C)) for
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every C ∈ occ(A). We define the set N ′ of big nonterminals to be the set of
all hκ(A), where A ∈ N and κ is a skeleton function for A.

We finally define the set R′ of rules of G′. Let ρ = A→ (u,L) be a rule in R
such that A = (A1, . . . , An), u = (u1, . . . , un), and L = {B1, . . . , Bk}. Moreover,
let κ = (κ1, . . . , κk), where κj is a skeleton function for Bj for every j ∈ [k].
Intuitively, κ guesses for every nonterminal C that occurs in B1, . . . , Bk the
skeleton of an adjoining C-decomposition of the tree generated by C. Let f be
the substitution function for occN (u) such that f =

⋃
j∈[k] κj ; i.e., f(C) = κj(C)

if C ∈ occ(Bj). Obviously, ui[f ] ∈ PFN ′∪Σ(Xrk(Ai)) \ X for every i ∈ [n]. For
every i ∈ [n], let u′i = ui[f ] and let decAi

(u′i) = 〈Ki, γi〉 (the adjoining Ai-
decomposition of u′i); moreover, if seq(Ki) = (C ′1, . . . , C

′
`) with C ′1, . . . , C

′
` ∈ N ′,

then let v′i = (γj(C
′
1), . . . , γj(C

′
`)). Then we construct the rule

〈ρ, κ〉 = seq(K1) · · · seq(Kn)→ (v′1 · · · v′n,L′)

with L′ = {hκ1(B1), . . . , hκk
(Bk)} in R′. We also define the skeleton func-

tion κρ,κ for A by κρ,κ(Ai) = Ki for every i ∈ [n]. Intuitively, Ki is the skeleton
of an adjoining Ai-decomposition of the tree generated by Ai, resulting from the
skeletons guessed by κ.

It should be clear that G′ is an MCTAG with respect to ϕ. Moreover, since
the right-hand sides of the rules ρ and 〈ρ, κ〉 contain the same terminal symbols,
G′ is lexicalized if G is lexicalized. The intuition underlying the correctness of G′

is that for every Ai, the skeleton Ki generates the same terminal tree in G′ as
Ai generates in G, provided that the skeleton κj(C) generates the same terminal
tree in G′ as C generates in G for every j ∈ [k] and C ∈ occ(Bj). ut

Example 9. We consider the footed CFTG G1 = (N1,N1, Σ, {S}, R1) such that
N1 = N1 = {S(0), A(1), A′(1)}, Σ = {τ (3), `(1), r(1), a(0), b(0), e(0)}, and R1 con-
tains the rules S → `AA′re, A→ `AA′rx1, and A→ ``τ(a, b, rrx1), plus the two
rules for the alias A′ of A. Note that, for the sake of readability, we omit here
and in what follows the parentheses around the arguments of unary symbols;
e.g., the right-hand side of the third rule is `(`(τ(a, b, r(r(x1))))) = ``τabrrx1.
Let ∆ = {a, b} be the set of lexical symbols. Clearly, L(G1) has finite ambigu-
ity. However, there is no equivalent lexicalized footed CFTG. In fact, G1 is a
variant of the TAG of [11], for which there is no (strongly) equivalent lexicalized
TAG. Thus, since we defined non-strict TAGs to be footed CFTGs, G1 is a non-
strict TAG that cannot be lexicalized (as non-strict TAG). We will construct an
equivalent lexicalized MCTAG for G1.

From Theorem 4, or rather from [12], we obtain an equivalent lexicalized
CFTG G2 with ω(G2) = 2. It has the new nonterminals B(2) and B′(2), where
B′ is an alias of B. Its rules are

ρ1 : S → `AB(b, re) ρ2 : A→ `AB(b, rx1) ρ4 : B → `B(x1, B
′(b, rx2))

ρ3 : A→ ``τ(a, b, rrx1) ρ5 : B → ``τ(a, x1, rrx2)

plus the rules ρ′4 and ρ′5 for B′. Clearly, the tree B(b, x1) generates the same
terminal trees as A(x1).
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Rule of G2

B

x1 x2
→

`

`

τ

a x1 r

r

x2

Ba

B`

Bτ

Br

Resulting rule of G′2

B`

x1

Bτ

x1 x2 x3

Ba Br

x1

↓

`

`

x1
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x1 x2 x3
a

r

r

x1

Substitution of skeletons

`

A

B

b r

x1

A`

Aτ

Aa Ab

Ar

`

A`

Aτ

Aa Ab Ar

B`

Bτ

Ba b Br

r

x1

Fig. 2. Left part: The adjoining decomposition 〈K5, γ5〉 of the right-hand side of rule ρ5,
with the resulting rule ρ̃5. Right part: Substitution of the skeletons K3 of A and K5

of B into the right-hand side of rule ρ2, with the adjoining decomposition 〈K3, γ2〉.

