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1 Introduction

The area of machine translation recently embraced syntactical translation models [29],

which rely on the syntactical structure of a sentence to perform the translation. The

new sub�eld syntax-based machine translation [10] was successfully established, and

the �rst results look very promising. However, there are two major problems: (i) The

syntax-based approach is computationally much more expensive (up to the point of

computational infeasibility) than the classical phrase-based approach and (ii) there

currently is a wealth of formal models that compete to become the implementation

standard that �nite-state transducers [28] became for phrase-based machine transla-

tion.

In syntax-based machine translation, the translation of an input sentence uses not

only the words of the sentence and the context in which they appear, but rather

also uses the syntactic structure of the sentence. Thus, the input sentence is �rst

parsed and the transformation is then started on the syntax trees so obtained. We

can distinguish two modes of translation: tree-to-string and tree-to-tree. In the former

mode, the translation device immediately generates sentences of the output language

whereas, in the latter mode, the translation device translates syntax trees of an input

sentence into syntax trees of output sentences. In this contribution we will focus on the

tree-to-tree mode; in fact, most tree-to-tree devices can be turned into tree-to-string

devices by only considering the yield (the sequence of nullary output symbols) of the

output they generate.

In [29] and personal communication, Kevin Knight proposed the following criteria

that any reasonable formal tree-to-tree model of syntax-based machine translation

should ful�l:

(a) It should be a genuine generalization of �nite-state transducers [7, 28].

(b) It should be e�ciently trainable.

(c) It should be able to handle rotations (on the tree level).

(d) Its induced class of transformations should be closed under composition.

Let us explain why (a) and (d) are important. The feature of �nite-state transducers

of particular relevance is that they have `extended' rules, i.e., rules that consume any

number of input symbols and produce any number of output symbols. This includes

the use of epsilon rules, i.e., rules that do not consume any input symbol. There exists

a wealth of phrase- and word-based models that are built as �nite-state transducers.

These models represent vast knowledge about translations based on the words and

the context in which they appear. This information should be reused in syntax-based

models, but extended rules occur quite frequently in those �nite-state transducers. It

might be argued that extended rules are, strictly speaking, not necessary in machine

translation, but designers use them quite freely. In particular, especially in probabilistic

models, epsilon rules can be a compact representation because excessive use of epsilon

rules deteriorates the likelihood of the derivation. We note that the classical bottom-up

and top-down tree transducers [22, 23, 45] have rules that consume exactly one input

symbol.

The closure under composition is important because it is infeasible to train one

transducer that handles the complete machine translation task. Instead, \small" task-

speci�c transducers (like transducers that reorder the syntax tree, insert output sub-

trees that have no counterpart in the input syntax tree, or do word-by-word trans-

lation [47]) are trained. Once those \small" transducers are trained, we would like
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to compose them into a single transducer, so that further operations (like composing

with a language model transducer, obtaining a regular tree grammar [22, 23] for the

output syntax trees generated for a speci�c input syntax tree, etc.) can be applied to

a single transducer and not a chain of transducers. Second, the success of �nite-state

transducer toolkits (like Carmel [25] and OpenFsm [2]) is largely due to the fact that

they rely on only one model. This simpli�es the usage of the toolkits and allows rapid

development of translation systems.

Graehl andKnight [26] proposed the linear nondeleting extended (top-down) tree

transducer (ln-xtt) [3, 4] as a suitable formal model of syntax-based machine transla-

tion. It ful�ls (a){(c) but fails to ful�l (d); see [34, Corollary 5] and [35, Theorem 5.2]

for the failure of (d). Further models were proposed but, to the authors' knowledge,

they all fail at least one criterion. Table 1 shows some important models and their

properties.

We propose a formal model that satis�es criteria (a), (c), and (d), and has more

expressive power than the ln-xtt. The device is called linear extended multi bottom-

up tree transducer, where, as usual, `linear' means that no variable occurs twice in

the right-hand side of a rule. The extended multi bottom-up tree transducer (xmbutt)

is obtained from the bottom-up tree transducer [11, 45] by the addition of two fea-

tures: `multi' means that each input tree is translated into a sequence of output trees

rather than just one output tree, formalized by allowing states of arbitrary rank, and

`extended' means that the left-hand side of a rule can contain any number of input sym-

bols rather than just one input symbol, as explained above. In this paper we formally

de�ne and investigate the xmbutt and various restrictions (e.g., linear, nondeleting,

and deterministic). Note that we consider the xmbutt in general, not just its linear

restriction. The (non-extended) multi bottom-up tree transducer was recently studied

in [19, 20, 34], and we generalize several results of those papers to the extended case.

In Section 3 we present a number of basic properties of xmbutts. For example, we

construct for every xmbutt an equivalent nondeleting xmbutt (see Proposition 9). This

can be achieved by guessing the required translations. Though the construction pre-

serves linearity, it obviously destroys determinism. In Section 4 we prove a one-symbol

normal form for xmbutts (see Theorem 15): each rule of the xmbutt either consumes

one input symbol (without producing output), or produces one output symbol (without

consuming input). The transformation into this normal form preserves all three restric-

tions above. This shows in particular that the (linear) xmbutt has the same expressive

power as the (linear) multi bottom-up tree transducer of [19, 20, 34], enhanced with

epsilon rules. In the deterministic case the epsilon rules can even be removed (Corol-

lary 17), showing that the extension does not add expressive power. Thus, by the

result of [19], the deterministic xmbutt is as powerful as the deterministic top-down

tree transducer with regular look-ahead [12], and we prove (Theorem 18) that in the

linear case the latter transducer has the so-called single-use property (known from at-

tribute grammars [16, 21, 24, 30, 31]). The one-symbol normal form allows us to give an

easy, intuitively clear way of composing xmbutts as opposed to the usual constructions

in the literature, where possibly large right-hand sides of rules have to be processed.

Our main result (Theorem 23 in Section 5) states that the class of transformations

computed by xmbutts is closed under pre-composition with transformations computed

by linear xmbutts and under post-composition with those computed by deterministic

xmbutts. In particular, we also obtain that the classes of transformations computed by

linear and/or deterministic xmbutts are closed under composition. These results are

analogous to classical results (see [11, Theorems 4.5 and 4.6] and [6, Corollary 7]) for
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Model n Criterion (a) (b) (c) (d)
Linear nondeleting top-down tree transducer [38, 44] { x { x
Quasi-alphabetic tree bimorphism [43] { x { x
Synchronous context-free grammar [1] x x { x
Synchronous tree substitution grammar [40] x x x {
Synchronous tree adjoining grammar [5, 41, 42] x x x {
Linear complete tree bimorphism [5] x x x {
Linear nondeleting extended top-down tree transducer [3, 4, 26, 27, 35] x x x {
Linear multi bottom-up tree transducer [19, 20, 34] { ? x x
Linear extended multi bottom-up tree transducer [this paper ] x ? x x

Table 1 Overview of formal models with respect to desired criteria. \x" marks ful�lment; \{"
marks failure to ful�l. A question mark shows that this remains open though we conjecture
ful�lment.

bottom-up tree transducers and thus show the \bottom-up" nature of xmbutts. Also,

they are analogous to the composition results of [34, Theorem 11] for (non-extended)

multi bottom-up tree transducers. As in [34], our proof essentially uses the principle

set forth in [6, Theorem 6], but, as observed above, the one-symbol normal form allows

us to present a very simple composition construction for xmbutts and verify that it is

correct, provided that the �rst input transducer is linear or the second is deterministic.

We observe here that the \extension" of a tree transducer model (or even just the

addition of epsilon rules) can, in general, destroy closure under composition, as can be

seen from the linear nondeleting top-down tree transducer. This seems to be due to

the non-existence of a one-symbol normal form in the top-down case.

We verify in Section 3 that linear xmbutts have su�cient power for syntax-based

machine translation. This is because, as mentioned before (and shown in Proposi-

tion 5), they can simulate all ln-xtts. Thus, we have a lower bound to the power of

linear xmbutts. In fact, even the composition closure of the class of transformations

computed by ln-xtts is strictly contained in the class of transformations computed by

linear xmbutts (see Corollary 7). In Section 6, we present an exact characterization in

terms of extended top-down tree transducers (Theorem 25): xmbutts are as powerful as

compositions of an ln-xtt with a deterministic top-down tree transducer, and in the lin-

ear case the latter transducer has the single-use property. Thus, the composition of two

extended top-down tree transducers forms an upper bound to the power of the linear

xmbutt. The obtained results are summarized in an inclusion diagram (see Figure 5).

Additionally, we characterize the power of xmbutts in terms of bimorphisms (Theo-

rem 24 in Section 5). In particular, this yields that every xmbutt has a recognizable

set of derivations, which suggests that xmbutts can be e�ciently trained.

Overall, this paper is an extended and revised version of the conference paper [15].

Several results were �rst presented in 1978 in the thesis [32] (in French) of Lilin.

2 Preliminaries

Let A;B;C be sets. The powerset of A is denoted by P(A). A relation from A to B is

a subset of A�B. Let �1 � A�B and �2 � B � C. The composition of �1 and �2 is

�1 ; �2 = f(a; c) j 9b 2 B : (a; b) 2 �1; (b; c) 2 �2g :

This composition is lifted to classes of relations in the usual manner.
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The nonnegative integers are denoted by N and fi j 1 � i � kg is denoted by [k]. A

ranked set is a set � of symbols with a relation rk � � �N such that fk j (�; k) 2 rkg
is �nite for every � 2 �. Commonly, we denote the ranked set only by � and the

set of k-ary symbols of � by �(k) = f� 2 � j (�; k) 2 rkg. We also denote that

� 2 �(k) by writing �(k). Given two ranked sets � and� with associated rank relations

rk� and rk�, respectively, the set � [� is associated the rank relation rk� [ rk�. A
ranked set � is uniquely-ranked if for every � 2 � there exists exactly one k such that

(�; k) 2 rk. For uniquely-ranked sets, we denote this k simply by rk(�). An alphabet

is a �nite set, and a ranked alphabet is a ranked set � such that � is an alphabet.

Let � be a ranked set. The set of �-trees, denoted by T� , is the smallest set T

such that �(t1; : : : ; tk) 2 T for every k 2 N, � 2 �(k), and t1; : : : ; tk 2 T . We

write � instead of �() if � 2 �(0). Let � � � and H � T� . By � (H) we de-

note f
(t1; : : : ; tk) j 
 2 � (k); t1; : : : ; tk 2 Hg. Now, let � be a ranked set. We denote

by T�(H) the smallest set T � T�[� such that H � T and �(T ) � T .

Let t 2 T� . The set of positions of t, denoted by pos(t), is de�ned by

pos(�(t1; : : : ; tk)) = f"g [ fiw j i 2 [k]; w 2 pos(ti)g

for every � 2 �(k) and t1; : : : ; tk 2 T� . Note that we denote the empty string by " and

that pos(t) � N�. The height of t is height(t) = maxfjwj+1 j w 2 pos(t)g, and the size

of t is size(t) = card(pos(t)). Let w 2 pos(t) and u 2 T� . The subtree of t that is rooted

in w is denoted by tjw, the symbol of t at w is denoted by t(w), and the tree obtained

from t by replacing the subtree rooted at w by u is denoted by t[u]w. For every � � �

and � 2 �, let pos� (t) = fw 2 pos(t) j t(w) 2 �g and pos�(t) = posf�g(t).

Let X = fxi j i � 1g be a set of formal variables, each variable is considered to

have the unique rank 0. For every k � 0, let Xk = fxi j i 2 [k]g. In what follows,

we assume that the input, output, and state alphabets of tree transducers do not

contain variables. A tree t 2 T�(X) is linear (respectively, nondeleting) in V � X

if card(posv(t)) � 1 (respectively, card(posv(t)) � 1) for every v 2 V . The set of

variables of t is var(t) = fv 2 X j posv(t) 6= ;g and the sequence of variables is given

by yieldX : T�(X)! X� with yieldX(v) = v for every v 2 X and

yieldX(�(t1; : : : ; tk)) = yieldX(t1) � � � yieldX(tk)

for every � 2 �(k) and t1; : : : ; tk 2 T�(X). A tree t 2 T�(X) is normalized if

yieldX(t) = x1 � � �xm for some m 2 N. Every mapping � : V ! T�(X) with V � X

is a substitution. We de�ne the application of � to a tree in T�(V ) inductively by

v� = �(v) for every v 2 V and �(t1; : : : ; tk)� = �(t1�; : : : ; tk�) for every � 2 �(k) and

t1; : : : ; tk 2 T�(V ).

An extended (top-down) tree transducer (xtt, or transducteur g�en�eralis�e descen-

dant) [3, 4] is a tuple M = (Q;�;�; I;R) where Q is a uniquely-ranked alphabet such

that Q = Q(1), � and � are ranked alphabets, I � Q, and R is a �nite set of rules of

the form l ! r with l 2 Q(T�(X)) linear in X, and r 2 T�(Q(var(l))). The xtt M is

linear (respectively, nondeleting) if r is linear (respectively, nondeleting) in var(l) for

every l ! r 2 R. It is epsilon-free, if l =2 Q(X) for every l ! r 2 R. The semantics of

the xtt is given by term rewriting. Let �; � 2 T�(Q(T�)). We write � )M � if there

exist a rule l ! r 2 R, a position w 2 pos(�), and a substitution � : X ! T� such

that �jw = l� and � = �[r�]w. The tree transformation computed by M is the relation

�M = f(t; u) 2 T� � T� j 9q 2 I : q(t) )�
M ug. In Figure 1 we display two example
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Fig. 1 Two example rules of an xtt M and a derivation step using the �rst rule.

rules and a derivation step to illustrate the above de�nitions. The class of all tree trans-

formations computed by xtts is denoted by XTOP. The pre�xes `l', `n', and `e' are used

to restrict to linear, nondeleting, and epsilon-free devices, respectively. Thus, ln-XTOP

denotes the class of all tree transformations computable by linear and nondeleting xtts.

An xtt M = (Q;�;�; I;R) is a top-down tree transducer [38, 44] if for every rule

l ! r 2 R there exist q 2 Q and � 2 �(k) such that l = q(�(x1; : : : ; xk)). Note that

every left-hand side of a rule of a top-down tree transducer is normalized. The top-down

tree transducer M is deterministic (respectively, total) if (i) card(I) = 1 (respectively,

card(I) � 1) and (ii) for every l 2 Q(�(X)) there exists at most (respectively, at

least) one r such that l ! r 2 R. Finally, M is single-use [21, 24, 30, 31] if for every

q(v) 2 Q(X), k 2 N, and � 2 �(k) there exist at most one l ! r 2 R and at most

one w 2 pos(r) such that l(1) = � and rjw = q(v). We use TOP and TOPsu to denote

the classes of transformations computed by top-down tree transducers and single-use

top-down tree transducers, respectively. We also use the pre�xes `l', `n', `d' and `t' to

restrict to linear, nondeleting, deterministic, and total devices, respectively.

We use the standard notion of a recognizable (or regular) tree language [22, 23],

and we denote the class of all recognizable tree languages by REC. Moreover, we let

REC(�) = fL � T� j L 2 RECg and T (REC) = f�(L) j � 2 T and L 2 RECg for a

class T of tree transformations.

Next, we recall top-down tree transducers with regular look-ahead [12]. A top-down

tree transducer with regular look-ahead is a pair hM; ci such thatM = (Q;�;�; I;R) is

a top-down tree transducer and c : R! REC(�). We say that such a transducer hM; ci
is deterministic if (i) card(I) = 1 and (ii) for every l 2 Q(�(X)) and t 2 T� there

exists at most one r such that l ! r 2 R, l(1) = t("), and t 2 c(l ! r). Similarly,

hM; ci is single-use (called strongly single use restricted in [16, De�nition 5.5]) if for

every q(v) 2 Q(X) and t 2 T� there exist at most one l ! r 2 R and at most

one w 2 pos(r) such that l(1) = t("), t 2 c(l ! r), and rjw = q(v). The semantics

)hM;ci of hM; ci is de�ned in the same manner as for an xtt with the additional

restriction that l�j1 2 c(l ! r). The computed tree transformation �hM;ci is de�ned

as for an xtt. We use TOPR and TOPR
su to denote the classes of transformations

computed by top-down tree transducers with regular look-ahead and single-use top-

down tree transducers with regular look-ahead, respectively. We use the pre�x `d' in

the usual manner.

For further information on recognizable tree languages and tree transducers, we

refer the reader to [22, 23].
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3 Extended Multi Bottom-up Tree Transducers

In this section, we recall S-transducteurs ascendants g�en�eralis�es [32], which are a gener-

alization of S-transducteurs ascendants (STA) [32, 33]. We choose to call them extended

multi bottom-up tree transducers here in line with [19, 20, 34], where `extended' refers

to the fact that trees of arbitrary size are allowed on both sides of the rules and `multi'

refers to the fact that states may have ranks di�erent from one.

De�nition 1 An extended multi bottom-up tree transducer (for short: xmbutt) is a

tuple (Q;�;�; F;R) where

{ Q is a uniquely-ranked alphabet of states, disjoint with � [�;

{ � and � are ranked alphabets of input and output symbols, respectively;

{ F � Q nQ(0) is a set of �nal states; and

{ R is a �nite set of rules of the form l ! r where l 2 T�(Q(X)) is linear in X and

r 2 Q(T�(var(l))).

A rule l! r 2 R is an epsilon rule if l 2 Q(X); otherwise it is input-consuming. Note

that the right-hand side of an epsilon rule need not be in Q(X), i.e., can contain output

symbols. The sets of epsilon and input-consuming rules are denoted by R" and R� ,

respectively.

An xmbutt M = (Q;�;�; F;R) is a multi bottom-up tree transducer (mbutt) [re-

spectively, an STA] if l 2 �(Q(X)) [respectively, l 2 �(Q(X)) [ Q(X)] for every

l ! r 2 R. It is an extended bottom-up tree transducer (xbutt) if all states of Q are

of rank 1, and it is a bottom-up tree transducer [11, 45] if it is both an mbutt and an

xbutt. Linearity and nondeletion of xmbutts are de�ned in the natural manner. The

xmbutt M is linear if r is linear in var(l) for every rule l! r 2 R. It is nondeleting if

(i) F � Q(1) and (ii) r is nondeleting in var(l) for every l ! r 2 R. Moreover, M is

deterministic if (i) there do not exist two distinct rules l1 ! r1 2 R and l2 ! r2 2 R,

a substitution � : X ! X, and w 2 pos(l2) such that l1� = l2jw, and (ii) there does

not exist an epsilon rule l! r 2 R such that l(") 2 F . Note that, intuitively speaking,

in a deterministic xmbutt there exist no useful states that contribute to a cycle of

epsilon rules and thus epsilon rules can be removed in the standard manner from a

deterministic xmbutt (see Proposition 10 for a detailed account). Finally, an mbutt M

is total if for every k 2 N, every � 2 �(k), and every sequence q1; : : : ; qk 2 Q, there

exists a rule l ! r 2 R such that l(") = � and l(i) = qi for all i 2 [k]. It is not easy

to de�ne totality for an arbitrary xmbutt in a syntactic way; fortunately we will not

need such a de�nition.

Let us now present a rewrite semantics. For later use (in Proposition 10 and Sec-

tion 5) we de�ne the rewriting for ranked sets larger than � and � (and possibly

containing variables).

In the rest of this and the next section, let M = (Q;�;�; F;R) be an xmbutt

(unless otherwise speci�ed).

De�nition 2 Let �0 and �0 be ranked sets disjoint with Q. Moreover, let l! r 2 R,

�; � 2 T�[�0(Q(T�[�0)), and w 2 pos(�). We write � )l!r;w
M � if there exists a

substitution � : X ! T�[�0 such that �jw = l� and � = �[r�]w. We write � )l!r
M �

if there exists w 2 pos(�) such that � )l!r;w
M �, and we write � )M � if there exists

� 2 R such that � )�
M �. The tree transformation computed by M is

�M = f(t; �j1) j t 2 T� ; � 2 F (T�); t)
�
M �g :
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Fig. 2 Two example rules (the upper one is input-consuming and the lower one is an epsilon
rule) of an xmbutt M and a derivation step using the �rst rule.

Clearly, in a derivation t )�
M � with t 2 T� and � 2 Q(T�), the �rst applied

rule l ! r 2 R cannot contain states in the left-hand side (i.e., l 2 T�). Moreover, if

an xmbuttM is deterministic, then for every t 2 T� there exists at most one � 2 F (T�)

such that t)�
M �. Hence, �M is a partial function for every deterministic xmbutt M .

Note that if M is a deterministic (respectively, total) mbutt and t 2 T� , then there

exists at most one (respectively, at least one) � 2 Q(T�) such that t)�
M �.

Figure 2 displays example rules and a derivation step. The xmbutts M and N are

equivalent if �M = �N . We denote by XMBOT, MBOT, XBOT, and BOT the classes

of tree transformations computed by xmbutts, mbutts, xbutts, and bottom-up tree

transducers, respectively. We use the pre�xes `l', `n', and `d' to restrict to linear, non-

deleting, and deterministic devices, respectively. For example, l-XMBOT denotes the

class of all tree transformations computed by linear xmbutts, which is the formal model

for syntax-based machine translation that we proposed in the Introduction. Similarly,

ld-XMBOT is the subclass of transformations computed by linear and deterministic

xmbutts.

Example 3 Let � = f�(2); �(1); 
(1); �(0)g and M = (fp(1); q(2)g; �;�; fpg; R) be the
xmbutt with R consisting of the following rules

�! q(�; �) �(q(x1; x2))! p(�(x1; x2))


(q(x1; x2))! q(
(x1); 
(x2)) p(x1)! p(�(x1)) :

This xmbutt M is linear and nondeleting and computes the transformation

f(�(t); �n(�(t; t))) j t 2 T� ; n 2 Ng

where � = f
(1); �(0)g. If we remove the epsilon rule p(x1) ! p(�(x1)), then the

xmbutt M becomes a linear, nondeleting, and deterministic mbutt that computes the

transformation f(�(t); �(t; t)) j t 2 T� g. ut

Example 3 shows that linear xmbutts have some copying power, which implies that

not every transformation of l-XMBOT (not even of lnd-MBOT) preserves recogniz-

ability. Obviously, this is due to the fact that states may have ranks larger than one.

In fact, it will be shown in Corollary 7 that the transformations of l-XBOT preserve

recognizability.

The following terminology and lemma will be useful in formal constructions and

formal correctness proofs. Since the lemma is intuitively obvious, its proof is left to

8



the reader. Let � 2 T�(Q(T�(X))) with k = card(posQ(�)). We can write � (uniquely)

as � = ���� such that �� 2 T�(Xk) is normalized with yieldX(��) = x1 � � �xk and

�� : Xk ! Q(T�(X)) is a substitution.

Lemma 4 For all t 2 T� , n 2 N, and � 2 T�(Q(T�)) with k = card(posQ(�)),

we have t )n
M � if and only if there is a substitution �in : Xk ! T� and there are

n1; : : : ; nk 2 N with
P

i2[k] ni = n, such that t = ���in and �in(xi) )
ni
M ��(xi) for all

i 2 [k].