We now turn G2 into an equivalent lexicalized MCTAG G′2 using the con-
struction in the proof of Theorem 8. For the rule ρ5 = B → u5 and κ = ε,
we obtain the adjoining B-decomposition decB(u5) = 〈K5, γ5〉, in which we
have K5 = B`(Bτ (Ba, x1, B

r(x2))), γ5(B`) = ``x1, γ5(Bτ ) = τ(x1, x2, x3),
γ5(Ba) = a, and γ5(Br) = rrx1, where B` = 〈B, `, 1, ε〉, Bτ = 〈B, τ, 3, 1〉,
Ba = 〈B, a, 0, 11〉, and Br = 〈B, r, 1, 13〉. The resulting rule ρ̃5 = 〈ρ5, ε〉 is

ρ̃5 : B̄ → (``x1, τ(x1, x2, x3), a, rrx1) ,

where B̄ = seq(K5) = (B`, Bτ , Ba, Br), and the corresponding skeleton function
for B is κ5 = κρ5,ε such that κ5(B) = K5. The construction of this rule is
illustrated in the left part of Fig. 2. Of course we obtain similar primed results
forB′. For the rule ρ4 = B → u4 and κ = (κ5, κ

′
5), we substituteK5 forB andK ′5

for B′ in u4 and obtain the tree u′4 = `B`Bτ (Ba, x1, B
rB′`B′τ (B′a, b, B′rrx2))
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with the adjoining B-decomposition decB(u′4) = 〈K4, γ4〉, where K4 equals K5,
and γ4 is defined by γ4(B`) = `B`x1, γ4(Bτ ) = Bτ (x1, x2, x3), γ4(Ba) = Ba,
and γ4(Br) = BrB′`B′τ (B′a, b, B′rrx1). The resulting rule ρ̃4 = 〈ρ4, (κ5, κ′5)〉 is

ρ̃4 : B̄ → (`B`x1, B
τ (x1, x2, x3), Ba, BrB′`B′τ (B′a, b, B′rrx1)) .

Since the skeleton function κρ4,(κ5,κ′5)
for B is again κ5, these are all the necessary

rules of G′2 with left-hand side B̄, and similarly for B̄′ = (B′`, B′τ , B′a, B′r). We
now turn to rules ρ3 and ρ2. The only skeleton needed for A is the tree

K3 = κρ3,ε(A) = A`Aτ (Aa, Ab, Arx1) ,

where A` = 〈A, `, 1, ε〉, Aτ = 〈A, τ, 3, 1〉, Aa = 〈A, a, 0, 11〉, Ab = 〈A, b, 0, 12〉,
and Ar = 〈A, r, 1, 13〉. The rule ρ̃3 = 〈ρ3, ε〉 is

ρ̃3 : Ā→ (``x1, τ(x1, x2, x3), a, b, rrx1) ,

where Ā = seq(K3) = (A`, Aτ , Aa, Ab, Ar). Substituting K3 for A and K5 for B
in the right-hand side u2 = `AB(b, rx1) of ρ2, we obtain

u′2 = `A`Aτ (Aa, Ab, ArB`Bτ (Ba, b, Brrx1)) ,

which has the decomposition decA(u′2) = 〈K3, γ2〉 shown in the right part
of Fig. 2, where γ2(A`) = `A`Aτ (Aa, Ab, ArB`x1), γ2(Aτ ) = Bτ (x1, x2, x3),
γ2(Aa) = Ba, γ2(Ab) = b, and γ2(Ar) = Brrx1. The rule ρ̃2 = 〈ρ2, (κρ3,ε, κ5)〉 is

ρ̃2 : Ā→ (`A`Aτ (Aa, Ab, ArB`x1), Bτ (x1, x2, x3), Ba, b, Brrx1) .

Finally, we consider rule ρ1. The only skeleton needed for S is S` = 〈S, `, 0, ε〉,
which is the unique initial nonterminal of G′. Substituting K3 for A and K5 for B
in the right-hand side of ρ1, we obtain u′2[e] and the rule ρ̃1 = 〈ρ1, (κρ3,ε, κ5)〉:

ρ̃1 : S` → `A`Aτ (Aa, Ab, ArB`Bτ (Ba, b, Brre)) .

Thus, G′2 has the rules {ρ̃1, ρ̃2, ρ̃3, ρ̃4, ρ̃5, ρ̃′4, ρ̃′5}. Clearly, the tree K3 generates
the same terminal trees as A(x1) and the tree K5 generates the same terminal
trees as B(x1, x2), and hence the tree B`Bτ (Ba, b, Br(x1)) also generates the
same terminal trees as A(x1). It is easy to check that G′2 is a lexicalized MCTAG
with respect to the mapping ϕ such that ϕ(Cx) = x for every C ∈ {S,A,B,B′}
and every x ∈ {τ, `, r, a, b}. The multiplicity of G′2 is µ(G′2) = 5. ut

It follows from Theorems 4 and 8 that MCTAGs can be strongly lexicalized
as opposed to TAGs.

Corollary 10. For every finitely ambiguous MCTAG G with terminal alpha-
bet Σ there is an equivalent lexicalized MCTAG G′ such that

µ(G′) ≤ µ(G) ·mrkΣ · |Σ| · (2 · ω(G) + 1) . ut

We do not know whether the multiplicity bounds in Theorem 8 and Corol-
lary 10 are optimal.
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