This lemma is similar to the usual one for context-free grammars: viewing the

elements of Q(T�) as nonterminals, the application of a rule l! r of M can be viewed

as backwards application of a rule r� ! l� of a context-free grammar (with � : X ! T�
as in De�nition 2).

In the remainder of this section we establish a number of basic properties of

xmbutts. First, we verify that l-XMBOT is suitably powerful for applications in ma-

chine translation. We do this by showing that ln-XTOP coincides with ln-XBOT. In

particular, this shows that even linear and nondeleting xbutts can handle rotations [29].

Proposition 5

ln-XBOT = ln-XTOP ( l-XTOP ( l-XBOT :

Proof The inclusion l-XTOP � l-XBOT can be proved in a similar manner as the

inclusion l-TOP � l-BOT [11, Theorem 2.8]. We now recall the idea. Let q(l)! r be a

rule of the linear xtt M . We construct a rule l� ! q(r0) of the xbutt M 0 where � is the

substitution that maps every variable v to ?(v) for a new state ?, if v does not occur

in r, or to p(v) with p being the state such that p(v) occurs in r. Finally, r0 is obtained

from r by replacing all occurrences of p(v) simply by v. In addition, we add the rule

�(?(x1); : : : ;?(xk))! ?(�(x1; : : : ; xk)) for every k 2 N and � 2 �(k). Note that ifM

is nondeleting, then the constructed xbutt M 0 will also be nondeleting. Moreover, in

that case ? is not needed, and thus our construction actually establishes a bijection

between linear nondeleting xtt and linear nondeleting xbutt. We can easily prove that

t)�
M 0 q(u) i� q(t))�

M u with the help of Lemma 4 forM 0 and the dual lemma for the

xtt M . Thus we proved the inclusion and the equality ln-XBOT = ln-XTOP, which

generalizes the equality ln-BOT = ln-TOP [11, Theorem 2.9].

We leave the strictness proof of the inclusion ln-XTOP ( l-XTOP to the reader (see

also (8) in the proof of Theorem 26). The strictness of the inclusion l-XTOP ( l-XBOT,

which generalizes the strict inclusion l-TOP ( l-BOT [11, Theorem 2.8], follows from

l-TOPR 6� XTOP [35, Lemma 4.3] and l-BOT = l-TOPR [12, Theorem 2.8]. ut

The equality l-BOT = l-TOPR [12, Theorem 2.8] mentioned in the previous proof

can easily be generalized to l-XBOT = l-XTOPR, where l-XTOPR is the class of

transformations computed by linear xtts with regular look-ahead as de�ned (in the

obvious way) in [34, 35].

Next, let us discuss the relation of xmbutts to bimorphisms [4, 5]. Nivat's Theo-

rem [7, Theorem III.3.2] shows that �nite-state transducers compute exactly the trans-

formations of the form f(f(s); g(s)) j s 2 Lg where f and g are string homomorphisms

and L is a regular string language. In what follows we start to develop a similar char-

acterization for classes of transformations computed by xmbutts.

Let X and Y be classes of total functions on trees. We indicate by B(X;Y ) the class

of all bimorphisms of the form f(f(s); g(s)) j s 2 Lg where f 2 X with f : T� ! T� ,

9



g 2 Y with g : T� ! T�, and L 2 REC(� ). An mbutt M = (Q;�;�; F;R) is

homomorphic if (i) M is total deterministic, (ii) Q is a singleton, say Q = f?g, and
(iii) F = Q. Note that, for every such homomorphic mbutt M and every t 2 T� , there

are unique u1; : : : ; um 2 T� such that t )�
M ?(u1; : : : ; um), where m = rk(?). Con-

sequently, �M is a total function. For classes of transformations computed by mbutts,

we use the pre�x `h' to restrict to homomorphic devices. The elements of h-MBOT

are called m-morphisms (if rk(?) = m) in [5, 32]. Note that 1-morphisms, i.e., the ele-

ments of h-BOT, are the usual tree homomorphisms [22, 23]. The m-morphisms could

be called multi-tree homomorphisms since they associate a sequence of m trees (with

variables) to each input symbol.

We will use the relation to bimorphisms to prove that certain transformations pre-

serve recognizability. Thus, we recall that every transformation � in B(h-BOT; lh-BOT)

preserves recognizability. In fact, let � = f(f(s); g(s)) j s 2 Lg where f 2 h-BOT,

g 2 lh-BOT, and L 2 REC. If L0 is now also a recognizable tree language, then

�(L0) = g(f�1(L0) \ L) is recognizable too, because REC is closed under inverse tree

homomorphisms, intersection, and linear tree homomorphisms [22].

It is shown in [34, Theorem 4] (as a variation of a result of [4]) that

ln-XTOP = B(lnh-BOT; lnh-BOT) :

Thus, by Proposition 5, the same bimorphism characterization holds for ln-XBOT:

it equals B(lnh-BOT; lnh-BOT). The inclusion of the class ln-XBOT in the class

B(lnh-BOT; lnh-BOT) essentially shows that the derivations of a linear and nondelet-

ing xbutt M form a recognizable tree language from which the transformation �M
can be recovered by two linear and nondeleting tree homomorphisms, one for the

input trees and one for the output trees. Let us investigate this in more detail be-

cause a recognizable set of derivations is an important property for trainability. Recall

that M = (Q;�;�; F;R) is an xmbutt. We turn R into a uniquely-ranked alphabet

such that rk(�) = card(posQ(l)) for every rule � = (l ! r) 2 R. In addition, let

fw1; : : : ; wkg = posQ(l) such that w1 < � � � < wk with respect to the lexicographic

ordering on N�. We de�ne in(�) = (l(w1); : : : ; l(wk)) and out(�) = r("). Note that,

using the notation introduced before Lemma 4, in(�) = (�l(x1)("); : : : ; �l(xrk(�))(")).

For every q 2 Q, let Dq(M) be the set of trees s 2 TR such that

(i) out(s(")) = q and

(ii) in(s(w)) = (out(s(w1)); : : : ; out(s(wk))) where k = rk(s(w)) for every position

w 2 pos(s).

Finally, let D(M) =
S
q2F Dq(M). Obviously, D(M) � TR is a recognizable tree

language.

Next, we generalize the inclusion ln-XBOT � B(lnh-BOT; lnh-BOT) to arbitrary

xmbutts, using multi-tree homomorphisms instead of ordinary ones for the output

trees. We also show that the �rst two components of the bimorphism can be replaced

by a linear and nondeleting xbutt.

Lemma 6

XMBOT � B(lnh-BOT; h-MBOT) � ln-XBOT ; h-MBOT

l-XMBOT � B(lnh-BOT; lh-MBOT) � ln-XBOT ; lh-MBOT

XBOT � B(lnh-BOT; h-BOT) � ln-XBOT ; h-BOT

l-XBOT � B(lnh-BOT; lh-BOT) � ln-XBOT ; lh-BOT

10



q1

x1 : : : xm

: : :
qk

xn+1 : : : xkm

!

q

u1

: : :

um

�

�

x1

: : : �

xk

#

x1 : : : xk

�

�

?

x1 : : : xm

: : : ?

xn+1 : : : xkm

#

?

u1

: : :

um

Fig. 3 Illustration of the construction of the rules in Lemma 6 where n = (k � 1)m. Top:
rule � in M . Bottom: corresponding rules in M1 (left) and M2 (right).

Proof Let M = (Q;�;�; F;R) be an xmbutt. To avoid uninteresting technical details,

we assume, without loss of generality, that all left-hand sides of rules are normalized

(see Section 2), and that all states have the same rank, say rank m. Note that the

latter property can easily be satis�ed by adding dummy variables to the states in the

left-hand sides of rules, and adding dummy output trees to the states in the right-hand

sides.

Let M1 = (f�g; R;�; f�g; R1) with rk(�) = 1 and M2 = (f?g; R;�; f?g; R2) with

rk(?) = m. It remains to de�ne R1 and R2. Every rule � 2 R gives rise to a rule in R1

and a rule in R2 as follows. Let � = l ! r with rk(�) = k. Then R1 and R2 contain

the normalized rules

�(�(x1); : : : ; �(xk))! �(�l)

�(?(x1; : : : ; xm); : : : ; ?(x(k�1)m+1; : : : ; xkm))! ?(rj1; : : : ; rjm) ;

respectively, where �l is de�ned before Lemma 4. The constructed rules are illustrated

in Figure 3.

We claim that �M = f(�M1
(s); �M2

(s)) j s 2 D(M)g. Clearly, M1 and M2 satisfy

the syntactic requirements. The semantic correctness of the construction follows from

the following statement. For every t 2 T� , q 2 Q, and u1; : : : ; um 2 T�, we have

t)�
M q(u1; : : : ; um) if and only if there exists s 2 Dq(M) such that

(i) s)�
M1

�(t) and
(ii) s)�

M2
?(u1; : : : ; um).

This statement can easily be shown by induction on the length of the �rst deriva-

tion and by structural induction on s. As an example of a correctness proof us-

ing Lemma 4, we will give the details of the proof for one direction. Suppose that

t )�
M � )�

M q(u1; : : : ; um) with � = l ! r. Due to the form of q(u1; : : : ; um), the

rule � is applied at the root of �, i.e., � )�;"
M q(u1; : : : ; um). Thus, there exists a sub-

stitution � : X ! T� such that � = l� and q(u1; : : : ; um) = r�. This implies that

11



�� = �l and �� = �l ; � (the composition of the substitutions �l and �). By Lemma 4

there is a substitution �in : X ! T� such that t = ���in and �in(xi) )
�
M ��(xi) for

all i 2 [k], where k = card(var(��)) = rk(�). Note that, by Lemma 4, the derivations

�in(xi) )
�
M ��(xi) can be chosen to be shorter than t )�

M q(u1; : : : ; um). Hence, by

the induction hypothesis, there are trees s1; : : : ; sk 2 TR such that si 2 Dqi(M), where

qi = ��(xi)(") = �l(xi)(") and so in(�) = (q1; : : : ; qk); moreover,

si )
�
M1

�(�in(xi)) and si )
�
M2

?(��(xi)j1; : : : ; ��(xi)jm) :

Now take s = �(s1; : : : ; sk), which is in Dq(M) because out(�) = r(") = q. By Lemma 4

applied to M1 and using the rule of R1 displayed above, we obtain that

s)�
M1

�(�(�in(x1)); : : : ; �(�in(xk))))M1
�(�l�in) = �(���in) = �(t) :

Similarly, and using the fact that �� = �l ; �, we obtain for M2 that

s)�
M2

�(?(��(x1)j1; : : : ; ��(x1)jm); : : : ; ?(��(xk)j1; : : : ; ��(xk)jm))

= �(?(�(x1); : : : ; �(xm)); : : : ; ?(�(x(k�1)m+1); : : : ; �(xkm)))

)M2
?(r�j1; : : : ; r�jm) = ?(u1; : : : ; um) :

The other direction can be shown in a similar way: If s = �(s1; : : : ; sk) 2 Dq(M)

and s satis�es items (i) and (ii), then t ()�
M ;)�

M ) q(u1; : : : ; um). The details are left

to the reader.

For the �nal inclusions, we note that the identity transformation is contained

in lnh-BOT. Thus, with the help of ln-XBOT = B(lnh-BOT; lnh-BOT) (see the dis-

cussion before this Lemma), we can write

B(lnh-BOT; Y ) � B(lnh-BOT; lnh-BOT) ; Y = ln-XBOT ; Y ;

which yields the given inclusions. ut

Let us quickly discuss the implications of Lemma 6. First, it shows that we can

separate input and output behavior on the one hand (performed by the homomorphic

mbutts) from nondeterminism and state checking on the other hand (encoded in the

tree language D(M)). In addition, Lemma 6 shows that the set of derivations of an

arbitrary xmbutt is recognizable; it is modelled by the set of \derivation trees" D(M).

This is a strong indication toward the existence of e�cient training algorithms. Finally,

Lemma 6 also limits the power of xmbutts, but we will provide more detail and tighter

bounds later on. In fact, it is straightforward to prove directly that the left-most

inclusions of Lemma 6 are actually equalities. However, we will prove this indirectly for

XMBOT and l-XMBOT in Theorem 24 after establishing our composition results. We

note that the equality l-XBOT = B(lnh-BOT; lh-BOT) is shown in [34, Theorem 4] for

l-XTOPR instead of l-XBOT (see the remark after the proof of Proposition 5).

By Lemma 6 and one of the observations made before that lemma, every trans-

formation of l-XBOT preserves recognizability. Thus, by Example 3, we obtain the

following result, which shows that the copying power of linear xmbutts is due to the

states with rank larger than one.

Corollary 7 Every transformation of l-XBOT preserves recognizability. Consequently,

l-XBOT ( l-XMBOT.
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Let us now investigate the e�ect of extended left-hand sides. We will prove in

Lemma 14 that for every xmbutt there is an equivalent STA, which shows that rules

with several input symbols can be avoided. However, epsilon rules are essential, as

illustrated in the next lemma, which is clearly false in the presence of epsilon rules.

Lemma 8 Let M be an xmbutt without epsilon rules. Then there exists c 2 N such

that height(u) � c � height(t) for every (t; u) 2 �M . Moreover, if M is linear, then

size(u) � c � size(t) for every (t; u) 2 �M .

Proof In the absence of epsilon rules we can clearly apply at most size(t) derivation

steps in any derivation starting with the input tree t. IfM is linear, then each derivation

step increases the total number of output symbols by at most the number of output

symbols in the applied rule. In the general case, a similar observation applies to the

height of the output tree if we consider the paths in the trees. Formally, we can prove

the statements as follows.

Let M = (Q;�;�; F;R) be an xmbutt such that R" = ;. For the �rst statement,

let f = height and
L

= max, and for the second statement, let f = size and
L

=
P
.

Moreover, let c = f(r) where r is a maximal (with respect to f) right-hand side of all

rules of R. We now inductively prove that f(�) � c�f(t) for every t 2 T� and � 2 Q(T�)

such that t )�
M �. Thus, there exists a rule l ! r 2 R such that t )�

M � )l!r
M �,

and due to the form of �, there exists a substitution � : X ! T� such that � = l� and

� = r�. As in the proof of Lemma 6, this implies that �� = �l and �� = �l ; �. Note that
�l =2 X (because R" = ;). By Lemma 4 there is a substitution �in : X ! T� such that

t = ���in and �in(x) )
�
M ��(x) for every x 2 var(��). By the induction hypothesis we

obtain that f(��(x)) � c � f(�in(x)) for every x 2 var(��). Since � = l� and � = r�, the

linearity of r (for the second statement) implies that f(�) � f(r) +
L

v2var(l) f(�(v)).

From the fact that �� = �l ; � we obtain that f(��(x)) = 1 +
L

v2var(�l(x))
f(�(v)) for

every x 2 var(��). Hence,

f(�) < f(r) +
M

x2var(��)

f(��(x)) � c+
M

x2var(��)

c � f(�in(x)) � c � f(t)

because
L

x2var(��) f(�in(x)) < f(t), due to the fact that t = ���in and �� =2 X. This

completes the induction proof of the auxiliary statement and we can easily conclude

both statements. ut

The statements of Lemma 8 generalize the corresponding statements for bottom-up

tree transducers. A special case of the second statement is shown in [20, Lemma 3.7].

Next, we discuss in which cases we can actually remove the epsilon rules. We need

a preliminary result �rst. It shows that every xmbutt can be turned into an equivalent

nondeleting one. Unfortunately, the construction does not preserve determinism. A

similar result is proved for mbutts in [34, Theorem 14] in an indirect way; for linear

xmbutts it was �rst presented in [32, Theorem VI.1], also in an indirect way. Here we

give a direct construction.

Roughly speaking, all subtrees of a �nal state at the root of the input tree except

the �rst subtree are deleted. The remaining deleted subtrees can then be computed in

a top-down fashion down to the leaves of the input tree. More precisely, they can be

computed by a deterministic top-down tree automaton that works on a tree of D(M)

that models the derivation of the given xmbuttM . We simulate the computation of the

top-down tree automaton nondeterministically bottom-up in the usual way, without

building up the deleted trees.
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Proposition 9 XMBOT = n-XMBOT and l-XMBOT = ln-XMBOT.

Proof For the xmbutt M = (Q;�;�; F;R) we construct an equivalent nondeleting

xmbutt N = (P;�;�; F 0; R0). The set P of states of N consists of all pairs hq; Ji with
q 2 Q and J � [rk(q)]. The rank of hq; Ji is card(J); moreover, F 0 = fhq; f1gi j q 2 Fg.

For a tree t = q(t1; : : : ; tk) with q 2 Q(k) and t1; : : : ; tk 2 T�(X), we de�ne

'(t) = fhq; fi1; : : : ; imgi(ti1 ; : : : ; tim) j 1 � i1 < � � � < im � kg. The mapping ' is

extended to trees t 2 T�(Q(T�(X))) by

'(�(t1; : : : ; tk)) = f�(u1; : : : ; uk) j ui 2 '(ti) for all i 2 [k]g

for every � 2 �(k) and t1; : : : ; tk 2 T�(Q(T�(X))). The set R0 of rules of N is now

de�ned to be

fl0 ! r0 j 9 l! r 2 R : l0 2 '(l); r0 2 '(r); var(l0) = var(r0)g :

By de�nition, N is nondeleting. Since the rules of N are obtained from those of M by

removing subtrees (and renaming states), N is linear whenever M is.

Let t 2 T� be an input tree, q 2 Q(k), J = fi1; : : : ; img � [k] with i1 < � � � < im,

and ui1 ; : : : ; uim 2 T�. It can easily be shown that t )�
N hq; Ji(ui1 ; : : : ; uim) if and

only if there exist ui 2 T� for every i 2 [k] n J such that t )�
M q(u1; : : : ; uk). The

proof is by induction on the length of the derivations. For the if-direction, note that

for every l ! r 2 R and r0 2 '(r) there is a (unique) l0 2 '(l) such that l0 ! r0 2 R0;

this formalizes the (deterministic) top-down intuition discussed before this theorem.

Taking q 2 F and J = f1g this shows that �N = �M . ut

Now we return to investigate when epsilon rules can be eliminated. A tree trans-

formation � � T� � T� is �nitary if fu j (t; u) 2 �g is �nite for every t 2 T� .

Lemma 8 shows that �M is �nitary for every xmbutt M without epsilon rules (see [35,

Lemma 4.9]). For every deterministic xmbutt M , the transformation �M is a partial

function and thus �nitary. The next proposition shows that every �nitary transforma-

tion of XMBOT can actually be computed by an xmbutt without epsilon rules. Using

Lemma 14 we can even obtain an equivalent mbutt.

Proposition 10 For every xmbutt M such that �M is �nitary, there exists an equiva-

lent xmbutt N without epsilon rules. Moreover, if M is linear (respectively, nondeleting,

deterministic), then so is N .

Proof Intuitively, epsilon rules can be removed in the standard way because if �M is

�nitary, then only a bounded number of output symbols can be produced (provided

M is nondeleting or deterministic) in a series of consecutive applications of epsilon

rules. We now turn to the formal proof. It is rather long because we wish to show how

the notion of a useful rule can be formalized and applied, on the basis of Lemma 6.

Let M = (Q;�;�; F;R). Without loss of generality, we can assume that M is

nondeleting or deterministic by Proposition 9. Moreover, we may assume, again without

loss of generality, that for every rule there exists a successful derivation in which it

participates, i.e., formally, that for every rule � 2 R there exists a tree s 2 D(M)

such that � occurs in s (where D(M) is de�ned before Lemma 6). This condition can

easily be tested because D(M) is a recognizable tree language, and all rules that fail

the test can safely be removed because �M = f(�M1
(s); �M2

(s)) j s 2 D(M)g, as
shown in the proof of Lemma 6. This assumption implies that for every � 2 R with

out(�) = q 2 Q(m),
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(i) there exist t 2 T� and � 2 Q(T�) such that t ()�
M ;)�

M ) �, and

(ii) there exist a linear tree t 2 T�(Q(Xm)) and a tree � 2 F (T�(Xm)) such that

tjw = q(x1; : : : ; xm) for some w 2 pos(t) and t)�
M �.

In fact, by the above assumption, there exist s0 2 TR(fx1g) and s1; : : : ; sk 2 TR,

where k = rk(�), such that x1 occurs exactly once in s0 and s0�
0 2 D(M) with

�0(x1) = �(s1; : : : ; sk). Clearly, �(s1; : : : ; sk) 2 Dq(M). This implies item (i) by the

proof of Lemma 6 (note that M1 and M2 in that proof are total). Similarly, item (ii)

can be obtained from the correctness statement in the proof of Lemma 6, applied to

the xmbutt M 0 that is obtained from M by adding a new m-ary symbol ~q to �,

new nullary symbols ~x1; : : : ; ~xm to both � and �, and the new rule ~�, which is

~q(~x1; : : : ; ~xm) ! q(~x1; : : : ; ~xm) to R. The statement should be applied to s0�
00 with

�00(x1) = ~�. Since in(~�) is the empty sequence and out(~�) = out(�), we have that

s0�
00 2 D(M 0). Further details are left to the reader. Note that we may also assume

that item (ii) holds for every state q 2 Q(m), because those states that do not appear

in the right-hand sides of rules can obviously be removed.

Let us move on to the main statement. We call a state q 2 Q an end state if there

exists an input-consuming rule l ! r 2 R� such that posq(l) 6= ;. We denote the set

of all end states of Q by E. For every input-consuming rule � = (l ! r) 2 R� , we

construct the set rhs(�) = fr0 2 Q(T�(X)) j r )�
M r0 and r0(") 2 E [ Fg. Note that

the shape of r restricts any derivation r )�
M r0 to use only epsilon rules. Moreover,

rhs(�) is �nite for every � 2 R� because M is deterministic or nondeleting. In the

former case, rhs(�) contains at most one element (in fact, exactly one element by

item (ii)), which is easily seen from the de�nition of determinism. Now consider the

latter case, in which M is nondeleting. Suppose that rhs(�) is in�nite. Then there

exists a state q 2 E [ F such that T = fr0 2 rhs(�) j r0(") = qg is in�nite by the

pigeon-hole principle. Now let t0 2 T� and � 2 Q(T�) be such that t0 ()�
M ;)�

M ) �,

and let t 2 T�(Q(Xm)) be a linear tree, p 2 F a �nal state (which is of rank 1), and

u 2 T�(Xm) such that tjw = q(x1; : : : ; xm) for some w 2 pos(t) and t )�
M p(u).

Note that u is nondeleting in Xm because M is nondeleting. Moreover, let � : X ! T�
be such that � = r� (as in De�nition 2). Finally, let �0 : Xm ! T� be such that

�0(xi) = r0�ji for every i 2 [m]. Then

t[t0]w )�
M t[�]w = t[r�]w )�

M t[r0�]w )�
M p(u�0)

and thus (t[t0]w; u�
0) 2 �M for every r0 2 T . Note that u�0 contains all output symbols

from r0 since u is nondeleting in Xm. Consequently, �M is not �nitary because T is

in�nite. This contradicts the assumption and allows us to conclude that rhs(�) is �nite.

Next, we construct the xmbutt M 0 = (Q;�;�; F;R0) where

R0 =
[

l!r2R�

fl! r0 j r0 2 rhs(l! r)g :

Clearly, the xmbutt M 0 is linear (respectively, nondeleting, deterministic) if M is so.

By the de�nition of rhs(l! r) it should also be clear that M 0 contains no epsilon rules

and that M 0 and M are equivalent. ut

Since every deterministic xmbutt computes a �nitary transformation, we immedi-

ately obtain that the same transformation can also be computed by a deterministic

xmbutt without epsilon rules, or even a deterministic mbutt by Lemma 14. More gen-

erally, using Proposition 10, Lemma 14, and a straightforward subset construction, it
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can be shown that for every xmbutt M such that �M is a partial function, there exists

an equivalent deterministic mbutt.

We have seen in Example 3 that linear xmbutts possess some copying power, and

we can now use Proposition 10 to show that this copying power of linear xmbutts is

restricted.

Proposition 11 d-XMBOT 6� l-XMBOT.

Proof Let us prove that h-BOT 6� l-XMBOT. Let M = (f?g; �;�; f?g; R0) with

� = fa(1); e(0)g, � = fa(2); e(0)g, and R0 contains the two rules

e! ?(e) and a(?(x1))! ?(a(x1; x1)) :

The transformation �M 2 h-BOT transforms a unary tree s 2 T� into a full binary

tree such that along all paths from the root to a leaf we read s. Now suppose that

�M 2 l-XMBOT. Since �M is �nitary, we can conclude by Proposition 10 that �M can

be computed by a linear xmbutt without epsilon rules. Thus, by Lemma 8 there exists

an integer c 2 N such that size(u) � c � size(t) for every (t; u) 2 �M . Clearly, this is a

contradiction, which proves �M =2 l-XMBOT. ut

We �nally discuss totality. It is easy to see that every xmbutt can be turned into

an equivalent one that is \dynamically total", which means that for every t 2 T� there

exists at least one � 2 Q(T�) such that t )�
M �. This extends a classical result for

bottom-up tree transducers [22, Lemma IV.3.5]. It will follow from Corollary 17 and

the next lemma that this also holds for deterministic xmbutts. The lemma treats the

easy case of deterministic mbutts. A similar result is also stated in [34, Lemma 8].

Lemma 12 For every deterministic mbutt M there exists an equivalent total deter-

ministic mbutt N . Moreover, if M is linear, then so is N .

Proof We use a construction that is similar to the one for bottom-up tree trans-

ducers [22, Lemma IV.3.5]. Speci�cally, let M = (Q;�;�; F;R) and let ? =2 Q be

a new state of rank 0. We construct the mbutt N = (Q0; �;�; F;R [ R0) where

Q0 = Q [ f?(0)g and R0 contains the normalized rule

�(q1(x1; : : : ; xrk(q1)); : : : ; qk(xm�rk(qk)+1; : : : ; xm))! ?

with m =
Pk

i=1 rk(qi) for every � 2 �(k) and q1; : : : ; qk 2 Q0 such that there exists

no l! r 2 R with l(") = � and l(j) = qj for every j 2 [k].

It should be clear that N and M are equivalent since new transitions only yield

the new state ?, which is not �nal. Moreover, N is total deterministic, and N is linear

whenever M is so. ut

4 One-symbol Normal form

Recall that M = (Q;�;�; F;R) is an xmbutt. The following normal form will be at

the heart of our composition construction in the next section. It says that exactly

one symbol, irrespective whether input or output symbol, occurs in every rule. It is a

generalization of the similar well-known normal form for �nite-state transducers (see [7,

Corollary III.6.2]).
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De�nition 13 The rule l! r 2 R is a one-symbol rule if

card(pos�(l)) + card(pos�(r)) = 1 :

The xmbutt M is in one-symbol normal form if it has only one-symbol rules.

For every one-symbol rule l! r 2 R we either have

{ l 2 �(Q(X)) and r 2 Q(X), or

{ l 2 Q(X) and r = q(u1; : : : ; un) for some q 2 Q(n) and u1; : : : ; un 2 X [ �(X)

such that ui 2 �(X) for exactly one i 2 [n].

In particular, every xmbutt in one-symbol normal form is an STA. Next, we show that

every xmbutt can be transformed into an equivalent xmbutt in one-symbol normal

form. This is achieved in two steps: �rst we construct an equivalent STA and then an

equivalent STA in one-symbol normal form.

Lemma 14 For every xmbutt M there exists an equivalent STA N . Moreover, if M is

linear (respectively, nondeleting, deterministic) then so is N , and if M has no epsilon

rules then N is an mbutt.

Proof Let us assume, without loss of generality, that the left-hand side l of every rule

of M is normalized (see Section 2; i.e., yieldX(l) = x1 � � �xm for some m 2 N). We

decompose rules with more than one input symbol in the left-hand side into several

rules, using (a variation of) the construction of [32, Proposition II.B.5]. Choose a

uniquely-ranked set P and a bijection f : T�(Q(X))! P such that

(i) Q � P ,

(ii) f(q(x1; : : : ; xn)) = q for every q 2 Q(n), and

(iii) rk(f(l)) = card(var(l)) for every l 2 T�(Q(X)).

In fact, we will only use f(l) for normalized l 2 T�(Q(X)).

A �nite number of elements of P will be used as states of the STA to be con-

structed. The idea is that if f(l) = p and u1; : : : ; um 2 T�(X), where l is nor-

malized and m = rk(p), then the tree p(u1; : : : ; um) 2 P (T�(X)) encodes the tree

l� 2 T�(Q(T�(X))) with �(xi) = ui for i 2 [m]. Note that it is essential here that

states can have an arbitrary number of arguments.

Let l ! r 2 R be an input-consuming rule such that l =2 �(P (X)). Suppose

that l = �(l1; : : : ; lk) for some � 2 �(k) and l1; : : : ; lk 2 T�(Q(X)). Moreover, let

�1; : : : ; �k : X ! X be bijections such that li�i is normalized. Finally, for every i 2 [k]

let pi = f(li�i) and ri = pi(x1; : : : ; xm) where m = rk(pi). We construct the xmbutt

M1 = (Q [ fp1; : : : ; pkg; �;�; F; (R n fl! rg) [R1;1 [R1;2)

where R1;1 = fli�i ! ri j i 2 [k]; li =2 Q(X)g and R1;2 = fl0 ! rg, in which l0 is

the unique normalized tree of f�g(P (X)) such that l0(i) = pi for every i 2 [k] (note

that if li 2 Q(X), then pi = li(") and so l0ji = lji). It is easy to see that the tree ri
encodes li�i, in the sense discussed above. Also, since yieldX(l0ji) = yieldX(li), the

tree l0ji encodes li�i�
�1
i = li. Furthermore, note that R1;1 [ R1;2 does not contain

epsilon rules.

It is straightforward to prove that �M1
= �M , and moreover, M1 is linear (respec-

tively, nondeleting) whenever M is so. Note, however, that M1 need not be determinis-

tic. Clearly, all rules of R1;1 have fewer input symbols in the left-hand side than l! r,
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and the left-hand side of the rule in R1;2 is in �(P (X)). Hence, repeated application

of the above construction (keeping P and the mapping f �xed) eventually yields an

equivalent STA M 0. Moreover, due to the special choice of P and f , and the fact that

all new rules are input-consuming, the STA M 0 is deterministic if M is. ut

Theorem 15 For every xmbutt M there exists an equivalent xmbutt N in one-symbol

normal form. Moreover, if M is linear (respectively, nondeleting, deterministic), then

so is N .

Proof By Lemma 14 we can assume that M is an STA. Next, we remove all epsilon

rules l! r 2 R such that r 2 Q(X). This can be achieved with the standard construc-

tion that preserves determinism, nondeletion, and linearity (see the proof of Proposi-

tion 10).

Finally, we decompose the right-hand sides. Let M 0 = (Q;�;�; F;R0) be the

xmbutt obtained so far and l ! r 2 R0 a rule that is not a one-symbol rule. Let

r = q(u1; : : : ; ui�1; �(u
0
1; : : : ; u

0
k); ui+1; : : : ; un) for some q 2 Q(n), i 2 [n], � 2 �(k),

and u1; : : : ; ui�1; ui+1; : : : ; un; u
0
1; : : : ; u

0
k 2 T�(X). Also, let p =2 Q be a new state of

rank k + n� 1. We construct the xmbutt

M 0
1 = (Q [ fpg; �;�; F;R01)

with R01 = (R0 n fl! rg) [R1 where R1 contains the two rules:

{ l! p(u1; : : : ; ui�1; u
0
1; : : : ; u

0
k; ui+1; : : : ; un) and

{ p(x1; : : : ; xk+n�1)! q(x1; : : : ; xi�1; �(xi; : : : ; xi+k�1); xi+k; : : : ; xk+n�1).

Note that M 0
1 is linear (respectively, nondeleting, deterministic) whenever M 0 is so.

The proof of �M 0

1
= �M 0 is straightforward and omitted. The second rule of R1 is a

one-symbol rule and the �rst rule has one output symbol less in its right-hand side

than l ! r. Thus, repeated application of the above procedure eventually yields an

equivalent xmbutt N in one-symbol normal form. ut

Let us illustrate Lemma 14 and Theorem 15 on a small example.

Example 16 Consider the xmbutt M = (Q;�; �; F;R) such that Q = F = fq(1)g,
� = f�(1); �(0)g, � = f
(2); �(0)g, and

R = f�(�)! q(�); �(q(x1))! q(
(x1; �))g :

Clearly, M is linear, nondeleting, and deterministic. Applying �rst the procedure of

Lemma 14 and then the procedures of Theorem 15 stepwise we obtain the states and

rules (we only show the newly constructed states and rules, and the rules that are not

one-symbol rules):

{ fq(1); q
(0)
1 g and f�! q1; �(q1)! q(�); �(q(x1))! q(
(x1; �))g

{ f: : : ; q
(0)
2 g and f: : : ; �(q1)! q2; q2 ! q(�); �(q(x1))! q(
(x1; �))g

{ f: : : ; q
(2)
3 g and f: : : ; �(q(x1))! q3(x1; �); q3(x1; x2)! q(
(x1; x2))g

{ f: : : ; q
(1)
4 g and f: : : ; �(q(x1))! q4(x1); q4(x1)! q3(x1; �); : : : g
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Note that only the �rst line corresponds to the construction in the proof of Lemma 14;

also note that, for example, f(�) = q1 and f(q(x1)) = q (see the proof of Lemma 14

for the use of f). Overall, we obtain the xmbutt N = (P;�; �; F;R0) with

P = fq(1); q
(0)
1 ; q

(0)
2 ; q

(2)
3 ; q

(1)
4 g

and R0 contains the rules

�! q1 q2 ! q(�) q4(x1)! q3(x1; �)

�(q1)! q2 �(q(x1))! q4(x1) q3(x1; x2)! q(
(x1; x2)) : ut

The next corollary is a simple consequence of Proposition 10 and Lemma 14.

Corollary 17 Let M be a deterministic xmbutt. Then there exists an equivalent de-

terministic mbutt N . Moreover, if M is linear (respectively, nondeleting), then so is N .

In particular,

d-XMBOT = d-MBOT

ld-XMBOT = ld-MBOT

lnd-XMBOT = lnd-MBOT :

This allows us to characterize the classes d-XMBOT and ld-XMBOT in terms of

top-down tree transducers using the result of [19]. The equality d-MBOT = d-TOPR is

shown in [19]. However, there is a subtle di�erence between the mbutt of [19] and ours:

the mbutt of [19] uses a special root symbol, which allows it to recognize the root of the

input tree. It is an easy exercise to show that the two models are equivalent, and so we

can conclude that d-XMBOT = d-TOPR with the help of Corollary 17. However, this

equivalence does not preserve linearity; in that case the presence of the special root

symbol adds expressive power (as we will discuss further after the next theorem). Also,

there is no characterization of ld-MBOT in [19], but one is suggested in the Conclusion

of [20]. Thus, to characterize ld-XMBOT (as d-TOPR
su) we have to reconsider the proofs

of [19, Lemmata 4.1 and 4.2]. It turns out that the direction d-TOPR
su � ld-MBOT

is a straightforward consequence of the proof of [19, Lemma 4.2], whereas for the

other direction a slight variation of the proof of [19, Lemma 4.1] is needed. Hence, for

completeness sake, we repeat the proofs in terms of the present formalism (which also

di�ers from the one of [19] in other, minor details).

Theorem 18

d-XMBOT = d-TOPR h-MBOT = td-TOP

ld-XMBOT = d-TOPR
su lh-MBOT = td-TOPsu :

Proof Let us start with the inclusion d-XMBOT � d-TOPR. Let M = (Q;�;�; F;R)

be a total deterministic mbutt (see Corollary 17 and Lemma 12), and let f : Q! f0; 1g
be the characteristic function of F . We de�ne an equivalent top-down tree transducer

hM 0; ci with regular look-ahead, withM 0 = (Q0; �;�; I;R0). Intuitively, for every input

subtree t, hM 0; ci uses its look-ahead to determine the last rule that M applied in its

(unique) derivation t)�
M q(u1; : : : ; um) with q 2 Q. Then, for each n 2 [m], it uses a

state n to compute un. To simulate the �nal states of M , state 1 (which computes u1)

is split into two states: one to be used as initial state (when q is in F ) and one to be
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used otherwise. In fact, for technical convenience, every state n is split into two states,

by storing f(q).

Thus we de�ne Q0 = f0; 1g � [mx] where mx = maxfrk(q) j q 2 Qg. More-

over, I = fh1; 1ig and R0 is de�ned as follows. Let � : l ! r be a rule in R, with

l(") = � 2 �(k), l(i) = qi for every i 2 [k], and r(") = q 2 Q(m). Then, for

every n 2 [m], the rule �(n) : hf(q); ni(�(x1; : : : ; xk)) ! rjn� is in R0 where the

substitution � : var(l) ! Q0(X) is de�ned for every i 2 [k] and j 2 [rk(qi)] by

�(l(ij)) = hf(qi); ji(xi). The regular look-ahead c(�(n)) consists of all trees t 2 T�
such that (i) t(") = � and (ii) for every i 2 [k] there exists �i 2 Q(T�) with tji )

�
M �i

and �i(") = qi. Note that c(�(n)) is a recognizable tree language because the state

behavior of an mbutt is the same as that of a �nite-state tree automaton. Note also

that, as observed after De�nition 2, there is exactly one such �i for every tji.

Clearly hM 0; ci is deterministic: for every l0 = hb; ni(�(x1; : : : ; xk)) and t 2 T� , if

�(n) : l0 ! r0 with � = t(") and t 2 c(l0 ! r0), then the look-ahead c(�(n)) determines

the states qi in the left-hand side of �, and hence � itself (by the determinism of M)

and thus �(n). Moreover, if M is linear, then for every j and xi there is at most one

occurrence of hf(qi); ji(xi) in r�; hence, hM 0; ci is single-use. If M is homomorphic,

then the rule that is applied at the root of an input tree is uniquely determined by the

symbol at the root, so the look-ahead is not required in this case.

It is straightforward to show by structural induction on t that for every hb; ni 2 Q0

and (t; u) 2 T� � T� the following statement holds: hb; ni(t) )�
hM 0;ci u if and only if

there exists � 2 Q(T�) such that (i) t )�
M �, (ii) b = f(�(")), (iii) n 2 [rk(�("))], and

(iv) u = �jn. Taking b = n = 1 this shows that �hM 0;ci = �M .

Now, let us move on to the inclusion d-TOPR � d-XMBOT. Let hM; ci be a deter-
ministic top-down tree transducer with regular look-ahead, with M = (Q;�;�; I;R).

We assume that Q = [s] for some s � 1, and that I = f1g. Note that for every i 2 Q

and t 2 T� there is at most one u 2 T� such that i(t))�
M u.

According to a standard way of handling look-ahead, the �nitely many recognizable

tree languages c(�), where � 2 R, can be recognized simultaneously by one (total

deterministic bottom-up) �nite-state tree automaton. Here, we conveniently model

this automaton as a pair (N; 
) where (i) N = (P;�; ;; ;; RN ) is a total deterministic

mbutt such that all states in P have rank 0 and (ii) 
 is a mapping 
 : R! P(P ) such
that, for every t 2 T� , t 2 c(�) if and only if t)�

N p for some p 2 
(�). Note that for

every t 2 T� there is a unique p 2 P such that t)�
N p. Moreover, we can assume that

for every p 2 P there exists t 2 T� such that t)�
N p.

Now we construct a total deterministic mbutt M 0 = (Q0; �;�; F;R0) that is equiv-

alent with M . The set of states of M 0 is Q0 = f0; 1gs � P , and each state hb; pi has
rank s. For a bit sequence b 2 f0; 1gs and i 2 [s], we denote the ith bit in b by b[i]. Let

nil be an arbitrary, �xed element of �(0). The rules in R0 will be constructed in such

a way that for every t 2 T� there exist (unique) hb; pi 2 Q0 and u1; : : : ; us 2 T� such

that (1) t )�
M 0 hb; pi(u1; : : : ; us), (2) t)

�
N p, and (3) for every i 2 [s], either b[i] = 1

and i(t) )�
M ui, or b[i] = 0, ui = nil , and there is no u 2 T� such that i(t) )�

M u.

Thus, taking the set F of �nal states to consist of all hb; pi such that b[1] = 1, we obtain

that �M 0 = �M .

For every � 2 �(k) and hb1; p1i; : : : ; hbk; pki 2 Q0, R0 contains a unique rule l! r

with l(") = � and l(j) = hbj ; pji for every j 2 [k]. The right-hand side r is de�ned to

be hb; pi(u1; : : : ; us) where (1) the rule �(p1; : : : ; pk) ! p is in RN , and (2) for every

i 2 [s],
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{ if there is a rule � : i(�(x1; : : : ; xk)) ! ri in R such that (a) p 2 
(�) and (b) for

every j 2 [s] and m 2 [k], if j(xm) occurs in ri then bm[j] = 1,

{ then b[i] = 1 and ui is obtained from ri by replacing all occurrences of j(xm) by

the variable l(mj),

{ and otherwise b[i] = 0 and ui = nil .

Note that there is at most one rule � that sati�es the requirements, due to the deter-

minism of M (consider t = �(t1; : : : ; tk) with tm )�
N pm for every m 2 [k]).

If hM; ci is single-use, then for every j and xm there is at most one occurrence

of j(xm) in r1; : : : ; rs, and hence the variable l(mj) occurs at most once in u1; : : : ; us.

Thus, M 0 is linear. Moreover, if M is a total deterministic top-down tree transducer,

then we can safely omit the look-ahead component P of the states (i.e., it is su�cient

to use f0; 1gs as set of states ofM 0). Moreover, for every i 2 [s] and t 2 T� there exists

an output tree u 2 T� such that i(t) )�
M u by the totality of M . A simple analysis

then shows that any state b 2 Q0 with a `0' in its bit sequence cannot be reached

[i.e., there does not exist t 2 T� and u1; : : : ; us 2 T� such that t )�
M 0 b(u1; : : : ; us)].

Consequently, we can drop all states with a `0' bit in them and obtain an equivalent

homomorphic mbutt. ut

We note that ld-XMBOT is strictly included in the class ld-MBOTfkv of the linear

deterministic multi bottom-up tree transformations discussed in [20]. The inclusion is

an easy exercise: we add the special root symbol of [19, 20] and add rules that, while

consuming that symbol, project on the �rst argument of a �nal state. The inclusion

is strict, due to the use of the special root symbol. For instance, it is easy to see that

the transformation f(t; �(t; t)) j t 2 T� g, with � 2 � (2), is in ld-MBOTfkv (cf. Exam-

ple 3) but not in ld-MBOT (though it is in both d-MBOT and l-MBOT). The results

shown in [20] for ld-MBOTfkv also hold for ld-XMBOT; in particular, ld-XMBOT is

incomparable with ld-TOPR, which is the class of transformations computed by lin-

ear deterministic top-down tree transducers with regular look-ahead (where `linear' is

de�ned as usual).

For readers familiar with attribute grammars we observe that Theorem 18 is not

surprising. Obviously, in a deterministic mbutt, the arguments of each state can be

viewed as synthesized attributes (of type `output tree'), and the state itself can also

be viewed as a synthesized attribute (of �nite type). One rule of the mbutt combines

all the semantic rules for the attributes, for a given input symbol. It is well known

that attribute grammars with synthesized attributes only (of type `output tree') corre-

spond to deterministic top-down tree transducers, with the states of the top-down tree

transducer corresponding to the attributes (see, e.g., [9, 18]). Moreover, a synthesized

attribute of �nite type obviously corresponds to regular look-ahead (cf. the `
ags' in

[13]). The single-use property of top-down tree transducers is de�ned in such a way

that it corresponds to the well-known single-use property of attribute grammars: each

attribute is used at most once. For an mbutt this means that each argument of a state

is used at most once, i.e., the mbutt is linear. Thus, the only di�culties in the proof

of Theorem 18 (and the proof in [19]) are caused by the details of the formal models,

which do not precisely correspond to attribute grammars. We elected to avoid the spe-

cial root symbol of [19] in order to obtain the strong characterizations of Theorem 18.

We note that the analogy between mbutts and attribute grammars breaks down in the

nondeterministic case (at least for the nondeterministic attributed tree transducers of

[18]), and certainly in the extended case. Let us �nally note that the characterization of

ld-XMBOT as d-TOPR
su shows that the transformations in ld-XMBOT are MSO trans-
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ductions, i.e., can be de�ned in terms of monadic second-order logic (as shown in [8]).

The same can be shown for l-MBOT, because every linear mbutt can be simulated by

the composition of an MSO relabelling and a deterministic linear mbutt. However, it

does neither hold for d-XMBOT nor for l-XMBOT, because if � is an MSO transduc-

tion then there exists c 2 N such that size(u) � c �size(t) for every (t; u) 2 � (and hence

� is �nitary); cf. Lemma 8 and the proof of Proposition 11.

5 Composition

Let us now investigate compositions of tree transformations computed by xmbutts.

We �rst recall the classical composition results for bottom-up tree transducers [6, 11].

Let M and N be bottom-up tree transducers. If M is linear or N deterministic, then

the composition of the transformations computed by M and N can be computed by a

bottom-up tree transducer. As a special case, the classes of transformations computed

by linear, linear and nondeleting, and deterministic bottom-up tree transducers are

closed under composition.

In our setting, let M and N be xmbutts. We will prove that if M is linear or N is

deterministic, then there is an xmbuttM ;N that computes �M ;�N (the composition of

�M and �N ). In particular, we prove that l-XMBOT, d-XMBOT, and ld-XMBOT are

closed under composition. The closure of l-XMBOT was �rst presented in [32, Proposi-

tions II.B.5 and II.B.7]. The closure of d-XMBOT is already known: Theorem 18 shows

that d-XMBOT coincides with d-TOPR, which is closed under composition [12, The-

orem 2.11]. In [33, Proposition 2.5] closure under composition of STA transformations

was shown for a di�erent type of determinism, in which �nal states are allowed to have

epsilon rules, but must have rank 1; such transformations need not be �nitary. Finally,

the closure of ld-XMBOT is to be expected from its characterization in Theorem 18

and the fact that the single-use restriction was introduced in [21, 24] to guarantee the

closure under composition of attribute grammar transformations (see [31, Theorem 3]).

The standard way to construct the rules of a transducerM ;N , which computes the

composition of the transformations computed by two given transducersM and N , is to

\run" N on the right-hand sides of the rules ofM (see, e.g., [6, 34]). The disadvantage is

that, in general, possibly large right-hand sides have to be processed, which complicates

the intuition and the correctness proof. In our case this construction is even impossible

because it leads to in�nitely many rules if �N is not �nitary. Fortunately, the one-

symbol normal form allows a very easy alternative: the xmbutt M ;N consumes input

by simulatingM , it produces output by simulating N , and whenM produces an output

symbol, then it feeds that symbol immediately as input into N .

Let us now prepare the composition construction. In the following, let

M = (Q;�; �; FM ; RM ) and N = (P; �;�; FN ; RN )

be xmbutts such that Q, P , and � [ � [� are pairwise disjoint (which can always be

assumed without loss of generality). We de�ne the uniquely-ranked alphabet

QhP i = fqhp1; : : : ; pni j q 2 Q(n); p1; : : : ; pn 2 Pg

such that rk(qhp1; : : : ; pni) =
Pn

i=1 rk(pi) for every q 2 Q(n) and p1; : : : ; pn 2 P . Let

� = � [ � [� [ X. We de�ne the mapping ' : T�[QhP i ! T�[Q[P such that for
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qhp1; p2i

t1 t2 t3

7!

q

p1

t1

p2

t2 t3

Fig. 4 Tree homomorphism ' where q 2 Q(2), p1 2 P (1), and p2 2 P (2).

every qhp1; : : : ; pni 2 QhP i(k), � 2 �(k), and t1; : : : ; tk 2 T�[QhP i

'(qhp1; : : : ; pni(t1; : : : ; tk)) = q(p1('(t1); : : : ; '(tl)); : : : ; pn('(tm); : : : ; '(tk)))

'(�(t1; : : : ; tk)) = �('(t1); : : : ; '(tk))

where, for j 2 [n], the jth argument of the right-hand side of the �rst equation is

pj('(tr); : : : ; '(ts)) with r = 1 +
Pj�1

i=1 rk(pi) and s =
Pj

i=1 rk(pi). In particular,

l = rk(p1) andm = 1+k�rk(pn). Thus, we group the subtrees below the corresponding

state pj . Note that ' is a linear and nondeleting tree homomorphism, which acts as

a bijection from T�(QhP i(T�(X))) to T�(Q(P (T�(X)))). In the sequel, we identify t

with '(t) for all t 2 T�(QhP i(T�(X))). We display ' in Figure 4. Now let us present

the composition construction.

De�nition 19 Let M = (Q;�; �; FM ; RM ) be an xmbutt in one-symbol normal form

and N = (P; �;�; FN ; RN ) an STA. The composition of M and N is the STA

M ;N = (QhP i; �;�; F;R1 [R2 [R3)

with F = fqhp1; : : : ; pni j n � 1; q 2 F
(n)
M ; p1 2 FN ; p2; : : : ; pn 2 Pg and:

R1 = fl! r j l 2 LHS(�) and 9� 2 R�M : l)�
M rg

R2 = fl! r j l 2 LHS(") and 9� 2 R"N : l)�
N rg

R3 = fl! r j l 2 LHS(") and 9�1 2 R"M ; �2 2 R�N : l ()�1
M ;)�2

N ) rg

where LHS(�) and LHS(") are the sets of normalized (de�ned in Section 2) trees of

�(QhP i(X)) and QhP i(X), respectively.

To illustrate the implicit use of ', let us show the \o�cial" de�nition of R1:

R1 = fl! r j l 2 LHS(�); r 2 QhP i(T�(X)); and 9� 2 R�M : '(l))�
M '(r)g :

Note that the construction preserves linearity. Moreover, it preserves determinism if N

is an mbutt (in which case R2 is empty, of course).

Since we identify t with '(t), the trees that occur in the derivations of M ;N are

in T�(Q(P (T�))). The rules in R1 are de�ned in such a way that M ;N can simulate

the input-consuming rules of M , which do not produce output. Those in R2 allow

M ; N to simulate the epsilon rules of N . Finally, the rules in R3 allow M ; N to

simulate consecutively an epsilon rule �1 of M and an input-consuming rule �2 of N .

Note that �1 produces exactly one output symbol 
 2 � , and that �2 immediately

consumes that same 
 as input. Thus, the application of the rule �1 to a given tree

in T�(Q(P (T�))) leads to a tree � 2 T�(Q(T� (P (T�)))) with card(pos� (�)) = 1

(assuming, for simplicity, that � is disjoint with � [ �). The application of �2 to �

leads back to T�(Q(P (T�))). This means that derivations of M ;N can be turned into

derivations that use the rules of both M and N .

The remaining part of this section will investigate when �M ;N = �M ; �N , but �rst

let us illustrate the construction on our small running example.
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Example 20 Let M be the xmbutt N of Example 16 in one-symbol normal form,

and let N = (fg(1); h(1)g; �;�; fgg; RN ) be the linear and nondeleting STA with

� = � [ f�(1)g and

RN = f�! h(�); h(x1)! h(�(x1)); 
(h(x1); h(x2))! g(
(x1; x2))g :

Clearly, N computes f(
(�; �); 
(�i(�); �j(�))) j i; j 2 Ng, and hence �M ; �N is

f(�(�(�)); 
(�i(�); �j(�))) j i; j 2 Ng. Note that �N is not �nitary. Now let us construct

M ;N . As states we obtain

fqhgi(1); qhhi(1); q1hi
(0); q2hi

(0);

q3hg; gi
(2); q3hg; hi

(2); q3hh; gi
(2); q3hh; hi

(2); q4hgi
(1); q4hhi

(1)g ;

of which only qhgi is �nal. We present some relevant rules only [left in o�cial form

l! r; right in alternative notation '(l)! '(r)]. The 1st, 2nd, and 5th rules are in R1

(of De�nition 19), the 4th rule is in R2, and the remaining rules are in R3.

�! q1hi �! q1

�(q1hi)! q2hi �(q1)! q2

q2hi ! qhhi(�) q2 ! q(h(�))

qhhi(x1)! qhhi(�(x1)) q(h(x1))! q(h(�(x1)))

�(qhhi(x1))! q4hhi(x1) �(q(h(x1)))! q4(h(x1))

q4hhi(x1)! q3hh; hi(x1; �) q4(h(x1))! q3(h(x1); h(�))

q3hh; hi(x1; x2)! qhgi(
(x1; x2)) q3(h(x1); h(x2))! q(g(
(x1; x2))) ut

Next, we will prove that �M ;�N is in XMBOT provided that (i)M is linear or (ii) N

is deterministic. Without loss of generality, we can assume that M is in one-symbol

normal form, by Theorem 15, and that it is nondeleting in case (i), by Proposition 9. We

can also assume that N is an STA in case (i), by Lemma 14, and a total deterministic

mbutt in case (ii) by Corollary 17 and Lemma 12. Thus, we can meet the requirements

of De�nition 19, and we will prove that with the above assumptions the composition

construction is correct, i.e., thatM ;N computes �M ;�N (cf. [6, Theorem 6]). Henceforth

we assume the notation of De�nition 19.

We start with a simple lemma. It shows that in a derivation that uses steps of

M and N (like the derivations of M ;N) we can always perform all steps of M �rst and

only then perform the derivation steps of N . This already proves one direction needed

for the correctness of the composition construction.

Lemma 21 Let t 2 T� and � 2 Q(P (T�)). If t )
� � where ) is )M [ )N , then

t ()�
M ;)�

N ) �. In particular, �M ;N � �M ; �N .

Proof Let SF = T�(Q(T� (P (T�)))). It obviously su�ces to prove the following state-

ment: For �; �0 2 SF, if � ()N ;)M ) �0, then � ()M ;)�
N ) �0. To this end, let

�2 2 RN , w2 2 pos(�), � 2 SF, �1 2 RM , and w1 2 pos(�) be such that

� )�2;w2

N � )�1;w1

M �0 :

Clearly, w2 is not a pre�x of w1, and thus, �1 is applicable to � at w1. Hence there

exists �0 2 SF such that � )�1;w1

M �0. If w1 is not a pre�x of w2, then �0 )�2;w2

N �0

because rewriting occurs in incomparable positions. Now suppose that w1 is a pre�x
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of w2. Let �1 be l! r, and let v 2 posX(l) and y 2 N� be such that w1vy = w2. Then

�0 ()�2;w1v1y
N ; � � � ;)�2;w1vmy

N ) �0 where posl(v)(r) = fv1; : : : ; vmg.

Now suppose that (t; u1) 2 �M ;N . Then t )�
M ;N qhp1; : : : ; pni(u1; : : : ; uk) for

some k � 1, qhp1; : : : ; pni 2 QhP i(k), and u2; : : : ; uk 2 T� such that q 2 FM
and p1 2 FN . By the �rst part of the statement, there exists � 2 SF such that

t)�
M � )�

N qhp1; : : : ; pni(u1; : : : ; uk). It is easy to see that � = q(t1; : : : ; tn) for some

t1; : : : ; tn 2 T� , which proves (t; t1) 2 �M . Moreover, � )�
N qhp1; : : : ; pni(u1; : : : ; uk)

yields t1 )
�
N p1(u1; : : : ; urk(p1)) by Lemma 4. Consequently, (t1; u1) 2 �N , and thus

(t; u1) 2 �M ; �N . ut

Next, we prove that �M ; �N � �M ;N under the above assumptions on M and N .

We achieve this by a standard induction over the length of the derivation.

Lemma 22 Let t 2 T� and � 2 Q(P (T�)) be such that t ()�
M ;)�

N ) �. If (i) M is

linear and nondeleting, or (ii) N is a total deterministic mbutt, then t )�
M ;N �. In

particular, �M ; �N � �M ;N .

Proof Let t = �(t1; : : : ; tk) for some � 2 �(k) and t1; : : : ; tk 2 T� . The proof is by

induction on the length of the total given derivation in case (i) and by induction on the

length of the derivation using M in case (ii). Let � 2 Q(T� ) such that t)�
M � )�

N �,

and let �(") = �(") = q 2 Q(m). It follows from Lemma 4 that �ji )
�
N �ji 2 P (T�)

for every i 2 [m]. First, suppose that there exists i 2 [m] such that �ji )
�
N � )�

N �ji
with � 2 P (T�) and � 2 R"N . In other words, suppose that one of the derivations

ends with the application of an epsilon rule � and we are thus in case (i). Then, by the

induction hypothesis, we obtain that t )�
M ;N q(�j1; : : : ; �ji�1; �; �ji+1; : : : ; �jm). By

the de�nition of R2, we furthermore have q(�j1; : : : ; �ji�1; �; �ji+1; : : : ; �jm))M ;N �.

Now, suppose that, for every i 2 [m], the derivation �ji )
�
N �ji ends with the

application of an input-consuming rule. Consider the last step of the derivation t)�
M �,

and let l! r 2 RM and � : X ! T� be such that t)�
M l� )M r� = �. Since M is in

one-symbol normal form, we have card(pos� (r)) � 1. Next we distinguish two cases for

l ! r to de�ne a tree �. If l ! r is input-consuming, then let � = �. Otherwise l ! r

is an epsilon rule, and let fig = pos� (r). Then the derivation �ji )
�
N �ji �rst applies

rules at non-root positions and then applies an input-consuming rule at the root that

consumes �(i) = r(i). Hence, by Lemma 4, there exists � such that � )�
N � )N �

and �(i) = �(i) 2 � ; i.e., the last derivation step applies an input-consuming rule

at position i. Moreover, for every n 2 [m] with n 6= i we have �jn 2 P (T�) and

�jn )�
N �jn. Also, �ji = �(i)(�ji1; : : : ; �jis) for some s 2 N with �jij 2 P (T�) and

�jij )
�
N �jij for every j 2 [s].

With this de�nition of �, it should now be clear that, since eitherM is linear or N is

a deterministic mbutt, there exists a substitution �0 : X ! P (T�) such that � = r�0.

In the deterministic case this uses the property of deterministic mbutts mentioned

between De�nition 2 and Example 3. It should also be clear that �(x) )�
N �0(x) for

every x 2 var(r). Moreover, since M is nondeleting or N is total, we may assume that

this even holds for every x 2 var(l) with the help of the property mentioned for total

mbutts between De�nition 2 and Example 3. Thus, t)�
M l� )�

N l�0. By the induction

hypothesis (applied to t1; : : : ; tk if l! r is input-consuming, and to t if it is an epsilon

rule), we obtain t )�
M ;N l�0 )M r�0 )�

N �. Note that the induction hypothesis

is applicable in case (i) because M is nondeleting and is also applicable in case (ii)

because fewer derivation steps of M are applied. If l ! r is an input-consuming rule,
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then r�0 = �, and thus by the de�nition of R1 we conclude t)�
M ;N l�0 )M ;N r�0 = �.

On the other hand, if l ! r is an epsilon rule, then r�0 )�
N � for an input-consuming

rule � of N , and thus by the de�nition of R3 we conclude t)�
M ;N l�0 )M ;N �.

For the second part of the statement, let (t; u1) 2 �M ;�N . Then there exists t1 2 T�
such that (t; t1) 2 �M and (t1; u1) 2 �N . Consequently,

{ there exist q 2 F
(n)
M and t2; : : : ; tn 2 T� such that t)�

M q(t1; : : : ; tn), and

{ there exist p 2 F
(k)
N and u2; : : : ; uk 2 T� such that t1 )

�
N p(u1; : : : ; uk).

Since M is nondeleting (in which case we have n = 1) or N is total, there exist

�2; : : : ; �n 2 P (T�) such that ti )
�
N �i for every 2 � i � n by the remarks after

De�nition 2. With the help of Lemma 4 we have

t)�
M q(t1; : : : ; tn))

�
N q(p(u1; : : : ; uk); �2; : : : ; �n) :

Thus, by the �rst part of the statement we obtain t)�
M ;N q(p(u1; : : : ; uk); �2; : : : ; �n),

and thus (t; u1) 2 �M ;N . ut

Now we are ready to prove the main theorem of this section.

Theorem 23

l-XMBOT ; XMBOT � XMBOT and XMBOT ; d-XMBOT � XMBOT :

Moreover, l-XMBOT, d-XMBOT, and ld-XMBOT are closed under composition.

Proof The inclusions follow directly from Lemmata 21 and 22 using Theorem 15,

Proposition 9, Corollary 17, and Lemmata 12 and 14 to establish the preconditions

of De�nition 19 and Lemma 22. The closure results follow from the fact that the com-

position construction preserves linearity and determinism (provided that N is a total

deterministic mbutt in the latter case). ut

Note that with the help of Proposition 10 and Lemma 14, our approach can be

used to reprove [34, Theorem 11] (which is obtained from Theorem 23 by removing

every X). In addition, we can now use the composition theorem to obtain bimor-

phism characterizations for XMBOT and l-XMBOT, which sharpens the inclusions

of Lemma 6. We also show that the �rst two components of the bimorphism can

be replaced by a linear and nondeleting xbutt. Finally, we note that the statement

l-XMBOT = B(lnh-BOT; lh-MBOT) was �rst presented in [32, Theorem II.B.4].

Theorem 24

XMBOT = B(lnh-BOT; h-MBOT) = ln-XBOT ; h-MBOT

l-XMBOT = B(lnh-BOT; lh-MBOT) = ln-XBOT ; lh-MBOT

Proof The left-to-right chain of inclusions is proved in Lemma 6. The missing inclusions

ln-XBOT ; h-MBOT � XMBOT and ln-XBOT ; lh-MBOT � l-XMBOT follow from

Theorem 23. ut
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6 Relation to Extended Top-down Tree Transducers

Now, let us focus on the limitation of the power of xmbutts, as compared to xtts.

By [34, Theorem 14] every mbutt computes a transformation of ln-TOP ; d-TOP and

can thus be simulated by two top-down tree transducers. It is obvious from the proof

of [34, Theorem 14] that the second top-down tree transducer can be made total (by

adding dummy rules). Moreover, if the mbutt is linear, then the second top-down tree

transducer is single-use. Here we easily derive a similar result for xmbutts.

Theorem 25

XMBOT = ln-XTOP ; td-TOP and l-XMBOT = ln-XTOP ; td-TOPsu :

Proof By Theorem 24 we have

XMBOT = ln-XBOT ; h-MBOT

l-XMBOT = ln-XBOT ; lh-MBOT :

Applying the equation ln-XBOT = ln-XTOP of Proposition 5 and the equations

h-MBOT = td-TOP and lh-MBOT = td-TOPsu of Theorem 18, we obtain the state-

ment. ut

Theorem 25 limits the power of xmbutts. They have the same power as a compo-

sition of two (special) xtts. In particular, the second equation of Theorem 25 shows

in a precise way how much stronger l-XMBOT is with respect to ln-XTOP. Since

ln-XTOP transformations preserve recognizability (by Proposition 5 and Corollary 7),

this characterization implies that

l-XMBOT(REC) = lh-MBOT(REC) = td-TOPsu(REC) :

Obviously, by Theorem 23, this class of tree languages is closed under all tree trans-

formations of l-XMBOT. This is, in some sense, similar to the fact that the class of

regular string languages is closed under all �nite-state transductions.

The single-use top-down tree transducer has a bounded copying facility: it makes

at most card(Q) copies of each input subtree; thus it is a so-called \�nite-copying"

top-down tree transducer, see [17, De�nition 3.1.9]. Hence, denoting the class of to-

tal deterministic �nite-copying top-down tree transformations by td-TOPfc, we have

td-TOPsu(REC) � td-TOPfc(REC). Actually, by [16, Corollary 7.5], these classes are

equal, and so

l-XMBOT(REC) = l-MBOT(REC) = td-TOPfc(REC) :

By [17, Corollary 3.2.8], td-TOPfc(REC) is a proper subclass of td-TOP(REC), which

equals XMBOT(REC) by Theorem 25; intuitively, this is because top-down tree trans-

ducers can do unbounded copying. Consequently, l-XMBOT and td-TOP are incom-

parable subclasses of XMBOT; this was already shown in the proof of Proposition 11:

the tree homomorphism �M in that proof is in td-TOP.

The class of string languages yield(td-TOPfc(REC)), consisting of the yields of

tree languages in td-TOPfc(REC), has been investigated in [36, 39, 46], motivated by

the grammatical generation of discontinuous constituents in natural languages. Several

formal models that generate this class are discussed in [36, Section 5] (cf. also the
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discussion in [14, Section 6]). One of these models is the multiple context-free grammar

of [39]. In fact, the so-called parallel multiple context-free grammar ([39, Section 2.2])

can be viewed as a variation of the mbutt, generating the yields of its output trees;

similarly, the multiple context-free grammar is a variation of the linear mbutt. Thus, it

is immediate that the class PMCFL of parallel multiple context-free languages equals

yield(XMBOT(REC)) and that the class MCFL of multiple context-free languages

equals yield(l-XMBOT(REC)). Let us also mention that the relational tree grammars

of [37] (which are closely related to the multiple context-free grammar) generate the

class td-TOPfc(REC), as proved in [37, Proposition 4.8].

Finally, let us summarize the relations between classes of tree transformations com-

puted by several tree transducer models in an inclusion diagram (see Figure 5). Note

that all lines in the diagram are oriented upwards, and we use solid lines to denote

strict inclusion and dashed lines to denote inclusion. Moreover, for any class T of trans-

formations, T 2 and T � denote T ; T and the composition closure of T , respectively.

Theorem 26 Figure 5 is an inclusion diagram.

Proof The nontrivial inclusions are by Propositions 5 and 9, Lemma 6, Corollary 17,

Theorems 23 and 25, and [34, Theorems 14 and 19]. Note that by the last line of

Lemma 6, we have l-XBOT � ln-XBOT ; lh-BOT, which is included in l-XTOP2 by

Proposition 5 and the well-known (and obvious) fact that lh-BOT � ltd-TOP. To prove

strictness and incomparability, we need to prove the following statements:

ld-XMBOT 6� lnd-XMBOT (1)

lnd-XMBOT 6� l-XTOP� (2)

d-XMBOT 6� l-XMBOT (3)

TOP2 6� XMBOT (4)

lne-XTOP 6� d-XMBOT (5)

ln-XTOP 6� TOP2 (6)

lne-XTOP2 6� l-XBOT (7)

le-XTOP 6� ln-XTOP2 (8)

l-XBOT 6� l-XTOP : (9)

We leave the proof of (1) and (8) as an exercise. For statement (2) recall the de-

terministic mbutt of Example 3, which does not preserve recognizability. However,

all transformations of l-XTOP� preserve recognizability (by Proposition 5 and Corol-

lary 7), which proves the statement. Statement (3) is proved in Proposition 11. By [17,

Corollary 3.2.16] we have

XMBOT(REC) = td-TOP(REC) ( TOP(REC) ;

which yields (4). The statements (5) and (6) are trivial, because the tree transforma-

tions in d-XMBOT are functions and those in TOP2 are �nitary. It is shown in [5,

Section 3.4] and [35, Theorem 5.2] that lne-XTOP2 6� B(lnh-BOT; lh-BOT), which

proves statement (7) by Lemma 6. Finally, statement (9) is proved in Proposition 5.

ut
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XTOP2

TOP2

XMBOT

MBOT

d-(X)MBOT l(n)-XMBOT

l(n)-MBOT

ld-(X)MBOT l-XTOP�

le-XTOP� l-XTOP2

lnd-(X)MBOT le-XTOP
2

ln-XTOP
2

l-XBOT

lne-XTOP
2

l-XTOP

le-XTOP

ln-XTOP
= ln-XBOT

lne-XTOP

Fig. 5 Inclusion diagram of classes of tree transformations (solid lines denote strict inclusion
and dashed lines denote inclusion).

Conclusion and Open Problems

We have shown that linear xmbutts are suitably powerful to compute any transforma-

tion that can be computed by linear extended top-down tree transducers (see Proposi-

tion 5). Moreover, we generalized the main composition results of [6, 11] for bottom-up

tree transducers to xmbutts (see Theorem 23). In particular, we showed that l-XMBOT
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is closed under composition. Finally, we characterized l-XMBOT as the composition of

ln-XTOP and td-TOPsu (see Theorem 25), which shows that, analogously to bottom-

up tree transducers, nondeterminism and evaluation can be separated.

As shown in Theorem 26, the composition closure of l-XTOP is strictly contained

in l-XMBOT. This raises two interesting questions:

(a) Which linear xmbutts can be transformed into a linear xtt?

(b) Can we characterize the composition closure of l-XTOP?

Acknowledgements The authors are grateful to the reviewer for his insightful remarks,
which improved the paper.
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